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Abstract. The main purpose of this article is to determine the practical use of the Monte Carlo simulations in 
electricity markets for forecasting future prices. First, we review the structure of the electricity markets – how 
they work, what implications do they have and how they’ve evolved during the last decades. Second, we disco-
ver that there are only few researches that have been made on this topic as well as there haven’t being made 
any researches regarding the Lithuanian electricity market. Then, we will carry out an analysis on how to use a 
Monte Carlo simulation approach in electricity markets. A Mean-Reverting process method will be introduced, 
which, at first, was used to predict oil prices. Also, we analyze the essence of price spikes and find a solution on 
how to predict them.
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Introduction

In 20th century, electricity markets have experienced significant changes. Market liber-
alization covered all areas of energy sector. From centralized vertical structures, markets 
moved to horizontal ones. In Europe, a large number of directives and regulations were 
introduced. Instead of a monopoly market with fixed pricing models, power exchanges 
appeared, creating new opportunities for businesses.

Electricity is a unique commodity that has specific attributes. First of all, electricity 
is a non-storable product, i.e., it must be consumed once it was produced. It leads to a 
necessity to balance the entire power system in any period of time. Recently, there have 
appeared more and more new technological innovations to mitigate or even solve the 
non-storability issue (house batteries connected to a distribution network, house-scale 
systems synchronized with electric vehicles that help absorb any production surplus or 
lend capacities when there is a production deficit). However, at this moment, these new 
technologies are at the project stage and were tested on a small scale.
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Second, to trade electricity on the markets, it requires a physical infrastructure that 
connects electricity producers with electricity consumers. Infrastructure can be divided 
into two levels:

• Electricity transmission: a 110–800 kV transmission grid through which electrici-
ty flows from medium and large power plants to medium and large electricity con-
sumers, such as mills or factories. Also, it is used to import or export electricity 
from other countries or other transmission systems.

• Electricity distribution: electricity is distributed to the households or small-medium 
businesses. 

Third, electricity demand is totally inelastic from the economic point of view. It 
means that consumption stays the same in short and medium terms despite any price 
shocks. For example, if the wholesale electricity prices increase by 50% for some period, 
it doesn’t mean that consumers will decrease their consumption or even stop to consume. 
Generally, the largest electricity consumers are large businesses related to manufactur-
ing. They won’t shut down their factories and mills due to increased prices.  Another 
cause of demand elasticity is consumption variation in the different times of a day. Basi-
cally, consumption during the night significantly decreases comparing the day (directly 
related with working day hours).

These peculiarities of the electricity market create a lot of difficulties for forecasting 
its future prices. The power markets are still very young comparing not only with finan-
cial markets but with other commodity markets, such as oil or agricultural produce. At 
this moment, there is not so much scientific literature regarding electricity forecasting; 
therefore, this article is intended for a brief introduction of the application of the Monte 
Carlo models in electricity markets.

Literature Review

Liberal electricity markets, where trading is executed through power exchanges, can be 
characterized as a very volatile. Their strong volatility enforces market participants to 
explore solutions to manage high volatility risks. Therefore, in academic literature, re-
searchers pay most of their attention to these two areas –predicting electricity prices and 
managing price-related risks.

S. Pinedo and A. J. Conejo (2012), in their work paper, described the use of deriv-
atives for managing market risks hedging against price volatility. They applied a mul-
ti-stage, stochastic model to simulate an optimal portfolio of instruments. They tried to 
prove that options are more effective than usual forward contracts. Another work paper 
on financial derivatives as the main tool of risk management was written by S. J. Deng 
and S. S. Oren (2001). They conducted a comprehensive analysis of the existing hedging 
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instruments and its pricing. Authors concluded that the hedging derivatives are able to 
mitigate price volatility and must be used by market participants.

A. Giovanni and A. Gigli (2001) tried to explore the causes behind the sudden pric-
es spikes. They made an empirical analysis of the Nordic wholesale power market. A 
Garch-Earji jump model was employed covering all available related statistical data to 
identify price jumps. The results showed that the nature of price jumps depends on mar-
ket structure. Another empirical research regarding price jumps was made by C. Blanco 
and D. Soronow (2001). They declared that electricity spot prices do not jump but rather 
spike. These price spikes occur for a very short period of time. Later, prices instant-
ly return to the long-term average. The authors suggested that the prices can spike in 
both directions (up and down). F. E. Benth, R. Kiesel and A. Nazarova (2011) made an 
empirical analysis of three mathematical models. The first model was a jump-diffusion 
model filled with all available data that directly or indirectly affect electricity prices. 
The second model was proposed by A. Roncoroni (2002) and later complemented by 
A. Roncoroni and H. Geman (2006). It was an Ornstein-Uhlenbeck process driven by 
a Brownian motion together with a Poisson process to catch the price spikes. The third 
model was proposed by F. E. Benth et al. (2008) as a model to price forward contracts. 
An empirical analysis showed that all three models indicated a strong sensitivity to the 
market structure and penetration. 

To sum up, we can say that the majority of researchers underlined the high volatility 
and significance of the market structure. Price spikes make it difficult to forecast as well 
as evaluate the prices of derivatives. 

Methodology

To begin with, electricity prices and their formation differ from financial markets. These 
have two major attributes – mean reversion and price spikes. The mean reversion can 
be explained as spot price fluctuations around its long-term average. As any commodity, 
electricity has its cost of generation, which differs depending on generation type in a 
specific country as well as the diversification of generation. Countries where most of 
the generation capacity is based on fossil fuels will have different production costs in 
comparison with countries where renewables dominate the market. Price spikes refer to a 
significant increase or decrease in spot prices for a very short time. They occur when the 
whole power system faces either foreseen or unforeseen changes in generation capacity, 
consumption or outage in the transmission grids.

Mean reversion and price spikes require that the stochastic forecasting model should 
also fluctuate around the long-term average as well as be able to catch price spikes if spe-
cific conditions are met. R. Weron (2005) introduced a forecasting model that was called 
the Mean-Reverting Jump-Diffusion process. This model covered both mean reversion 
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and price spike aspects. To catch spikes, the Poisson jump process was introduced. It 
supposed that price spikes occur suddenly – so the question is, how often?  

In this article, the mean-reverting model will be introduced; however, unlike Weron’s 
(2005) model, we won’t use a Poisson process, making an assumption that price spikes 
can be caught if specific conditions are met.

First, we need to define a mean reversion process. It can be defined as a stochastic 
differential equation:

In this article the mean-reverting model will be introduced, however, unlike Weron’s (2005) 
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If the estimated criteria � � is positive, there is no mean reversion and changes must be made. If 

the criteria  � � is negative, then  � is positive which indicates the presence of mean reversion. In 

our case � is equal to 0.395. It means that a mean reversion exists. To make sure, t-test might be 

performed (in our case t-test repeatedly proved the existence of mean reversion). 
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If the estimated criteria β is positive, there is no mean reversion and changes must be 
made. If the criteria β is negative, then β is positive which indicates the presence of mean 
reversion. In our case β is equal to 0.395. It means that a mean reversion exists. To make 
sure, a t-test might be performed (in our case, the t-test repeatedly proved the existence 
of mean reversion).
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The next step is to express a function that defines price spikes and its sizes. It must 
be noted that electricity prices can be negative (Fig. 1). This occurs when supply ex-
ceeds demand. In that case, the market operator (power exchange) can employ additional 
measures for balancing the system. 

The possibility of having negative electricity prices must be included into the model 
scope. As it was mentioned above, price formation basically relies on the demand-supply 
and infrastructure capacity, which are represented by electricity production and import 
on one side and by electricity consumption with export on the other, connected via trans-
mission grid. Any sudden changes in these variables create price spikes. Therefore, the 
price spike factor ω can be expressed as a function:

ω = f  (C; G; Ex; Im) (7)

where 
C – forecasted consumption;
G – forecasted generation;
Ex – forecasted export;
Im – forecasted import.

An Ornstein-Uhlenbeck process shows that prices will always fluctuate around its 
average, which means every (7) equation’s variable has its equilibrium value when the 
prices are equal to the long-term mean (Fig. 2). Making this assumption allows us to 
say that any deviation from the equilibrium can trigger prices to go down or up with the 
different level of significance.1 

1 This assumption is made by eliminating seasonality and long-term infrastructure projects, which can affect 
the equilibrium. 

Next step is to express a function which defines price spikes and its sizes. It must be noted that 

electricity prices can be negative (Fig. 1). It happens when supply exceeds demand. In that case, 

market operator (power exchange) can employ additional measures to balance the system.  

 

Fig. 1: Spot prices during 2017 December in the Danish bidding zone at NordPool exchange, Eur/MWh 
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Fig. 2. distribution and equilibrium values of consumption, generation, export and import

Therefore, the price spike factor can be expressed as:
ωt = a1 Ct + a2Gt +a3Ext + a4Imt + ε (8)

where a1, a2, a3, a4 weight coefficients and Ct, Gt, Ext, Imt – standardized values at pe-
riod t which vary in (-1;1) interval depending on deviation from an equilibrium value.

Finally, we can derive the equation of our model:

dlogPt = ω( β ( μ – logPt )dt + σdRt) (9)

Variance Reduction for Improving Accuracy

In statistics, when we use the methods of the Monte Carlo simulations, variance reduc-
tion is an indispensable part of calculations, which is used to increase the precision of 
the estimates that can be obtained for a given simulation or computational effort (Botev, 
Ridder 2017). Every randomly generated output variable using the simulations is relat-
ed to a variance that directly affects the precision of the simulation results. Therefore, 
variance reduction techniques are used to obtain greater precision, reduce confidence 
intervals, make the calculations faster and shorter. It makes simulations statically more 
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efficient instead of using brute force by increasing the number of iterations. The most 
common variance reductions techniques are random numbers, antithetic variates, control 
variates, importance sampling and stratified sampling. In this article, we take a look at 
two techniques – moment matching and antithetic variates.

Moment Matching

The moment matching method is also one of the most popular techniques, sometimes 
known as a quadratic resampling. The essence of this method consists of making adjust-
ments in a sample taken from a population with a normal distribution; thereby, the first, 
second and possibly subsequent moments are matched. Suppose there are samples Si  
taken from a normal distribution with a mean of zero and the standard deviation equal to 
1. The next step is to calculate sample’s mean S ̄  and its standard deviation σ  to match 
moments, defined by the following expression:

Finally, we can derive the equation of our model: 

 ������ = �(�(� � �����)�� � ����) (9)
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Fig. 3: the chart shows a random trajectory of several points connected via solid lines along with its 

antithetic reflection 
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Now, suppose we want to calculate a specific day’s electricity spot price Si. To do 
that, we select samples Bi from the normal standard distribution. Simultaneously, we can 
calculate another value 
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of Sav, we need to compute an average:
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A new estimator Sav is unbiased and can be used to in further calculations. The ad-
vantages of using antithetics is that the antithetic pairs Bi and –Bi are distributed more 
regularly than a sample of 2n (Boyle, Broadie and Glasserman 1997).

Since we know that
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However, Sav uses 2n replications unlike 

 

Fig. 3: the chart shows a random trajectory of several points connected via solid lines along with its 

antithetic reflection 

Now suppose we want to calculate a specific day’s electricity spot price ��. To do that we select 

samples �� from the normal standard distribution. Simultaneously we can calculate another value 

��̅ using �� and changing the sign of ��. Now to get a new value ���, we need to compute an 

average: 

 
��� =

1
��

�� � ��̅
2

�

���
 (11)

A new estimator ��� is unbiased and can be used to in further calculations. An advantages of using 

antithetics is that antithetic pairs �� and ��� are distributed more regularly than a sample of 2� 

(Boyle, P., Broadie, M. and Glasserman, P., 1997). 

Since we know that: 

 ��� ��� � ��̅
2 � = ���(���) =

1
2 (���(��) � ���(��̅) � ���(��� ��̅) (12)

Therefore 

 ���(���) ≤ ���(��̅) if ���(��� ��̅) ≤ ���(��) (13)

However, ��� uses 2� replications unlike ��̅, so 

 2���(���) ≤ ���(��̅) (14)

It comes up with the condition: 

 ���(��� ��̅) ≤ 0 (15)

-4

-3

-2

-1

0

1

2

3

4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

, so

 

Fig. 3: the chart shows a random trajectory of several points connected via solid lines along with its 

antithetic reflection 

Now suppose we want to calculate a specific day’s electricity spot price ��. To do that we select 

samples �� from the normal standard distribution. Simultaneously we can calculate another value 

��̅ using �� and changing the sign of ��. Now to get a new value ���, we need to compute an 

average: 

 
��� =

1
��

�� � ��̅
2

�

���
 (11)

A new estimator ��� is unbiased and can be used to in further calculations. An advantages of using 

antithetics is that antithetic pairs �� and ��� are distributed more regularly than a sample of 2� 

(Boyle, P., Broadie, M. and Glasserman, P., 1997). 

Since we know that: 

 ��� ��� � ��̅
2 � = ���(���) =

1
2 (���(��) � ���(��̅) � ���(��� ��̅) (12)

Therefore 

 ���(���) ≤ ���(��̅) if ���(��� ��̅) ≤ ���(��) (13)

However, ��� uses 2� replications unlike ��̅, so 

 2���(���) ≤ ���(��̅) (14)

It comes up with the condition: 

 ���(��� ��̅) ≤ 0 (15)

-4

-3

-2

-1

0

1

2

3

4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

 (14)

It comes up with the following condition:
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It allows us to run only 

 

It allows us to run only ��  ��� simulations instead of � ��̅ simulations. Therefore, ��� is a reasonable 

choice for us if the condition is met: 
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It will reduce the variance as well as decrease the number of iterations. 

Results 

This model was applied to the Lithuanian day-ahead power market which is part of the Nordic-

Baltic market. Observation period was chosen from 1st June, 2017 to 28th November, 2017. The 

model was recalculated for 180 times, every day, making 20,000 iterations a day, predicting next 

day’s prices. 

First simulation was made using only an Ornstein-Uhlenbeck process without catching price 

spikes. As you can see, forecasted prices distributed in 35-40 Eur/MWh interval, iterating only the 

general trend. Obtained correlation coefficient is 0.83, what shows that strong relation exists. 

Model was not able to catch price spikes, therefore, achieved results cannot be precise. 

 

Fig. 4: Comparison of spot and forecasted electricity prices without catching price spikes, Eur/WMh 

 

Second simulation was run by adding the price spikes factor to the model. The results showed 

significant changes in our forecast (Fig. 5). Model allowed us to track not only the general trend, 

but was able to catch most of the price spikes. Calculated correlation coefficient was 0.81 which 

also shows us a strong relation. As you can on the Fig. 5 in June there were several price spikes. 

Model was able to catch them due to significant changes in import and export capacities. Market 

15
20
25
30
35
40
45
50
55
60
65

1-
Ju

n-
17

6-
Ju

n-
17

11
-J

un
-1

7
16

-J
un

-1
7

21
-J

un
-1

7
26

-J
un

-1
7

1-
Ju

l-1
7

6-
Ju

l-1
7

11
-J

ul
-1

7
16

-J
ul

-1
7

21
-J

ul
-1

7
26

-J
ul

-1
7

31
-J

ul
-1

7
5-

A
ug

-1
7

10
-A

ug
-1

7
15

-A
ug

-1
7

20
-A

ug
-1

7
25

-A
ug

-1
7

30
-A

ug
-1

7
4-

Se
p-

17
9-

Se
p-

17
14

-S
ep

-1
7

19
-S

ep
-1

7
24

-S
ep

-1
7

29
-S

ep
-1

7
4-

O
ct

-1
7

9-
O

ct
-1

7
14

-O
ct

-1
7

19
-O

ct
-1

7
24

-O
ct

-1
7

29
-O

ct
-1

7
3-

N
ov

-1
7

8-
N

ov
-1

7
13

-N
ov

-1
7

18
-N

ov
-1

7
23

-N
ov

-1
7

28
-N

ov
-1

7

Spot price Forecast without catching price spikes

 simulations instead of n

 

Fig. 3: the chart shows a random trajectory of several points connected via solid lines along with its 

antithetic reflection 

Now suppose we want to calculate a specific day’s electricity spot price ��. To do that we select 

samples �� from the normal standard distribution. Simultaneously we can calculate another value 

��̅ using �� and changing the sign of ��. Now to get a new value ���, we need to compute an 

average: 

 
��� =

1
��

�� � ��̅
2

�

���
 (11)

A new estimator ��� is unbiased and can be used to in further calculations. An advantages of using 

antithetics is that antithetic pairs �� and ��� are distributed more regularly than a sample of 2� 

(Boyle, P., Broadie, M. and Glasserman, P., 1997). 

Since we know that: 

 ��� ��� � ��̅
2 � = ���(���) =

1
2 (���(��) � ���(��̅) � ���(��� ��̅) (12)

Therefore 

 ���(���) ≤ ���(��̅) if ���(��� ��̅) ≤ ���(��) (13)

However, ��� uses 2� replications unlike ��̅, so 

 2���(���) ≤ ���(��̅) (14)

It comes up with the condition: 

 ���(��� ��̅) ≤ 0 (15)

-4

-3

-2

-1

0

1

2

3

4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

 simulations. Therefore, Sav 
is a reasonable choice for us if the condition is met:

 

It allows us to run only ��  ��� simulations instead of � ��̅ simulations. Therefore, ��� is a reasonable 

choice for us if the condition is met: 

 �������� � ������̅� (16)

It will reduce the variance as well as decrease the number of iterations. 

Results 

This model was applied to the Lithuanian day-ahead power market which is part of the Nordic-

Baltic market. Observation period was chosen from 1st June, 2017 to 28th November, 2017. The 

model was recalculated for 180 times, every day, making 20,000 iterations a day, predicting next 

day’s prices. 

First simulation was made using only an Ornstein-Uhlenbeck process without catching price 

spikes. As you can see, forecasted prices distributed in 35-40 Eur/MWh interval, iterating only the 

general trend. Obtained correlation coefficient is 0.83, what shows that strong relation exists. 

Model was not able to catch price spikes, therefore, achieved results cannot be precise. 

 

Fig. 4: Comparison of spot and forecasted electricity prices without catching price spikes, Eur/WMh 

 

Second simulation was run by adding the price spikes factor to the model. The results showed 

significant changes in our forecast (Fig. 5). Model allowed us to track not only the general trend, 

but was able to catch most of the price spikes. Calculated correlation coefficient was 0.81 which 

also shows us a strong relation. As you can on the Fig. 5 in June there were several price spikes. 

Model was able to catch them due to significant changes in import and export capacities. Market 

15
20
25
30
35
40
45
50
55
60
65

1-
Ju

n-
17

6-
Ju

n-
17

11
-J

un
-1

7
16

-J
un

-1
7

21
-J

un
-1

7
26

-J
un

-1
7

1-
Ju

l-1
7

6-
Ju

l-1
7

11
-J

ul
-1

7
16

-J
ul

-1
7

21
-J

ul
-1

7
26

-J
ul

-1
7

31
-J

ul
-1

7
5-

A
ug

-1
7

10
-A

ug
-1

7
15

-A
ug

-1
7

20
-A

ug
-1

7
25

-A
ug

-1
7

30
-A

ug
-1

7
4-

Se
p-

17
9-

Se
p-

17
14

-S
ep

-1
7

19
-S

ep
-1

7
24

-S
ep

-1
7

29
-S

ep
-1

7
4-

O
ct

-1
7

9-
O

ct
-1

7
14

-O
ct

-1
7

19
-O

ct
-1

7
24

-O
ct

-1
7

29
-O

ct
-1

7
3-

N
ov

-1
7

8-
N

ov
-1

7
13

-N
ov

-1
7

18
-N

ov
-1

7
23

-N
ov

-1
7

28
-N

ov
-1

7

Spot price Forecast without catching price spikes

 (16)

It will reduce the variance as well as decrease the number of iterations.

Results

This model was applied to the Lithuanian day-ahead power market, which is part of 
the Nordic-Baltic market. The observation period was chosen from June 1, 2017 to No-
vember 28, 2017. The model was recalculated for 180 times, every day, making 20 000 
iterations a day, predicting the next day’s prices.

First, the simulation was made using only an Ornstein-Uhlenbeck process without 
catching price spikes. As you can see, the forecasted prices distributed in the 35–40 Eur/
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MWh interval, iterating only the general trend. The obtained correlation coefficient is 
0.83, which shows us that a strong relation does exist. The model was not able to catch 
price spikes; therefore, the achieved results cannot be precise.

The second simulation was run by adding the price spikes factor to the model. The 
results showed significant changes in our forecast (Fig. 5). The model allowed us to track 
not only the general trend, but it was able to catch most of the price spikes. Calculated 
correlation coefficient was 0.81, which also shows us a strong relation. As you can see 
on Fig. 5, there were several price spikes in June. The model was able to catch them due 
to significant changes in import and export capacities. Market supply was decreased and 
it caused prices to go up. It happened because of the outages on the interconnections. 

FiG. 4. A comparison of spot and forecasted electricity prices without catching price spikes, Eur/wmh.

FiG. 5. A comparison of spot and forecasted electricity prices with catching price spikes, Eur/mwh.
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supply was decreased and it caused prices to go up. It happened because of outages on the 

interconnections.  

 

Fig. 5: Comparison of spot and forecasted electricity prices with catching price spikes, Eur/MWh 

 

As we can see the model catches not only the price spikes which went up, but also the sudden 

spikes down. It is very important for forecasting because frequently researches concentrate only 

on spikes up, which of course are more important to buyers if we look at the problem from market 

perspective. However, spikes down create great risks to sellers which do not hedge for a long 

period and have difficulties with a cash flow management. 

Conclusion 

To sum up, we can say that Monte Carlo simulation techniques can be applied to forecast electricity 

prices. Due to its nature, electricity spot prices are very volatile. Arising price spikes increase 

uncertainty and makes it difficult to predict. Mathematical models based on a concept of mean-

reversion – assumption that prices fluctuate around its long-term average, is a good choice to 

forecast electricity prices as its pricing based on cost of generation. Results of empirical analysis 

showed that a mean-reversion model with price spikes factor, used to forecast electricity price in 

the Lithuanian power market, can give us a statistically accurate prediction. Model was able to 

predict the general trend as well as catch most of price spikes.  
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As we can see, the model catches not only the price spikes that went up but also 
the sudden downward spikes. It is very important for forecasting, because frequently, 
researches concentrate only on prices spiking up, which, of course, is more important 
to buyers if we look at the problem from the market perspective. However, downward 
spikes create great risks to sellers that do not hedge for a long period and have difficulties 
with cash flow management.

Conclusion

To sum up, we can say that the Monte Carlo simulation techniques can be applied to fore-
cast electricity prices. Due to its nature, electricity spot prices are very volatile. Arising 
price spikes increase uncertainty and make predictions difficult. Mathematical models 
based on the concept of mean-reversion – the assumption that prices fluctuate around 
their long-term average – is a good choice for forecasting electricity prices, as its pric-
ing is based on cost of generation. The results of the empirical analysis showed that a 
mean-reversion model with the price spikes factor, used to forecast electricity price in 
the Lithuanian power market, can give us a statistically accurate prediction. The model 
was able to predict the general trend as well as to catch most of the price spikes. 
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