# ESTIMATION OF DEFAULT PROBABILITY FOR LOW DEFAULT PORTFOLIOS

# Laima Dzidzevičiūtė\*

Vilnius University, Lithuania

**Abstract.** This article presents several approaches to estimating the probabilities of default for low default portfolios, their advantages and disadvantages, and provides exemplary calculations using data of one external credit register of Lithuania. The results show that three approaches seem to be most appropriate: those of K. Pluto and D. Tasche (2005) without correlation, and those of N. M. Kiefer (2006) and A. Forrest (2005) without correlation. The first one **could be easily implemented by banks; however, if the ordinal ranking of obligors is in**-correct, then the monotony of probabilities of default is not ensured. The same problem exists with the second approach. The A. Forrest (2005) approach without correlation ensures the monotony of default probabilities and allows estimating conservative PDs; however, it requires programming skills, otherwise iterative recalculation will be very time-consuming.

Key words: low-default portfolios, probability of default

## Introduction

According to the New Capital Adequacy Directive, banks applying the internal-ratingbased approach have to estimate their own probabilities of default (thereinafter PDs) for their obligors. However, in practice a substantial part of bank assets often consists of low default portfolios. This impedes not only the development of a statistical scoring model, but also the estimation of PDs and other credit risk parameters, as well as the validation process. The key concern for regulators is that credit risk might be underestimated because of data scarcity. Supervisory requirements (Basel II, New Capital Adequacy Directive and local supervisory regulations) provide no excuse or relief for low default portfolios (thereinafter LDP). To avoid excluding LDPs from the internal ratings based approach, it is recommended to use some data-enhancing tools. Banks should put more emphasis on alternative data sources, apply alternative methods with more emphasis on qualitative tools. At the same time, the Basel Committee on Banking Supervision (BCBS, 2005b) has advised to use larger margins of conservatism if an uncertainty in PDs estimated for LDPs remains.

\* Corresponding author.

Doctoral student of the Quantitative Methods and Modelling Department, Faculty of Economics, Vilnius University, Saulėtekio Ave. 9-11, LT-10222 Vilnius, Lithuania; e-mail: dzidzevic@yahoo.com

Defining LDP is not a straightforward task. Different authors and supervisory institutions have used different definitions of LDP (see BBA, LIBA, ISDA 2004; 2005; FSA 2005; CEBS 2006; Bank of Lithuania 2006a). For example, the Bank of Lithuania defines LDP as a portfolio with only few actual defaults, or a portfolio free from any actual defaults. As all these definitions have the drawback of being judgmental and introduce the question of degree, the FSA (2006) proposed using a concrete number of defaults in order to define LDP without taking into account the total portfolio size. It was proposed to use 20 defaults on the rating level; this definition will be used further in this article.

Till now, the problem of LDPs has not been analysed by Lithuanian researchers. L. Dzidzevičiūtė (2010b) only mentioned the LDP problem in the context of statistical scoring model development.

Even though there is a range of statistical techniques available to choose from, there is no consensus on the best technique to estimate PDs for LDPs. Various authors have proposed the approaches related to rating transition matrices and bootstrapping, the distribution of numbers of defaults and simulation, the CAP and ROC curves, macroeconomic variables, etc. The purpose of this article is to analyze various approaches to PD estimation for LDPs, their advantages and disadvantages, to provide a comparative analysis and exemplary calculations. The LDP problem has an effect on the statistical scoring model development, the estimation of credit risk parameters and their validation. The Basel II determines three credit risk parameters needed to calculate risk-weighted assets and expected loss amount; these are the probability of default (PD), loss-given default (LGD) and exposure at default (EAD). The article focuses on the estimation of only one risk parameter – PD.

Part 1 of the article shows the spheres of the LDP problem, approaches to PD estimation for LDPs, and Part 2 presents exemplary calculations with data of one external credit register of Lithuania, defining LDP as a rating having no more than 20 actual defaults.

# 1. Comparative analysis of PD estimation approaches to LDPs

## 1.1. The spheres of LDP problem

Often, the insufficiency of defaults impedes the development of statistical scoring models. However, if obligors are assigned to ratings based on the result of expert scoring models, the LDP problem is not actual (see Fig. 1). When obligors are already assigned to ratings, banks applying the internal ratings based approach for capital adequacy calculation purposes have to estimate PD for each rating (Directive, 2006). To estimate the rating PD is recommended even for banks that not apply internal ratings based approach (Dzidzevičiūtė, 2010b). Rating PD may be estimated applying various methods (see Table 1).

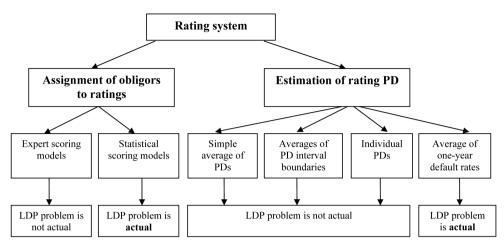



FIG. 1. **LDP problem** *Source:* compiled by the author.

The LDP problem is actual only when estimating rating PD from long-run averages of one-year default rates (i. e. PD(4)). If bank assigns obligors to ratings based on the score of the expert scoring model or on the score of the statistical scoring model not allowing to estimate individual PDs (e.g., discriminant analysis), PD(4) is the only possible method of PD estimation. As very often in better ratings the number of actual defaults is too low, banks have to find the way how to solve the LDP problem.

Statistical scoring models are not very popular among the banks of Lithuania. The survey related to commercial banks and branches of foreign banks operating in Lithuania has shown that statistical scoring models are applied only in four banks, and only one bank applies statistical scoring models allowing to estimate individual PD (logistic regression) (Dzidzevičiūtė, 2010c). Thus, for the majority of banks in Lithuania, the most appropriate method to estimate PDs for ratings is PD(4) (see Table 1).

Further in this article, the LDP problem is analyzed only as regards PD (4) estimation.

#### 1.2. Approaches based on rating transition matrices and bootstrapping

PDs for ratings can be estimated from upgrades and downgrades to other ratings during a certain period of time. There are two ways to estimate migration matrices (Schuermann, Hanson, 2004): the cohort and the duration approaches. In simple terms, the cohort approach just takes observed proportions from the beginning of a year to the end (for the case of annual migration matrices) as estimates of migration probabilities; any movements within a year are not accounted for, i.e.:  $P_{ij} = \frac{N_{ij}}{N_i}$ , where  $P_{ij}$  is migration

| Method                                                  | Formula                                                                                                                                                                                                                                                               | Comments                                                                                                                                 |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Simple<br>average of<br>PDs                             | $PD(1)_{rating} = \frac{\sum_{i=1}^{n} PD_i}{n}$ $PD_i \text{ is individual PD of obligor i assigned to that rating;}$ $n \text{ is number of obligors assigned to that rating}$                                                                                      | Methods may be                                                                                                                           |
| Arithmetical<br>average of<br>PD interval<br>boundaries | $PD(2)_{rating} = \frac{PD_{upper} + PD_{lower}}{2}$ $PD_{upper} - \text{ upper PD boundary of individual PD interval defined for that rating;}$ $PD_{lower} - \text{ lower PD boundary of individual PD interval defined for that rating}$                           | used only applying<br>statistical scoring<br>model allowing to<br>estimate individual<br><i>PD</i> (e.g., logistic,<br>probit regression |
| Geometrical<br>average of<br>PD interval<br>boundaries  | $PD(3)_{rating} = \sqrt{(PD_{upper} \cdot PD_{lower})}$                                                                                                                                                                                                               | etc.)                                                                                                                                    |
| Individual PD                                           |                                                                                                                                                                                                                                                                       |                                                                                                                                          |
| Average of<br>one-year<br>default rates                 | $PD(4)_{rating} = \frac{\sum_{i=1}^{n} PD_i}{n}$ $PD_i = \frac{number\_of\_defaults\_during\_the\_year}{number\_of\_obligors\_at\_the\_beginning\_of\_the\_year}$ $PD_i - \text{rating's default rate for year } i;$ $n - \text{number of years used to estimate PD}$ | Method may be<br>used applying<br>statistical and /<br>or expert scoring<br>models                                                       |

Source: Dzidzevičiūtė (2010b).

probability from rating *i* to rating *j* during a year,  $N_{ij}$  is the total number of transitions from rating *i* to rating *j* during a year, and  $N_i$  is the number of obligors at the beginning of a year.

The duration approaches, on the contrary, count all rating changes during a year. The probabilities to migrate to default status estimated applying duration approaches may be used as PDs for capital requirements calculation purposes. Lando and Skødeberg (2002) propose two duration approaches: parametric, based on time-homogeneity, and nonparametric, based on time non-homogeneity. Applying one of duration approaches, it is possible to get migration probabilities even for ratings without actual defaults and use them as PDs, so both duration approaches are recommended for LDPs. The research of Y. Jafry and T. Schuermann (2004) has shown that even the second estimator imposes fewer assumptions on the data generating process by allowing for time non-homogeneity while fully accounting for all movements within a year; both approaches yield statistically indistinguishable transition matrices. However, computationally, the

second, non-parametric, estimator is more intensive than the first one, so the authors recommend the first duration approach.

Meanwhile, applying the cohort approach we will not get PDs for zero defaults; in this approach, the probability to migrate to a default status is equal to the actual default rate. Schuermann and Hanson (2004), Christensen et al. (2004) propose to apply bootstrapping to obtain confidence sets for estimated migration probabilities. In such a case, it is possible to get PDs for ratings with no actual defaults even applying the cohort approach, using the upper boundary of a set. Confidence sets may also be calculated analytically, using the Wald interval; however, this is not recommended by the authors as PD bands are too wide (see Schuermann, Hanson, 2004).

In this research, the information about rating transitions during a year and the exact time of default was not received from the external credit register, so it was impossible to apply approaches based on rating transition matrices and bootstrapping in Part 2.

#### 1.3. Approaches based on CAP and ROC curves

M. V. Burgt (2007) proposes an alternative way how to derive the CAP curve:

$$y(x) = \frac{1 - \exp^{-kx}}{1 - \exp^{-k}},$$

where x is the cumulative part of obligors, y(x) is the proportion of defaults, in x, and k is the concavity parameter defining the slope of the CAP curve; when k converges to 0, the CAP curve converges to a diagonal line (more about CAP and ROC curves, see BCBS, 2005a).

PDs can be derived from the CAP curve, using the following equations, when AR is > 60% (or AUC > 80%):

$$PD_{R} = \frac{k \cdot D}{1 - \exp^{-k}} \cdot \exp(-kx_{R}); k \approx \frac{2}{1 - AR}; k \approx \frac{1}{1 - AUC};$$
$$x_{R} = \frac{z_{N} + z_{N+1} + \dots + z_{R-1} + (z_{R}/2)}{z},$$

where  $x_R$  is the cumulative percentage of obligors in the rating *R*, *D* is the average observed default rate for the whole portfolio in question; *AR* is the accuracy ratio, *AUC* is the area under curve measure, *z* is the total number of obligors,  $z_R$  is the number of obligors in rating *R*,  $z_N$  is the number of obligors in the worst rating, and *z* the is total number of obligors.

The formulas above imply that CAP curve approach needs at least some defaults, i.e. it cannot be applied when there are no defaults in the whole portfolio (but it is enough to have defaults in at least one rating).

D. Tasche (2009) proposes the two-parametric ROC curve approach described below. The ROC curve may be derived using the following equations:

$$\begin{aligned} R_{a,b}(F_N(s)) &= \Phi(a+b \cdot \Phi^{-1}(F_N(s))); u \in (0,1); b = \frac{\sigma_N}{\sigma_D}; a = \frac{\mu_N - \mu_D}{\sigma_D} \\ F_N(s) &= \frac{P[\{S \le s\} \cap N]}{1-D}, \end{aligned}$$

where  $R_{a,b}(F_N(s))$  is the cumulative proportion of defaults till rating *s*, *D* is an average observed default rate for the whole portfolio in question,  $F_N(s)$  is a false alarm rate till rating *s*, i.e. the cumulative proportion of non-defaulters till rating *s* that were treated as defaulted. The numerator is calculated as the product of two probabilities, i.e. the probability that the rating is lower than or equal to *s* (if lower ratings indicate a higher risk) and the cumulative probability of non-default till rating *s*,  $\mu_N$ ,  $\sigma_N$  are the mean and standard deviations of non-defaulters' ratings,  $\mu_D, \sigma_D$  are mean and standard deviation of defaulters' ratings,  $\Phi()$  is a cumulative normal distribution function for a standard normal random variable; it is possible to calculate it with the MS Excel function = NORMSDIST();  $\Phi^{-1}()$  is the inverse cumulative distribution function for a standard normal random variable; it is possible to calculate it with MS Excel function = NORMSINV().

PD for ratings may be derived as presented below:

$$P[D|S = s] = \frac{D \cdot R'_{a,b}(F_N(s))}{D \cdot R'_{a,b}(F_N(s)) + 1 - D}; R'_{a,b}(F_N(s)) = b \frac{\varphi(a + b\Phi^{-1}(F_N(s)))}{\varphi(\Phi^{-1}(F_N(s)))}$$

where  $\varphi()$  is a standard normal density; it is possible to calculate it using MS Excel function = NORMDIST(*x*; 0; 1; false).

#### 1.4. Approaches based on the distribution of default numbers and simulation

A. Forrest (2005) proposes two types of PD estimation approaches for LDPs: without correlation (see Table 2) and with correlation. The basic idea is that for each chosen confidence level the interval of PDs is derived (not one concrete PD value). The author recommends taking conservative PDs from this interval.

When there are no actual defaults in several ratings in succession, we are interested in conservative combinations of PDs on the dashed line (FIG. 2). As for several LDP ratings, even for each chosen confidence level, many conservative combinations of PDs are derived, the question is how to choose only one combination. The author recommends using the combination of PDs giving the maximum risk-weighted assets.

When there are several defaults in several ratings in succession, the minimum and maximum values of PDs are found separately in the same way as for a single LDP rating, adding all defaults and obligors up to that rating, for example, for rating A (see Fig. 3):

| Description                                              | Formulas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single LDP<br>rating, no<br>actual<br>defaults           | $LR(PD) = \frac{L(PD)}{ML}; L(PD) = (1 - PD)^{N}$ $ML = (1 - DR)^{N}$ $L(PD) - \text{likelihood, i.e. probability of obtaining data actually observed on the subjects in the study as a function of the unknown parameters in the model. In the LDP context, the only parameter is PD ML - \text{maximum likelihood, i.e. the largest value of likelihood among all relevant combinations of the model parameters. As in this case, the actual default rate (DR) = 0, ML = 1. N - \text{the number of obligors in rating.}$ | To get conservative <i>PD</i> , equa-<br>tion of likelihood ratio <i>LR(PD)</i> is<br>solved iteratively for hypothetical<br><i>PD</i> , recalculating until the value<br>reaches a 100%-confidence level.<br>For example, if we choose the 95%<br>confidence level, we have to find<br>the <i>PD</i> giving <i>LR(PD)</i> equal to 0.05.<br><i>PD</i> may be also calculated using<br>MS Excel formula<br>= BETAINV(confidence level;1; <i>N</i> )                                                                             |
| Single LDP<br>rating,<br>several<br>actual<br>defaults   | $LR(PD) = \frac{L(PD)}{ML}; L(PD) = PD^{D} \cdot (1 - PD)^{N-D}$ $ML = DR^{D} \cdot (1 - DR)^{N-D}$ $MIN\_PD < DR < MAX\_PD$ $D - \text{number of actual defaults in rating}$ $DR - \text{actual default rate of rating}$                                                                                                                                                                                                                                                                                                   | <i>LR(PD)</i> is rescaled as a positive<br>quantity expressed as<br>-2ln <i>LR(PD)</i> . As the value of -2ln<br>LR(PD) is expected to be<br>chi-squared distributed, the<br>conservative <i>PD</i> is the higher of<br>two PDs for which -2ln( <i>LR(PD)</i> )<br>equals to the inverse of the one-<br>tailed probability of the<br>chi-square distribution that may<br>be calculated with MS Excel<br>function = CHIINV using the the<br>100% confidence level and<br>1 degree of freedom as there' is<br>only one LDP rating |
| Several LDP<br>ratings, no<br>actual<br>defaults         | $\begin{split} L(PD) &= (1 - PD_A)^{NA + NB} \text{ (for rating A)} \\ L(PD) &= (1 - PD_B)^{NB} \text{ (for rating B)} \\ NA, NB - \text{numbers of obligors in ratings A and B,} \\ \text{respectively.} \end{split}$                                                                                                                                                                                                                                                                                                      | Maximum values of $PD_A$ and $PD_B$ are found iteratively where respective L(PD) equals to (100%-confidence level). Conservative combinations of PDs are on the dashed line (see Figure 2).                                                                                                                                                                                                                                                                                                                                     |
| Several LDP<br>ratings,<br>several<br>actual<br>defaults | $LR(PD) = \frac{L(PD)}{ML}$ $L(PD) = PD_A^{DA} (1 - PD_A)^{NA - DA} \cdot PD_B^{DB} (1 - PD_B)^{NB - DB}$ $ML = DR_A^{DA} (1 - DR_A)^{NA - DA} \cdot DR_B^{DB} (1 - DR_B)^{NB - DB}$                                                                                                                                                                                                                                                                                                                                        | Conservative combination of PDs<br>has to comply with three<br>conditions: a) $PD_A < PD_B$ ; b) -2ln<br>( <i>LR(PD</i> )) = CHIINV((100%<br>confidence level);2);<br>c) combination of <i>PDs</i> has to be on<br>the most distant line of the graph<br>(see Fig. 3)<br>The number of degrees of<br>freedom has to be equaled to the<br>number of <i>LDP</i> ratings in<br>succession.                                                                                                                                         |

Source: compiled by the author in accordance with A. Forrest (2005).

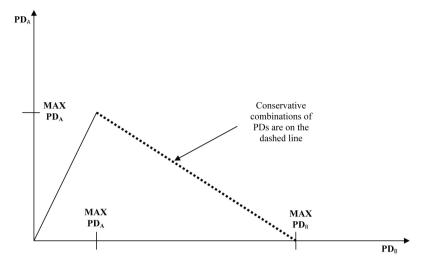



FIG. 2. Estimation of PDs for several LDP ratings with no actual defaults *Source:* A. Forrest (2005).

$$LR(PD) = \frac{L(PD)}{ML}; L(PD) = PD_A^{DA+DB} (1 - PD_A)^{NA+NB-DA-DB}$$
$$ML = DR_{PORTFOLIO}^{DA+DB} (1 - DR_{PORTFOLIO})^{NA+NB-DA-DB}$$

For rating B:

$$LR(PD) = \frac{L(PD)}{ML}; L(PD) = PD_B^{DB} (1 - PD_B)^{NB - DB}$$
$$ML = DR_B^{DB} (1 - DR_B)^{NB - DB}$$

The number of degrees of freedom iteratively searching for the minimum and maximum PDs for both ratings will be 2 in this example because we have two LDP ratings in succession. However, choosing the maximum PDs for both ratings would be over-conservative (see Fig. 3, the point where the lines of MAX  $PD_A$  and MAX  $PD_B$  intersect).

The dark lines restrict the conservative region of PD, within which -2ln (LR(PD)) <=CHIINV((100% confidence level);2). From all conservative combinations on the most distant line, only one giving maximum risk-weighted assets should be chosen.

If A. Forrest's (2005) approach is modified introducing correlations, the conservative regions of PDs are *ceteris paribus* wider than without correlations; the values of conservative PDs are bigger. So, further in Part 2 only the approach without correlations will be applied.

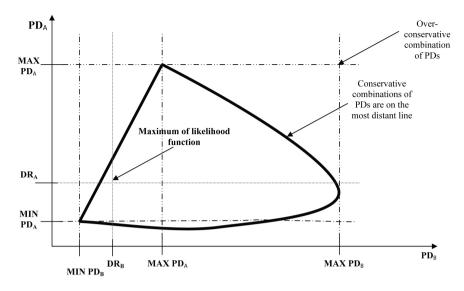



FIG. 3. Estimation of PDs for several LDP ratings with several actual defaults *Source:* A. Forrest (2005).

Pluto and Tasche (2005) have proposed three ways to get most prudent estimates of PDs for LDPs: 1) without correlation, 2) with correlation, and 3) a multi-period case. If there are no actual defaults in single LDP rating, the approach without correlation is identical to A. Forrest's (2005) approach without correlation. However, if there are several LDP ratings in succession with no actual defaults, Pluto and Tasche (2005) propose using the extreme values of PDs (see MAX PD<sub>A</sub> and MAX PD<sub>B</sub> in Fig. 2). If there are actual defaults in LDP ratings, the authors assume that the number of defaults in the portfolio is binomially distributed as long as the default events are independent. For example, for three LDP ratings (A, B and C), the most prudent PD estimates are calculated using the expressions below. The right-hand side of the equations shows the probability of observing not more than DA + DB + DC defaults, not more than DB + DC defaults and not more than DC defaults, respectively:

$$1 - \gamma = \sum_{i=0}^{DA+DB+DC} \left[ \binom{NA+NB+NC}{i} \cdot PD_A^{\ i} \cdot (1 - PD_A)^{NA+NB+NC-i} \right]$$
$$1 - \gamma = \sum_{i=0}^{DB+DC} \left[ \binom{NB+NC}{i} \cdot PD_B^{\ i} \cdot (1 - PD_B)^{NB+NC-i} \right];$$
$$1 - \gamma = \sum_{i=0}^{DC} \left[ \binom{NC}{i} \cdot PD_C^{\ i} \cdot (1 - PD_C)^{NC-i} \right],$$

where:  $\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$ , i. e. the number of possible k combinations from the total number of n observations;  $\gamma$  is chosen at the confidence level.

The tail of a binomial distribution can be expressed in terms of an appropriate beta distribution function. PDs may be calculated using MS Excel formula = BETAINV (confidence level; D + 1; N-D).

If a correlation is introduced, analogically as in A. Forrest's (2005) approach, most prudent estimates of PDs are *ceteris paribus* higher than without correlations. In the multi-period case, authors introduce an additional correlation measure, i.e. an intertemporal correlation. An unrealistic assumption is made that only the number of obligors  $N_1$  in the first year is known and the portfolio is closed for new obligors, so that  $N_1 = N_1$ . Besides, PDs seem to be too low if compared to the approach without correlation. Most prudent estimates of annual PDs are derived for the whole period. Taking into account that in this article the LDP problem is discussed only as regards the estimation of PDs for rating from long run averages of one-year default rates (i.e. PD(4)), the multi-period case will not be further analyzed in this article. In Part 2, only Pluto and Tasche's (2005) approach without correlations will be applied.

N. M. Kiefer (2006) uses the Bayes rule to estimate PDs for LDPs. PD is estimated as the posterior expectation  $\overline{\theta} = E(\theta | r, e)$ . The posterior distribution  $p(\theta | r, e)$ , describing the uncertainty about  $\theta$  given observation of r, actual defaults in rating with n obligors and having expert informatikon, e is expressed:

$$p(\theta | r, e) = \frac{p(r|\theta, e) \cdot p(\theta | e)}{p(r|e)},$$

were  $p(r | \theta, e)$  is the distribution of *r* defaults given that *PD* (i. e. the probability of success on each trial) is  $\theta$  and expert information *e* is available. Using the Bernoulli scheme, the right-hand side of the equation below shows the probability of observing *r* defaults in rating with *n* obligors:

$$p(r|\Theta, e) = \binom{n}{r} \Theta^r (1-\Theta)^{n-r}.$$

This distribution may be calculated as the values of probability mass function applying MS Excel function = BINOMDIST().

 $p(\theta | e)$  is the prior distribution of  $\theta$ . The challenging step is to represent the expert's assessments with a statistical distribution. As the usual approach is to fit a parametric form, the author proposes using the beta distribution. The probability density function of the two-parameter beta distribution for the random variable  $\theta \in [0.1]$  is

$$p(\theta | \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1},$$

where  $\Gamma(n)$  is gamma function (if *n* is a positive integer, then  $\Gamma(n) = (n-1)!$ ); parameters  $\alpha$ ,  $\beta$  may be estimated by the method of moments to fit the parametric probability statements:

$$\hat{\alpha} = \overline{\Theta} \left( \frac{\overline{\Theta} \left( 1 - \overline{\Theta} \right)}{v} - 1 \right); \ \hat{\beta} = \left( 1 - \overline{\Theta} \right) \left( \frac{\overline{\Theta} \left( 1 - \overline{\Theta} \right)}{v} - 1 \right),$$

where  $\overline{\theta}$  is the sample mean and *v* is the sample variance.

The p(r|e) is the unconditional distribution of the number of defaults. For the twoprameter beta family, the exact functional form can be calculated:

$$p(r|e) = \frac{\Gamma(r+\alpha)\Gamma(n-r+\beta)\Gamma(\alpha+\beta)\Gamma(n+1)}{\Gamma(r+1)\Gamma(n-r+1)\Gamma(\alpha)\Gamma(\beta)\Gamma(n+\alpha+\beta)}.$$

PD is derived searching for the maximum value of the posterior distribution  $p(\theta | r, e)$ . N. M. Kiefer suggests using the four-parameter beta distribution that allows flexibility within the PD range [*a*, *b*], but in some situations it may be too restrictive. Also, the seven-parameter distribution is discussed. However, the approach becomes more complicated, it is difficult to derive an unconditional distribution of the number of defaults p(r | e).

This author has also proposed further modifications of his approach (see Kiefer 2007; 2008).

#### 1.5. Other approaches

Wilde and Jackson (2006) proposed to estimate PDs analytically by calibrating CreditRisk+ to the Merton model of default behaviour. The approach is most advantageous where there are data of five or more years; it is possible to get PDs even when there are no defaults in the whole portfolio. However, PDs seem to be too big, even bigger than applying the Pluto and Tasche (2005) approach with a correlation.

G. Sabato (2006) proposed to relate the estimation of PDs with unemployment rates in a particular age or education category. This approach is appropriate only for the estimation of PDs for physical persons. Of course, it is possible to modify the approach making it appropriate for companies, for example, to use common variables of different economic sectors etc.; however, this wouldn't allow deriving reasonable PDs because companies in the same sector may represent different levels of risk. Besides, the approach is appropriate only to derive PDs for specific sub-groups of age, education, etc., but not for ratings.

Besides, the problem occurs not only when choosing the most appropriate methodology to estimate PDs for LDPs. If banks choose the methodology themselves, in different banks PDs derived for LDP ratings having the same number of obligors and the same number of defaults may be very different, i.e. banks may choose not only different methodologies, but also different parameters of the same methodology (confidence levels, values of correlation, etc.). Thus, the supervisors would face the problem of fair comparability. Supervisors could use the approach proposed by the Financial Services Authority (FSA, 2006). In their approach, banks compare their PDs with the so-called "look-up PDs" in the supervisory table. If the weighted average PD is less than the look-up PD, the bank adjusts it upwards until the weighted average PD is equal to or above the look-up PD. Look-up PDs are derived by the supervisor using one of the approaches discussed above, for example, the Pluto and Tasche (2005) approach without correlations. In such a way, PDs for LDP ratings with a similar risk in different banks would be comparable.

# 2. Estimation of PD for LDPs using data of one external credit register of Lithuania

For the purpose of this chapter, following the FSA definition, LDP shall be treated as a rating with the total number of defaults not more than 20.

10404 "company-years" at three scoring dates were assigned to nine ratings according to individual PDs estimated by the statistical scoring model of Lithuanian companies, developed by L. Dzidzevičiūtė (2006a). To develop this model, data on the Lithuanian companies from all economic sectors for 2005–2008 were obtained from the external loan register JSC Creditinfo Lietuva. It is possible to say that the data sample used to develop the model represents all the companies of Lithuania. An additional validation sample consisting of 10404 "company-years" was used to test the suitibility of LDP approaches.

The first rating indicates the lowest risk of companies and the 9<sup>th</sup> the highest risk. Rating PDs were estimated for the point of 31 December 2007 (see PD(4) in Table 3). Data about defaults in 2008 were used for validation purposes.

PD(4) was calculated as a simple average of annual default rates in 2006 and 2007, respectively. One could notice that in ratings 1–3, both in 2006 and 2007, there are no more than 20 defaults. In 2007, also rating 7 should be treated as an LDP rating (as there are only 9 defaults). An especially severe problem is the rating 1 as there are no defaults either in 2006 or in 2007. Therefore, PD(4) for ratings 1–3 and 7 should be recalculated using one of the proposed approaches (see Table 4):

- M. Burgt's (2007) CAP curve approach;
- D. Tasche's (2009) ROC curve approach;
- A. Forrest's (2005) approach without correlation;
- K. Pluto and D. Tasche's (2005) approach without correlation;
- N. M. Kiefer (2006) Bayes' approach.

*M. Burgt (2007) CAP curve and D. Tasche (2009) ROC curve approaches.* Even though both approaches ensure the monotony of PDs, they seem to be too low (see marked PDs in Tables 5 and 6).

|        |                            |                         | 31 Dece | 31 December 2005             |                    | 31 Decer | 31 December 2006             |                    | 31 Decen | 31 December 2007                |           |
|--------|----------------------------|-------------------------|---------|------------------------------|--------------------|----------|------------------------------|--------------------|----------|---------------------------------|-----------|
| Rating | Lower PL<br>boundary,<br>% | Higher PD<br>boundary,% | AII     | Defaulted till<br>31 12 2006 | Default<br>rate, % | All      | Defaulted till<br>31 12 2007 | Default<br>rate, % | AII      | Defaulted<br>till<br>31 12 2008 | PD(4), %  |
| A      | В                          | υ                       | D       | ш                            | F=E/D              | ט        | т                            | D/H=I              | -        | ×                               | L=(F+I)/2 |
| 1      | 0.01                       | 1.00                    | 66      | 0                            | 0.00               | 222      | 0                            | 00.00              | 369      | 2                               | 0.00      |
| 2      | 1.01                       | 2.20                    | 292     | 3                            | 1.03               | 554      | 7                            | 1.26               | 706      | 10                              | 1.15      |
| ŝ      | 2.21                       | 3.70                    | 344     | 0                            | 0.00               | 259      | 8                            | 3.09               | 361      | 11                              | 1.55      |
| 4      | 3.71                       | 8.00                    | 732     | 31                           | 4.23               | 660      | 33                           | 5.00               | 889      | 49                              | 4.62      |
| 5      | 8.01                       | 16.00                   | 726     | 44                           | 6.06               | 278      | 36                           | 12.95              | 464      | 52                              | 9.51      |
| 6      | 16.01                      | 28.00                   | 568     | 78                           | 13.73              | 254      | 47                           | 18.50              | 326      | 68                              | 16.12     |
| 7      | 28.01                      | 40.50                   | 333     | 06                           | 27.03              | 38       | 6                            | 23.68              | 50       | 17                              | 25.36     |
| 8      | 40.51                      | 61.00                   | 275     | 64                           | 23.27              | 412      | 259                          | 62.86              | 482      | 272                             | 43.07     |
| 6      | 61.01                      | 66.66                   | 151     | 70                           | 46.36              | 184      | 144                          | 78.26              | 376      | 279                             | 62.31     |
| Total  |                            |                         | 3520    | 380                          | 10.80              | 2861     | 543                          | 18.98              | 4023     | 760                             |           |

TABLE 3. Assignment to ratings and determination of rating PDs

Source: calculated by the author.

| LDPs*    |
|----------|
| s for    |
| of PD    |
| arison o |
| . Comp   |
| TABLE 4  |

|        | M. Burgt                  | M. Burgt (2007) CAP curve | o curve     | D. Tasche                 | D. Tasche (2009) ROC curve | C curve     | A. Forrest              | A. Forrest (2005) approach | proach      | K. Pluto, D               | ). Tasche ()               | 2005) ap-   | N. M. Kief                | K. Pluto, D. Tasche (2005) ap- N. M. Kiefer (2006) Bayes' | ayes'       |
|--------|---------------------------|---------------------------|-------------|---------------------------|----------------------------|-------------|-------------------------|----------------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|-----------------------------------------------------------|-------------|
|        | approach                  | Ę                         |             | approach                  | _                          |             | without c               | without correlation        |             | proach wi                 | proach without correlation | relation    | approach                  |                                                           |             |
| Rating | PD <sub>2006</sub> ,<br>% | PD <sub>2007</sub> ,<br>% | PD(4),<br>% | PD <sub>2006</sub> ,<br>% | PD <sub>2007</sub> ,<br>%  | PD(4),<br>% | PD <sub>2006</sub><br>% | PD <sub>2007</sub> ,<br>%  | PD(4),<br>% | PD <sub>2006</sub> ,<br>% | PD <sub>2007</sub> ,<br>%  | PD(4),<br>% | PD <sub>2006</sub> ,<br>% | PD <sub>2007</sub> , %                                    | PD(4),<br>% |
| _      | 0.28                      | 0.09                      | 0.19        | 0.06                      | 0.002                      | 0.03        | 0.85                    | 1.49                       | 1.17        | 0.35                      | 1.07                       | 0.71        | 0.60                      | 1.51                                                      | 1.06        |
| 2      | 0.37                      | 0.26                      | 0.32        | 0.18                      | 0.05                       | 0.12        | 0.879                   | 1.78                       | 1.33        | 0.40                      | 1.36                       | 0.88        | 0.68                      | 1.89                                                      | 1.29        |
| 3      | 0.61                      | 0.78                      | 0.70        | 0.80                      | 0.73                       | 0.77        | 0.88                    | 3.63                       | 2.26        | 0.43                      | 2.91                       | 1.67        | 0.44                      | 2.91                                                      | 1.68        |
| 4      | 4.23                      | 5.00                      | 4.62        | 4.23                      | 5.00                       | 4.62        | 4.23                    | 5.00                       | 4.62        | 4.23                      | 5.00                       | 4.62        | 4.23                      | 5.00                                                      | 4,62        |
| 5      | 6.06                      | 12.95                     | 9.51        | 6.06                      | 12.95                      | 9.51        | 6.06                    | 12.95                      | 9.51        | 6.06                      | 12.95                      | 9.51        | 6.06                      | 12.95                                                     | 9,51        |
| 6      | 13.73                     | 18.50                     | 16.12       | 13.73                     | 18.50                      | 16.12       | 13.73                   | 18.50                      | 16.12       | 13.73                     | 18.50                      | 16.12       | 13.73                     | 18,50                                                     | 16,12       |
| 4      | 27.03                     | 28.06                     | 27.54       | 27.03                     | 34.63                      | 30.83       | 27.03                   | 38.64                      | 32.83       | 27.03                     | 17.31                      | 22.17       | 27.03                     | 24.57                                                     | 25.80       |
| 8      | 23.27                     | 62.86                     | 43.07       | 23.27                     | 62.86                      | 43.07       | 23.27                   | 62.86                      | 43.07       | 23.27                     | 62.86                      | 43.07       | 23.27                     | 62,86                                                     | 43,07       |
| 6      | 46.36                     | 78.26                     | 62.31       | 46.36                     | 78.26                      | 62.31       | 46.36                   | 78.26                      | 62.31       | 46.36                     | 78.26                      | 62.31       | 46.36                     | 78,26                                                     | 62,31       |
|        |                           |                           |             |                           |                            |             |                         |                            |             |                           |                            |             |                           |                                                           |             |

Source: calculations of the author.

*Note:* \* PD<sub>2006</sub> and PD<sub>2007</sub> for the ratings not complying with LDP definition were calculated in an ordinary way, i.e. the number of defaults was divided by the number of companies.

Recalculated PD<sub>2006</sub> and PD<sub>2007</sub> for LDP ratings are marked. PD(4) for all ratings is estimated using the formula:  $PD(4)_{rating} = \frac{PD_{2006} + PD_{2007}}{2}$ 

| Rating | Number of<br>defaults | AII  | Actual de-<br>fault rate, % | x <sub>R,</sub> % | CAP curve<br>PDs, % | F <sub>N</sub> (s), % | $R_{a,b}(F_N(s))$ | R <sub>a,b</sub> (F <sub>N</sub> (s)), % | ROC curve<br>PDs, % |
|--------|-----------------------|------|-----------------------------|-------------------|---------------------|-----------------------|-------------------|------------------------------------------|---------------------|
|        | 0                     | 66   | 0.00                        | 98.59             | 0.28                | 100.00                | 0.0051            | 100.00                                   | 0.06                |
|        | m                     | 292  | 1.03                        | 93.04             | 0.37                | 96.85                 | 0.0153            | 99.98                                    | 0.18                |
|        | 0                     | 344  | 0.00                        | 84.01             | 0.61                | 87.64                 | 0.0668            | 99.61                                    | 0.80                |
|        | 31                    | 732  | 4.23                        | 68.72             | 1.41                | 76.69                 | 0.1501            | 98.44                                    | 1.78                |
|        | 44                    | 726  | 6.06                        | 48.01             | 4.33                | 54.36                 | 0.4268            | 92.33                                    | 4.91                |
|        | 78                    | 568  | 13.73                       | 29.63             | 11.77               | 32.64                 | 0.9672            | 77.94                                    | 10.48               |
|        | 06                    | 333  | 27.03                       | 16.83             | 23.61               | 17.04                 | 1.8218            | 57.10                                    | 18.06               |
|        | 64                    | 275  | 23.27                       | 8.20              | 37.75               | 9.30                  | 2.7285            | 39.89                                    | 24.82               |
|        | 70                    | 151  | 46.36                       | 2.14              | 52.46               | 2.58                  | 4.7902            | 16.11                                    | 36.70               |
| Total  | 380                   | 3520 | AR, %                       | 63.21             |                     | IJ                    | 1.2990            |                                          |                     |
|        |                       |      | k                           | 5.44              |                     | q                     | 1.1759            |                                          |                     |
|        |                       |      | D, %                        | 10.80             |                     |                       |                   |                                          |                     |

| 2006                     |
|--------------------------|
| ē                        |
| ches f                   |
| roa                      |
| dde                      |
| ve                       |
| cur                      |
| d ROC curve a            |
| nd B                     |
| e ar                     |
| >                        |
| 'n                       |
| AP cur                   |
| CAP cur                  |
| <u> </u>                 |
| <u> </u>                 |
| <u> </u>                 |
| <u> </u>                 |
| s applying (             |
| <u> </u>                 |
| s for ratings applying ( |
| s for ratings applying ( |
| s for ratings applying ( |
| <u> </u>                 |

Source: calculations of the author.

| 2007        |
|-------------|
| õ           |
| esf         |
| ÷           |
| Qa          |
| bpi         |
| ea          |
| Ž           |
| 5           |
| ğ           |
| d R         |
| an          |
| Š           |
| curv        |
| AP          |
| С<br>О      |
| jņ          |
| ď           |
| ap          |
| ıgs         |
| atir        |
| r re        |
| 5<br>G      |
| PD          |
| 6.          |
| TABLE       |
| <b>FABL</b> |
|             |

| Rating | Number of<br>defaults | AII  | Actual de-<br>fault rate, % | x <sub>R,</sub> % | CAP curve PDs,<br>% | F <sub>N</sub> (s), % | R <sub>a,b</sub> (F <sub>N</sub> (s)) | R <sub>a,b</sub> (F <sub>N</sub> (s)), % | ROC curve PDs,<br>% |
|--------|-----------------------|------|-----------------------------|-------------------|---------------------|-----------------------|---------------------------------------|------------------------------------------|---------------------|
| -      | 0                     | 222  | 0.00                        | 96.12             | 0.09                | 100.00                | 0.0001                                | 100.00                                   | 0.002               |
| 2      | 7                     | 554  | 1.26                        | 82.56             | 0.26                | 90.42                 | 0.0023                                | 99.99                                    | 0.05                |
| m      | 8                     | 259  | 3.09                        | 68.35             | 0.78                | 66.82                 | 0.0315                                | 99.68                                    | 0.73                |
| 4      | 33                    | 660  | 5.00                        | 52.29             | 2.66                | 56.00                 | 0.0691                                | 99.16                                    | 1.59                |
| 5      | 36                    | 278  | 12.95                       | 35.90             | 9.33                | 28.95                 | 0.4188                                | 93.94                                    | 8.93                |
| 9      | 47                    | 254  | 18.50                       | 26.60             | 18.99               | 18.51                 | 0.9281                                | 87.34                                    | 17.86               |
| 7      | 6                     | 38   | 23.68                       | 21.50             | 28.06               | 9:28                  | 2.2611                                | 74.33                                    | 34.63               |
| 8      | 259                   | 412  | 62.86                       | 13.63             | 51.20               | 8.33                  | 2.6541                                | 71.27                                    | 38.34               |
| 6      | 144                   | 184  | 78.26                       | 3.22              | 113.56              | 1.73                  | 10.6226                               | 37.81                                    | 71.33               |
|        | 543                   | 2861 | AR, %                       | 73.85             |                     | a                     | 2.2119                                |                                          |                     |
|        |                       |      | k                           | 7.65              |                     | q                     | 1.1932                                |                                          |                     |
|        |                       |      | D, %                        | 18.98             |                     |                       |                                       |                                          |                     |

Source: calculations of the author.

One could notice that for better ratings PDs are significantly lower than the actual default rates, especially in D. Tasche's (2009) ROC curve approach. In both years this approach gives too low PDs for ratings 1 and 2, even if compared with M. Burgt's (2007) CAP curve approach. For example, for rating 2, the actual default rate in 2006 is 1.03 per cent (see Table 3), M. Burgt's (2007) CAP curve approach gives 0.37 per cent, meanwhile D. Tasche's (2009) ROC curve approach gives 0.18 per cent. So, the values seem to be too low if compared with other approaches (see Table 4).

For worse ratings PDs are not too low (see rating 7 in Table 6), but usually in practice a low number of defaults is an issue for better ratings. Besides, both approaches are very sensitive to the discriminatory power of the scoring model. As in 2007 the model discriminates better (the accuracy ratio is 73.85 per cent and in 2006 only 63.21 per cent), PDs for better ratings in 2007 are comparatively lower. The other three approaches (see Table 4) give higher PDs for ratings 1, 2 and 3 in 2007 than in 2006, and this seems to be reasonable because ratings 1, 2 and 3 are riskier in 2007 than in 2006. M. Burgt's (2007) CAP curve and D. Tasche's (2009) ROC curve approaches, on the contrary, give lower PDs for ratings 1, 2 and 3 in 2007 than in 2006; thus, these PDs don't fully reflect the riskiness of ratings.

*The Pluto and Tasche (2005) approach without correlation.* Table A.1 in Appendix provides the PDs for LDP ratings applying this approach with various confidence levels. PDs for ratings 1, 2 and 3 are derived on the cumulative basis adding all defaults and all obligors up to this rating, i.e. in 2006 for rating 1 the number of defaults will be 3 and the number of obligors 735; for rating 2, the number of defaults will be 3 and the number of obligors 636; for rating 3, the number of defaults will be 0 and the number of obligors 344. However, the PD for rating 7 in 2007 was derived on a single basis as rating 7 does not follow the other LDP ratings. One could notice that PDs in 2006 don't comply with the monotony requirement as almost allways the PD for rating 3 is lower than for rating 2 (except only the 99.99% confidence level; however, then PDs are too high). Scaled PDs were also estimated as proposed by the authors (see Table A.1 in Appendix), i.e.:

$$SCALED_PD_i = K \cdot PD_i$$

$$K = \frac{PD_{PORTFOLIO}}{\frac{PD_{1} \cdot N_{1} + PD_{2} \cdot N_{2} + PD_{3} \cdot N_{3}}{N_{1} + N_{2} + N_{3}}}$$

where  $PD_i$  is the estimated PD for rating *i*; *K* is the scaling factor, and  $N_i$  is the number of obligors in rating *i*.

As LDP ratings were excluded from ordinary ratings, the PD<sub>portfolio</sub> was treated as an average PD of the portfolio consisting of only the first three ratings in 2006 (for 2007,

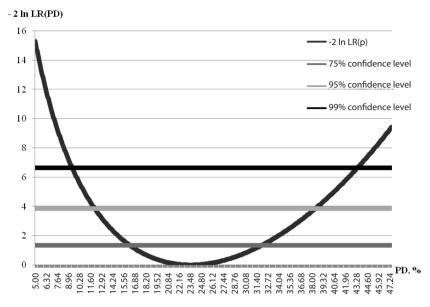



FIG. 4. Estimation of PD<sub>2007</sub> for rating 7

also rating 7 was added). In 2006, the  $PD_{PORTFOLIO}$  is 0.41 per cent (i. e. 3/735), and in 2007 it is 2.24 per cent (i.e. 24/1073). For the final purposes of anglysis, it was decided to use scaled PDs with the 99.99% confidence level. The estimates comply with the monotony requirement and are not too high.

A. Forrest (2005) approach without correlation. To estimate the  $PD_{2007}$ , rating 7 was treated as a single LDP rating. Graphically (see Fig. 4), the conservative  $PD_{2007}$  may be determined where the line of the rescaled likelihood ratio (i.e. -2ln LR(PD)) intersects the cut line of the chosen confidence level on the right side of the graph. A. Forrest argues that classically the 95% confidence level is chosen. If we choose the confidence level reccomended by this author, the  $PD_{2007}$  lies between the minimum PD of 12.16 per cent and the maximum PD of 38.64 per cent. The maximum likelihood is found at 23.68 per cent, i.e. at the actual default rate.

As we are interested in getting a conservative value, we will choose 38.64 per cent. The cut lines were derived using MS Excel function =CHIINV(100%-chosen confidence level;1) (see Table 2). The conservative  $PD_{2007}$  for rating 7, derived using the 95 per cent confidence level, seems to be most reasonable and will be used further.

As both in 2006 and 2007, ratings 1, 2 and 3 are LDP ratings and they are in succession, PDs for them will be derived together (see Fig. 3). Table 7 provides the minimum and maximum values of PDs for these ratings.

Source: calculations of the author.

|        | 2006       |            | 2007       |            |
|--------|------------|------------|------------|------------|
| Rating | Minimum PD | Maximum PD | Minimum PD | Maximum PD |
| 1      | 0.05       | 1.45       | 0.64       | 2.74       |
| 2      | 0.05       | 1.68       | 0.82       | 3.49       |
| 3      | 0.00       | 1.13       | 0.96       | 7.07       |

#### TABLE 7. Minimum and maximum values of PDs for ratings (percentages)

Source: calculations of the author.

As one could see in Fig. 3, combinations of PDs can break through the line of the minimum PD, so the iterative checking of PDs was started from 0.01 per cent for rating 1, from 0.02 per cent for rating 2 and from 0.03 per cent for rating 3 up to the maximum PD of a respective rating. From all the conservative combinations of PDs complying with these three conditions, i.e.

- $PD_1 < PD_2 < PD_3$ ,
- -2ln(LR(PD)) =CHIINV((100% 95%);3),
- combination of PDs has to be on the most distant line of the graph,

only one combination was chosen, giving maximum risk-weighted assets. For 2006, this is a combination of 0.85%/0.879%/0.88% and for 2007 it is 1.49%/1.78%/3.63% (see Table 4). To compare risk-weighted assets, the formulas applicable for retail exposures were used:

$$\begin{aligned} Risk\_weighted\_assets\ (RWA) &= RW * EAD;\\ Risk\_weight\ (RW) &= (LGD \cdot \Phi\left(\frac{\Phi^{-1}(PD)}{\sqrt{1-R}} + \sqrt{\frac{R}{1-R}} \cdot \Phi^{-1}(0.999)\right) - PD \cdot LGD) \cdot 12.5 \cdot 1.06;\\ Correlation\ (R) &= 0.03 \cdot \frac{1-e^{-35 \cdot PD}}{1-e^{-35}} + 0.16 \cdot \left[1 - \frac{1-e^{-35 \cdot PD}}{1-e^{-35}}\right],\end{aligned}$$

where LDG is a loss given default; for the sake of comparability, always the value of 45% was used; EAD is exposure at default; for the sake of comparability, always the value of 100 LTL was used.

It should be noted that the application of this approach starting from three LDP ratings in succession requires programming skills, otherwise the iterative checking of various combinations of PDs will be very time-consuming. However, the derived combinations of PDs comply with the monotony requirement and seem to be very reasonable for the calculation of capital adequacy.

*N. M. Kiefer (2006) Bayes 'approach.* The first step is to decide upon the representation of the prior distribution  $p(\theta | e)$ . As N. M. Kiefer (2006) says that the four-parameter beta distribution in some situations may be too restrictive, in this article we use the two-

parameter beta distribution. For ratings 1, 2 and 3, in both years hypothetical PDs from 0.01 per cent to 7.00 per cent were used with the step equal to 0.01 per cent. Thus, parameters  $\alpha$  and  $\beta$  are 3 and 79, respectively. However, parameters for rating 7 in 2007 have to be different as the PD for this rating is expected to be significantly higher than in other three LDP ratings, so hypothetical PDs from 12.00 per cent to 45.00 per cent were used with the step equal to 0.01 per cent. Thus, parameters  $\alpha$  and  $\beta$  are 6 and 15, respectively.

Similarly as in the Pluto and Tasche (2005) approach, PDs for ratings 1, 2 and 3 are derived on the cumulative basis adding all defaults and all obligors up to that rating. For rating 7, posterior distribution was derived on a single basis, as this rating is not in succession with other LDP ratings.

Figures 5 and 6 show the posterior distributions  $p(\theta | r, e)$  of PDs. The PD for a respective rating is derived searching for the maximum value of this posterior distribution.

One could notice that the posterior distribution of PD for rating 3 in 2006 is shifted to the left as compared with PD distributions for ratings 1 and 2. Thus, PDs in 2006 don't comply with the monotony requirement as the PD for rating 3 is lower than for rating 2 and even than for rating 1.

The estimated PDs need to be validated in order to check their suitability. According to the regulation of the Bank of Lithuania, banks applying the internal ratings based approach shall carry out a regular (at least annual) validation of the PD quantification

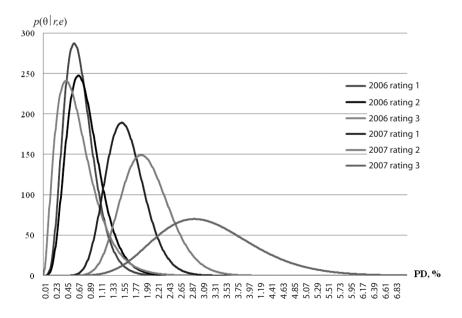
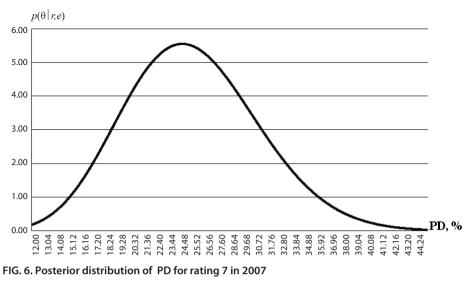




FIG. 5. Posterior distributions of PDs for ratings 1, 2 and 3 in 2006 and 2007

Source: calculations of the author.



Source: calculations of the author.

process (Bank of Lithuania, 2006b). Even banks not applying the internal ratings based approach should *mutatis mutandis* comply with the regulation on validation (Bank of Lithuania, 2008). One of the recommended validation methods is the binomial test (BCBS, 2005a; Bank of Lithuania, 2006b; Tasche, 2006; Burgt, 2007; SAS, 2009). This method tests whether the estimated PD(4) presented in Table 4 falls within a 95% confidence level around the PD<sub>real</sub> (i.e. the actual default rate in 2008). The PD<sub>estimated</sub> should lie in the interval as presented below:

$$\begin{bmatrix} PD_{real} - \Phi^{-1}\left(\frac{1+\alpha}{2}\right) \cdot \sqrt{\frac{PD_{real} \cdot (1-PD_{real})}{N}}; \\ PD_{real} + \Phi^{-1}\left(\frac{1+\alpha}{2}\right) \cdot \sqrt{\frac{PD_{real} \cdot (1-PD_{real})}{N}} \end{bmatrix};$$

where  $\alpha$  is the confidence level which is chosen as 95%, and  $\Phi^{-1}$  is the inverse of the cumulative standard normal distribution.

Results of the binomial test have shown that only in three approaches the  $PD_{estimated}$  allways falls into the interval between the lower and the upper boundaries of  $PD_{real}$  (see Table 8). So, it is reasonable to reject the other two approaches where this requirement is not fulfilled. PDs in the Pluto and Tasche (2005) approach without correlation using scaled PDs with 99.99 per cent confidence level seem to be quite reasonable, they allways fall into the defined interval. In Forrest's (2005) approach without correlation and Kiefer (2006) Bayes' approach, PDs also fall into the defined interval; besides, they are more

#### TABLE 8. Validation of PDs for LDPs

|                                                | 1 rating     | 2 rating | 3 rating | 7 rating |  |  |
|------------------------------------------------|--------------|----------|----------|----------|--|--|
| Number of obligors by 2007.12.31               | 369          | 706      | 361      | 50       |  |  |
| Defaulted till 2008.12.31                      | 2            | 10       | 11       | 17       |  |  |
| PD <sub>real</sub> , %                         | 0.54         | 1.42     | 3.05     | 34.00    |  |  |
| Lower boundary of PD <sub>estimated</sub> , %  | 0.00         | 0.54     | 1.27     | 20.87    |  |  |
| Higher boundary of PD <sub>estimated</sub> , % | 1.29         | 2.29     | 4.82     | 47.13    |  |  |
| M. BURGT (2007) CAP CURVE APPROA               | СН           |          |          |          |  |  |
| PD <sub>estimated</sub> ,%                     | 0.19         | 0.32     | 0.70     | 27.54    |  |  |
| Binomial test                                  | TRUE         | FALSE    | FALSE    | TRUE     |  |  |
| D. TASCHE (2009) ROC CURVE APPROA              | CH           |          |          |          |  |  |
| PD <sub>estimated</sub> , %                    | 0.03         | 0.12     | 0.77     | 30.83    |  |  |
| Binomial test                                  | TRUE         | FALSE    | FALSE    | TRUE     |  |  |
| A.Forrest (2005) approach without corre        | elation      |          |          |          |  |  |
| PD <sub>estimated</sub> , %                    | 1.17         | 1.33     | 2.26     | 32.83    |  |  |
| Binomial test                                  | TRUE         | TRUE     | TRUE     | TRUE     |  |  |
| K. PLUTO, D. TASCHE (2005) APPROACE            | HWITHOUT COR | RELATION |          |          |  |  |
| PD <sub>estimated</sub> , %                    | 0.71         | 0.88     | 1.67     | 22.17    |  |  |
| Binomial test                                  | TRUE         | TRUE     | TRUE     | TRUE     |  |  |
| N. M. KIEFER (2006) BAYES' APPROACH            | 1            |          |          |          |  |  |
| PD <sub>estimated</sub> , %                    | 1.06         | 1.29     | 1.68     | 25.80    |  |  |
| Binomial test                                  | TRUE         | TRUE     | TRUE     | TRUE     |  |  |

Source: calculation of the author.

conservative than PDs in the approach discussed above. In the Burgt (2007) CAP curve and the Tasche (2009) ROC curve approaches, the  $PD_{estimated}$  for ratings 2 and 3 is less than the lower boundary. For rating 7, all PDs fall into the defined interval; however, the Pluto and Tasche (2005) approach without correlation here gives quite a low value, very chose to the lower boundary.

# Conclusions

The author of this article recommends to apply LDP approaches on the rating (and not on the portfolio) level, using a concrete number of defaults in order to define LDP without accounting for the total size of rating or portfolio. For ratings not complying with LDP definition (having more than 20 defaults), PDs should be calculated in an ordinary way. If a concrete rating in one year is treated as an LDP and in another doesn't comply with the LDP definition, LDP approaches should be applied only for the first year.

The Pluto and Tasche (2005) approach without correlation could be easily implemented in banks. However, if the ordinal ranking of obligors is incorrect, then this

approach doesn't ensure the monotony of PDs in LDP ratings. The same problem exists in Kiefer's (2006) approach. Forrest's (2005) approach without correlation ensures the monotony and conservatism of PDs; however, it requires programming skills, otherwise the iterative recalculation of PDs will be very time-consuming. PDs estimated in these three approaches passed the binomial test.

A numerical example has shown that PDs estimated in Burgt's (2007) CAP curve and Tasche's (2009) ROC curve approaches are too low for better ratings; PDs didn't pass the binomial test.

If it is impossible to extract the information about rating transitions during a year and the exact time of defaut, it makes no sence to apply the approaches based on rating transition matrices; in any case, they are quite time-consuming. However, some supervisors (e.g., the Bank of Lithuania) require banks to estimate rating transition matrices; so, at the same time the LDP problem is solved.

Applying Forrest's (2005) and the Pluto and Tasche (2005) approaches with a correlation, the conservative values of PDs may be too high, thus the calculated capital adequacy requirements to cover credit risk may not satisfy banks and their supervisors, taking into account that the internal ratings based approach in Basel II should ensure not an over-conservative but an accurate calculation of capital requirements. Multi-period approaches, proposed by Pluto, Tasche (2005) and Wilde, Jackson (2006), give either too high or too low PDs; in some cases, assumptions are unrealistic and cannot be fulfilled in practice. The approach based on unemployment rates proposed by G. Sabato (2006), is appropriate only to estimated PDs for a physical person. Modifications of the approach to estimate PDs for companies wouldn't allow deriving reasonable PDs. Besides, the approach is appropriate only to derive PDs for specific sub-groups of age, education, etc., but not for ratings.

As the rating system used in this article was developed using a large sample of Lithuanian companies' data, the conclusions are most actual to banks of Lithuania and their ratings systems to Lithuanian companies. Besides, it is recommended to supervisors to prepare a common methodology applicable in all their jurisdiction, or to prepare look-up tables of PDs for banks.

#### REFERENCES

Bank of Lithuania (2006a). General Regulations for the Calculation of Capital Adequacy approved by Bank of Lithuania Board Resolution No. 138 of 9 November 2006, "Valstybes zinios" (Official Gazette), 2006, No. 142 (5442).

Bank of Lithuania (2006b). Regulations on Validation and its Assessment approved by Bank of Lithuania Board Resolution No. 140 of 9 November 2006, "Valstybes zinios" (Official Gazette), 2006, No. 142 (5444).

Bank of Lithuania (2008). Regulations on Organization of Internal Control and Risk Assessment (Management) approved by Bank of Lithuania Board Resolution No. 149 of 25 September 2008, "Valstybes zinios" (Official Gazette), 2008, No. 127 (4888). Basel Committee on Banking Supervision (BCBS) (2005a). Studies on the Validation of Internal Rating Systems.

Basel Committee on Banking Supervision (BCBS) (2005b): Validation of Low-default Portfolios in the Basel II Framework.

Basel Committee on Banking Supervision (BCBS) (2006). International Convergence of Capital Measurement and Capital Standards: A Revised Framework Comprehensive Version.

British Bankers Association, London Investment Banking Association, International Swaps and Derivatives Association (BBA, LIBA, ISDA) (2004). Introductory Paper on Low Default Portfolios.

British Bankers Association, London Investment Banking Association, International Swaps and Derivatives Association (BBA, LIBA, ISDA) (2005). Low Default Portfolios.

Burgt, M. (2007). Calibrating low-default portfolios, using the Cumulative Accuracy Profile.

Committee of European Banking Supervisors (CEBS) (2006): Guidelines on the implementation, validation and assessment of advanced measurement (AMA) and internal ratings based (IRB) approaches.

Christensen, J. H. E.; Hansen, E.; Lando, D. (2004). Confidence sets for continuous-time rating transitions probabilities. – Journal of Banking & Finance, Vol. 28 (2004), p. 2575–2602.

Directive 2006/48/EC of the European Parliament and of the Council Relating to the Taking up and Pursuit of the Business of Credit Institutions.

Dzidzevičiūtė, L. (2010a). Statistical scoring model for Lithuanian companies. Ekonomika (2010) Vol. 89, issue 4, 96–115.

Dzidzevičiūtė, L. (2010b). Statistinių vertinimo balais modelių kūrimo ir taikymo ypatumai. Pinigų studijos No 1, p. 35–54.

Dzidzevičiūtė, L. (2010c). Statistinių vertinimo balais modelių taikymas Lietuvos bankuose Pinigų studijos, No 2, p. 70–86.

Financial Services Authority (FSA). (2005). Expert Group article on low default portfolios.

Financial Services Authority (FSA). (2006). Low default portfolios: a proposal for conservative estimation of low default probabilities.

Forrest, A. (2005). Likelihood approaches to low default portfolios. Version 1.2 14/9/05.

Jafry, Y., Schuermann, T. (2004). Measurement, estimation and comparison of credit migration matrices – Journal of Banking & Finance, (2004), Vol. 28, p. 2603–2639.

Kiefer, N. M. (2006). Default Estimation for Low-Default Portfolios. CAE Working Paper 06-08.

Kiefer, N. M. (2007). Bayesian Methods for Default Estimation in Low-Default Portfolios.

Kiefer, N. M. (2008). Default Estimation, Correlated Defaults, and Expert Information.

Lando, D., Skødeberg, T. M. (2002). Analyzing rating transitions and rating drift with continuous observations. Journal of Banking & Finance, Vol. 26, p. 423–444.

Pluto, K., Tasche, D. (2005). Estimating probabilities for low default portfolios.

Sabato, G. (2006). Managing credit risk for retail low-default portfolios.

SAS (2009). Credit Risk Modeling Using SAS <sup>R</sup>. Course Notes.

Schuermann, T.; Hanson, S. (2004). Estimating Probabilities of Default.

Tasche, D. (2006). Validation of internal rating systems and PD estimates.

Tasche, D. (2009). Estimating discriminatory power and PD curves when the number of defaults is small.

Wilde, T., Jackson, L. (2006). Low-default portfolios without simulation.

| .×  | P<br>D |
|-----|--------|
| pu  | A.1.   |
| ope | BLE    |
| Ā   | ΤA     |

| ç                                |
|----------------------------------|
| .9                               |
| E.                               |
|                                  |
| Ξ.                               |
| 2                                |
| t corre                          |
| ŭ                                |
| D C                              |
| ĕ                                |
| Ē                                |
| 3                                |
| Ē                                |
| ÷                                |
| a                                |
| 2                                |
| ð                                |
| de                               |
| (2005) appr                      |
| Ω.                               |
| 8                                |
| ä                                |
| <u> </u>                         |
| e e                              |
| ÷                                |
| SE                               |
| Ĕ                                |
| ċ                                |
| °<br>0                           |
| 0                                |
| 5                                |
| 6                                |
|                                  |
| ×                                |
| .⊑                               |
| js i                             |
| õ                                |
| .≘                               |
| at                               |
| r ratings in K. Pluto, D. Tasche |
| 2                                |
| Ť.                               |
| Š                                |
| 2                                |
|                                  |
| 5                                |
| $\triangleleft$                  |
| щ                                |
| 8                                |
| A                                |
|                                  |

| 90% confidence level, no         95% confidence level, no         99.9% confidence level, no         99.99% confidence level, no           scalling         scalling         scalling         scalling         scalling | PD <sub>2007</sub> PD(4)         PD <sub>2007</sub> PD(4)         PD <sub>2007</sub> PD <sub>2007</sub> PD(4)         PD(4)         PD <sub>2007</sub> <th< th=""><th>0.91 2.05 1.48 1.05 2.22 1.64 1.36 2.57 1.96 1.77 3.00 2.38 2.15 3.38 2.76</th><th>1.05 2.61 1.83 1.21 2.83 2.02 1.57 3.27 2.42 2.04 3.80 2.92 2.48 4.29 3.38</th><th>0.67 4.97 2.82 0.87 5.50 3.19 1.33 6.60 3.96 1.99 7.96 4.98 2,64 9.19 5.92</th><th>4.23 5.00 4.62 4.23 5.00 4.62 4.23 5.00 4.62 4.23 5.00 4.62 4.23 5.00 4.62 4.23 5.00 4.62</th><th>6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 5.06 12.95 9.51</th><th>13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12</th><th>27.03 <b>34.80 30.91</b> 27.03 <b>37.69 32.36</b> 27.03 <b>43.24 35.14</b> 27.03 <b>49.54 38.29</b> 27.03 <b>54.70 40.86</b></th><th>23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07</th><th>46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         <th< th=""><th>e level, 95% confidence level, 99% confidence level, 99.9% c</th><th>scalling scalling scalling scalling scalling scalling</th><th>PD2x05         PD2x07         PD(4)         PD2x07         PD(4)         PD2x04         PD2x04<th>0.44 1.09 0.76 0.42 1.08 0.75 0.39 1.08 0.73 0.36 1.07 0.72 0.35 1.07 0.71</th><th>0.50 1.39 0.95 0.48 1.38 0.93 0.45 1.37 0.91 0.42 1.36 0.89 0.40 1.36 0.88</th><th>0.32 2.64 1.48 0.34 2.69 1.51 0.38 2.76 1.57 0.41 2.84 1.63 0.43 2.91 1.67</th><th>4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.63         5.00         4.63         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         <th< th=""><th>6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51</th><th>13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12</th><th><b>27.03 18.52 22.77</b> 27.03 <b>18.40 22.71</b> 27.03 <b>18.11 22.57</b> 27.03 <b>17.70 22.37</b> 27.03 <b>17.31 22.17</b></th><th>23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07</th><th>46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31</th><th></th></th<></th></th></th<></th></th<> | 0.91 2.05 1.48 1.05 2.22 1.64 1.36 2.57 1.96 1.77 3.00 2.38 2.15 3.38 2.76 | 1.05 2.61 1.83 1.21 2.83 2.02 1.57 3.27 2.42 2.04 3.80 2.92 2.48 4.29 3.38 | 0.67 4.97 2.82 0.87 5.50 3.19 1.33 6.60 3.96 1.99 7.96 4.98 2,64 9.19 5.92 | 4.23 5.00 4.62 4.23 5.00 4.62 4.23 5.00 4.62 4.23 5.00 4.62 4.23 5.00 4.62 4.23 5.00 4.62 | 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 5.06 12.95 9.51 | 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 | 27.03 <b>34.80 30.91</b> 27.03 <b>37.69 32.36</b> 27.03 <b>43.24 35.14</b> 27.03 <b>49.54 38.29</b> 27.03 <b>54.70 40.86</b> | 23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         23.27         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07         62.86         43.07 | 46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         62.31         46.36         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26         78.26 <th< th=""><th>e level, 95% confidence level, 99% confidence level, 99.9% c</th><th>scalling scalling scalling scalling scalling scalling</th><th>PD2x05         PD2x07         PD(4)         PD2x07         PD(4)         PD2x04         PD2x04<th>0.44 1.09 0.76 0.42 1.08 0.75 0.39 1.08 0.73 0.36 1.07 0.72 0.35 1.07 0.71</th><th>0.50 1.39 0.95 0.48 1.38 0.93 0.45 1.37 0.91 0.42 1.36 0.89 0.40 1.36 0.88</th><th>0.32 2.64 1.48 0.34 2.69 1.51 0.38 2.76 1.57 0.41 2.84 1.63 0.43 2.91 1.67</th><th>4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.63         5.00         4.63         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         <th< th=""><th>6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51</th><th>13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12</th><th><b>27.03 18.52 22.77</b> 27.03 <b>18.40 22.71</b> 27.03 <b>18.11 22.57</b> 27.03 <b>17.70 22.37</b> 27.03 <b>17.31 22.17</b></th><th>23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07</th><th>46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31</th><th></th></th<></th></th></th<> | e level, 95% confidence level, 99% confidence level, 99.9% c | scalling scalling scalling scalling scalling scalling | PD2x05         PD2x07         PD(4)         PD2x07         PD(4)         PD2x04         PD2x04 <th>0.44 1.09 0.76 0.42 1.08 0.75 0.39 1.08 0.73 0.36 1.07 0.72 0.35 1.07 0.71</th> <th>0.50 1.39 0.95 0.48 1.38 0.93 0.45 1.37 0.91 0.42 1.36 0.89 0.40 1.36 0.88</th> <th>0.32 2.64 1.48 0.34 2.69 1.51 0.38 2.76 1.57 0.41 2.84 1.63 0.43 2.91 1.67</th> <th>4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.63         5.00         4.63         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         <th< th=""><th>6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51</th><th>13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12</th><th><b>27.03 18.52 22.77</b> 27.03 <b>18.40 22.71</b> 27.03 <b>18.11 22.57</b> 27.03 <b>17.70 22.37</b> 27.03 <b>17.31 22.17</b></th><th>23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07</th><th>46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31</th><th></th></th<></th> | 0.44 1.09 0.76 0.42 1.08 0.75 0.39 1.08 0.73 0.36 1.07 0.72 0.35 1.07 0.71 | 0.50 1.39 0.95 0.48 1.38 0.93 0.45 1.37 0.91 0.42 1.36 0.89 0.40 1.36 0.88 | 0.32 2.64 1.48 0.34 2.69 1.51 0.38 2.76 1.57 0.41 2.84 1.63 0.43 2.91 1.67 | 4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.23         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.62         4.63         5.00         4.63         5.00         4.63         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00 <th< th=""><th>6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51</th><th>13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12</th><th><b>27.03 18.52 22.77</b> 27.03 <b>18.40 22.71</b> 27.03 <b>18.11 22.57</b> 27.03 <b>17.70 22.37</b> 27.03 <b>17.31 22.17</b></th><th>23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07</th><th>46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31</th><th></th></th<> | 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 6.06 12.95 9.51 | 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 13.73 18.50 16.12 | <b>27.03 18.52 22.77</b> 27.03 <b>18.40 22.71</b> 27.03 <b>18.11 22.57</b> 27.03 <b>17.70 22.37</b> 27.03 <b>17.31 22.17</b> | 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 23.27 62.86 43.07 | 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 46.36 78.26 62.31 |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------|
| confidence la scalling                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                                            |                                                                            |                                                                                           |                                                                                                 |                                                                                                             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o confidence                                                 | scalling                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                                            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | -                                                                                         |                                                                                                                              |                                                                                           |                                                                                           |       |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                                            |                                                                            |                                                                                           |                                                                                                 |                                                                                                             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %66                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                                            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                                                                                           |                                                                                                                              |                                                                                           |                                                                                           |       |
| nce level, no<br><sup>i</sup> ng                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                                            |                                                                            |                                                                                           |                                                                                                 |                                                                                                             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ence level,                                                  | ling                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                                            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                                                                                           |                                                                                                                              |                                                                                           |                                                                                           |       |
| 95% confide<br>scal                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            | 1.21                                                                       | 0.87                                                                       | 4.23                                                                                      |                                                                                                 |                                                                                                             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% confic                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.42                                                                       | 0.48                                                                       | 0.34                                                                       | 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                           |                                                                                                                              |                                                                                           |                                                                                           |       |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.48                                                                       | 1.83                                                                       | 2.82                                                                       | 4.62                                                                                      | 9.51                                                                                            | 16.12                                                                                                       | 30.91                                                                                                                        | 43.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | el,                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.76                                                                       | 0.95                                                                       | 1.48                                                                       | 4.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.51                                                                            | 16.12                                                                                     | 22.77                                                                                                                        | 43.07                                                                                     | 62.31                                                                                     |       |
| nfidence leve<br>scalling                                                                                                                                                                                               | PD <sub>2007</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.05                                                                       | 2.61                                                                       | 4.97                                                                       | 5.00                                                                                      | 12.95                                                                                           | 18.50                                                                                                       | 34.80                                                                                                                        | 62.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onfidence lev                                                | scalling                                              | PD <sub>2007</sub> ,<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.09                                                                       | 1.39                                                                       | 2.64                                                                       | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.95                                                                           | 18.50                                                                                     | 18.52                                                                                                                        | 62.86                                                                                     | 78.26                                                                                     |       |
| 90% con                                                                                                                                                                                                                 | PD <sub>2006</sub> ,<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.91                                                                       | 1.05                                                                       | 0.67                                                                       | 4.23                                                                                      | 6.06                                                                                            | 13.73                                                                                                       | 27.03                                                                                                                        | 23.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90% cc                                                       |                                                       | PD <sub>2006</sub> , %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.44                                                                       | 0.50                                                                       | 0.32                                                                       | 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.06                                                                            | 13.73                                                                                     | 27.03                                                                                                                        | 23.27                                                                                     | 46.36                                                                                     |       |
| evel, no                                                                                                                                                                                                                | PD(4),<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.24                                                                       | 1.54                                                                       | 2.28                                                                       | 4.62                                                                                      | 9.51                                                                                            | 16.12                                                                                                       | 28.58                                                                                                                        | 43.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : level,                                                     |                                                       | PD(4),<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.79                                                                       | 0.98                                                                       | 1.42                                                                       | 4.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.51                                                                            | 16.12                                                                                     | 22.85                                                                                                                        | 43.07                                                                                     | 62.31                                                                                     |       |
| 75% confidence level, no<br>scalling                                                                                                                                                                                    | PD <sub>2007</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.78                                                                       | 2.27                                                                       | 4.15                                                                       | 5.00                                                                                      | 12.95                                                                                           | 18.50                                                                                                       | 30.12                                                                                                                        | 62.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75% confidence level,                                        | scalling                                              | PD <sub>2007</sub> ,<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.11                                                                       | 1.41                                                                       | 2.57                                                                       | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.95                                                                           | 18.50                                                                                     | 18.67                                                                                                                        | 62.86                                                                                     | 78.26                                                                                     |       |
| 75% c                                                                                                                                                                                                                   | PD <sub>2006</sub> /<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.69                                                                       | 0.80                                                                       | 0.40                                                                       | 4.23                                                                                      | 6.06                                                                                            | 13.73                                                                                                       | 27.03                                                                                                                        | 23.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75%                                                          |                                                       | PD <sub>2006</sub> ,<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.47                                                                       | 0.55                                                                       | 0.27                                                                       | 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.06                                                                            | 13.73                                                                                     | 27.03                                                                                                                        | 23.27                                                                                     | 46.36                                                                                     |       |
|                                                                                                                                                                                                                         | PD(4),<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.01                                                                       | 1.25                                                                       | 1.77                                                                       | 4.62                                                                                      | 9.51                                                                                            | 16.12                                                                                                       | 26.13                                                                                                                        | 43.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e level,                                                     |                                                       | PD(4),<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.82                                                                       | 1.02                                                                       | 1.35                                                                       | 4.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.51                                                                            | 16.12                                                                                     | 22.89                                                                                                                        | 43.07                                                                                     | 62.31                                                                                     |       |
| 50% confidence level, no<br>scalling                                                                                                                                                                                    | PD <sub>2007</sub> ,<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 1.51                                                                     | 8 1.93                                                                     | 0 3.34                                                                     | 3 5.00                                                                                    | 6 12.95                                                                                         | 3 18.50                                                                                                     | 3 25.22                                                                                                                      | 7 62.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 78.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50% confidence level,                                        | scalling                                              | , PD <sub>2007</sub> ,<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 1.13                                                                     | 0 1.43                                                                     | 1 2.49                                                                     | 3 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 12.95                                                                         | 3 18.50                                                                                   | 3 18.76                                                                                                                      | 7 62.86                                                                                   | 6 78.26                                                                                   |       |
| % co                                                                                                                                                                                                                    | PD <sub>2006</sub> ,<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50                                                                       | 0.58                                                                       | 0.20                                                                       | 4.23                                                                                      | 6.06                                                                                            | 13.73                                                                                                       | 27.03                                                                                                                        | 23.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50% 0                                                        |                                                       | PD <sub>2006</sub> ,<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.52                                                                       | 0.60                                                                       | 0.21                                                                       | 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.06                                                                            | 13.73                                                                                     | 27.03                                                                                                                        | 23.27                                                                                     | 46.36                                                                                     | Scal- |