
83

ISSN 1392-0561. INFORMACIJOS MOKSLAI. 2017 79

Towards the deep, knowledge-based interoperability
of applications

Andrius Valatavičius

Vilniaus universiteto doktorantas
Vilnius University, Doctoral student
El. paštas: andrius.valatavicius@mii.vu.lt

Saulius Gudas

Vilniaus universiteto vyriausiasis
mokslo darbuotojas, daktaras
Vilnius University, Doctor
El. paštas: saulius.gudas@mii.vu.lt

The interoperability of enterprise applications in a dynamic environment is a complex issue. New met-
hodological approaches and solutions are required. The methodological background of our approach
is the internal modeling paradigm integrated with MDA approach. The modified MDA schema includes
the new layer of the domain knowledge discovery, frameworks for internal modeling of enterprises. The
peculiarity of the modified MDA is a focus on the cross-layer transferring of domain causality. The pre-
sented frameworks will help to trace the domain causal dependencies across the layers of the software
system development, and they will aid in determining the influence of domain causality to the integrity
and interoperability of the application. Researchers consider that the dynamic enterprise domain must
be a goal-driven and self-managed system. The management transaction concept uses the internal mo-
deling of the enterprise, which reveals the goal-driven information transformations inside the enterprise
management activity (deep knowledge). This approach is combining the business process modeling and
control theory principles, enterprise architecture modeling and autonomic computing concepts. The Ar-
chiMate enterprise architecture modeling language is used for illustrating the cross-layer transferring
of domain causality. Finally, we developed the architecture of the interoperable enterprise applications
with the autonomic integration component.

Keywords: internal modeling, enterprise management, domain modeling, self-managed system, MDA,
knowledge discovery, interoperability, autonomic computing.

1. Introduction

The interoperability of applications in a
dynamic enterprise environment is a com-
plex issue. In this article, we present the
methodology for maintaining the interoper-
ability of the applications using autonomic
computing and business process models. In
the constant growth of enterprise complex-

ity, more various applications are used in a
single enterprise (e.g., accounting systems,
CRM, ERP, and E-Commerce applications),
data integration and application interop-
erability become pressing problems for
technological advancement. Currently, the
integration of the applications is expensive,
and projects mostly tend to fail (Halevy et

84

et	al.	2008)	and	ontology-based	technolo-
gies (Li et al. 2005; Shvaiko et al., 2013).
We	notice	 that	 the	 enterprise	 architecture	
frameworks (MODAF, NAF, DoDAF,
TOGAF,	GERAM)	are	a	good	way	to	rep-
resent of real-world processes (i.e., capture
the business domain knowledge), and thus
their interfaces with applications layer com-
ponents. Software developers rarely explore
business processes for the application inte-
gration solutions. However, sophisticated
methods of the process integration already
exist (El-Halwagi 2006) – they’re just not
being applied in the application area.

This paper offers the internal mod-
eling paradigm consolidation with the
Model	Driven	Architecture	approach	(OMG	
MDA).	The	MDA	approach	is	modified	and	
presented	 to	 illustrate	 the	 qualitative	 dif-
ferences of the software engineering in the
internal modeling paradigm. The theoretical
background of the presented approach is
starting from the regulator theorem (Conant
et	al.,	1970).	We	continue	with	R.	Ashby	
conclusions	6/18	of	the	assembly	of	Black	
Boxes	 and	 “emergent”	 properties	 (Ashby	
1957),	the	definitions	of	second	order	cy-
bernetics (Heylighen et al., 2001) and the
autonomic agents and autonomic computing
(Kephart et al. 2003). The main principles of
data integration and engineering solutions
are	refined	using	the	ArchiMate	enterprise	
architecture language (ArchiMate, 2016).
This research would help to work out the
methods to support analysis of the business
domain and enterprise software collabora-
tion processes.

Business	domain	knowledge,	acquired	
from all the available sources, can be of
benefit	to	support	 the	application	integra-
tion	solutions.	Business	domain	modeling	
itself is a complex problem, for which it is
required	 to	 solve	 another	 complex	 issue.	

al. 2006; Trotta 2003; Valatavicius et al.
2014;	van	der	Bosch	et	al.	2010).	Multiple	
conflicts	may	occur	in	the	data	integration	
process (Dong et al. 2009). This article
deals with enterprise interoperability and
aims for an integrated information system
design. Five problems of software system
interoperability arise in a dynamic business
environment. First, Applications (i.e., in
number or provider) are changing over time
in a dynamic enterprise domain. Second, it
is usually more than one application in an
organization environment and the number
may vary over time, causing demand for
data migration project development. Third,
there are no common methods to describe
the collaboration among multiple different
dynamic applications. Fourth, when the
software changes (i.e., when it is updated or
switched to software from different manu-
facturers), the business process might also
change	adapting	 to	 the	new	 requirements	
of the environment, then the static business
architecture model becomes invalid. Fifth,
to ensure interoperability, the integration
expert needs to perform the following tasks:
perform the schema alignment (Hophe et al.,
2002; McCann et al., 2005; Peukert et
al., 2012; Rahm et al., 2001; Silverston et al.,
1997); ensure record linkage and data fu-
sion	 (Dong	 et	 al.,	 2013;	Kutsche,	 2008);	
ensure the orchestration and choreography
of application services and data objects.
In a dynamic environment, business pro-
cesses often need optimizing, akin to the
El-Halwagi examples of business process
integration (El-Halwagi, 2006; Pavlin et
al., 2010).

Various application integration methods
are applied to maintain the interoperability
of enterprise applications. Most researchers
of integration subject use advanced meth-
ods, such as agent technologies (Overeinder

85

Model-driven software development (as-
sociated	with	MDA,	BPMN,	DMN),	the	en-
terprise architecture modeling frameworks
(e.g., ArchiMate, MODAF, NAF) are based
on business domain modeling and are aimed
at the development of the software systems.
The complex software systems are often
implemented using the agent technologies.
For instance, a background for using the
Platform Independent Models (PIM) for
autonomic agents development is presented
in	a	study	by	Zinnikus	et	al.	(2008).	

The dynamic nature of the business
processes causes many problems with the
already developed enterprise architecture
and business process models, as well as with
the implemented (legacy) applications. The
most common scenario is when changes
in business force to replace the outdated
legacy software by one or multiple new
software items, which are designed for some
specific	business	 process	 (i.e.,	 bookkeep-
ing software, enterprise resource planning
system or e-commerce software).

Meanwhile, a lack of focus to the com-
plexity of business domain in the informa-
tion systems engineering methods (includ-
ing enterprise modeling, business process
(BP)	modeling,	enterprise	software	design)	
slow down the enterprise software adjust-
ment to environment changes. In our ap-
proach, a business domain (an enterprise) is
considered as a complex system: a dynamic,
goal-driven and self-managed system, for-
mally	defined	as	an	organizational	system	
(Gudas	 2012a;	 2012b).	The	 definition	 of	
management transaction is the base of the
internal	 enterprise	model,	which	acquires	
the essential causal dependencies of the
domain – goal-driven information transfor-
mations inside the management transactions
(deep knowledge). The principles of the
second order cybernetics provide the meth-

odological basis for the internal viewpoint
(Heylighen et al. 2001), and they aim to
disclose the internal causal relationships
of the domain. Internal modeling seeks to
construct a white box model of the domain,
while other methods of enterprise and busi-
ness	process	modeling	(DFD,	BPMN,	IDEF,	
ARIS and others) examine the domain us-
ing the external modeling paradigm as a
structure of black boxes, for example, as a
set	of	workflows	(Input,	Process,	Output)	
or	 as	 an	 event-process	 chain.	We	applied	
the constructive research method, which
is aimed to reveal domain causality and to
determine the impact on the integrity and
interoperability of the application, by ap-
plying the systems analysis, control theory
principles and using enterprise architecture
modeling and autonomic computing con-
cepts. The methodological background of
our	approach	is	the	modified	MDA	schema,	
which includes the new layer of the domain
knowledge discovery.

The combination of the disciplines of
control theory, business process modeling,
enterprise architecture modeling and au-
tonomic computing concepts allows us to
reconsider the model-driven development
aspects. Our approach is a consistent real-
ization of the internal modeling paradigm
integrated with an MDA approach. The
presented enterprise modeling frameworks
are	focused	on	acquiring	the	essential	causal	
dependencies (deep knowledge), paying
attention to the content of the enterprise
management transactions.

One	of	the	research	questions	we	ask	is	
whether internal modeling with an MDA
approach	helps	to	determine	the	influence	
of domain causality to the integrity and in-
teroperability of applications. Second, is it
possible to create an architecture of autono-
mous interoperable enterprise applications

86

using only business process models and an
enterprise architecture	model?		

The preceding discussion implies
that the software systems and enterprise
management activities are aimed to adopt
business environment changes in a similar
way to the classical control system with
a feedback loop. The idea is to adopt the
internal	model	 control	 principle	 defined	
by the good regulator theorem (Conant
et al., 1970) for enhancing the intelligent
software technologies (e.g., intelligent
agents, autonomic computing components).
According to the good regulator theorem
(Conant et al., 1970), the Internal Model
(IM)	is	a	predefined	knowledge	structure,	
based on the essential properties of the
particular type of domain. Thus, an internal
modeling paradigm entails the usage of an
essential (deep) knowledge of the enterprise
domain. The causal dependencies inside
and between the enterprise management
activities are considered as essential (deep)
knowledge. The internal structure of the
enterprise	management	activity	is	defined	
as	a	management	transaction	(MT)	(Gudas	
et al. 2016), and, on the detailed level, it
is	 defined	 as	 an	 elementary	management	
cycle	(EMC)	in	studies	by	Gudas	(2012a;	
2012b). Our paper contributes to the theory
of application interoperability by proposing
an inter-dimension approach of multiple in-
tegration levels (Technical, Semantic/Data
and	Organization),	which	are	defined	in	the	
European Interoperability Framework (EIF)
and mentioned in multiple other articles
(EIF	2004;	F.B.	Vernadat	2007).

This manuscript is structured as follows.
In	the	first	section,	we	present	the	techno-
logical background supporting our software
integration	 approaches	 processes.	We	
describe the internal model-based control

system and the core of the good regulator
theorem in Section No. 2. The external and
internal modeling paradigms in the software
engineering are elucidated in Section No. 3.
Section	No.	4	includes	the	modified	MDA	
schema with two modeling paradigms,
assumptions of the internal modeling
based enterprise software development,
and it illustrates the internal modeling of
enterprise domain using ArchiMate. In the
same section, we discussed the enterprise
management modeling frameworks and
autonomic computing technology. Section
No. 5 is dedicated to the application of the
interoperability problem using an internal
model and describes the architecture of the
enterprise applications with the autonomic
interoperability component. The sixth sec-
tion introduces the prototype of the software
interoperability validation tool. The results
and	further	work	required	discussed	in	the	
concluding part.

2. The Core of the Internal
Model-Based Control System
The	internal	model	was	defined	in	1970	as	a	
good regulator theorem (Conant et al. 1970).
The regulator theorem is the following idea:
“any	regulator	(if	it	conforms	to	the	qualifi-
cations	given)	must	model	what	it	regulates”
(Conant et al. 1970). Internal modeling can
be used for the enhancement of intelligent
software technologies (i.e., utility-based or
intelligent software agents) and serve as a
background of knowledge-based software
systems.	The	 internal	model	first	was	 ar-
ticulated as the internal model principle of
control theory in 1976 (Francis et al. 1976).
The internal model approach emerged in the
control theory, the problem of the domain of
which is a device, object or an open system
in general (Fig. No. 1). The purpose of the
Internal Model is to supply the closed loop

87

of the Control System with control signals
which maintain the stable behavior. The
Internal Model (IM) is a model of the prob-
lem domain (in this case, IM is the model of
System S). The Internal Model is created in
advance using prior knowledge, i.e., IM is
a	predefined	model,	based	on	knowledge	of	
the essential properties of the domain. In oth-
er words, IM is a knowledge-based model
of the controlled system S, integrated within
a Control System. Due to IM, an important,
intelligent feature of prediction occurs in IM
control systems because the control is based
not only on the measurements or evaluation
of the state (Kumar 2012).

Control System and Systems S. Here, u is
a command to control action, y – the mea-
surements (system state attributes), r is
the reference input and d is the disturbance
signal. A second feedback loop is an internal
transfer	of	information	flows	(command	(u),	
system state attributes (y), internal feedback
(d~)) between Controller C and Internal
Model, where d~ is an internal feedback
flow.	Internal	model	control	processes	the	
system state measurements (system attri-
butes (y)) and compares them to Internal
Model output (prediction).

The Control System, with the internal
model, is adaptive to changes in the envi-

Figure No. 1. The internal model-based control system.

System
(S)

Controller
(C)

Internal
Model (IM)

yur

d

d~

Internal Model Control
+

+-

-
+

+

It is important to note that the IM in
control theory (Fig. No. 1) contains a model
of the essential causal dependencies of the
domain inside the Control System (the
perceived	causality	assuming	that	IM	=	S).	
These models are based on models created
by MDA approach; therefore, in a dynamic
enterprise environment, we have models
that are always up to date. The content of
the feedback loop between elements of the
system is the transmission and processing
of	data	(signals)	flow,	so	it	should	be	called	
a transaction. It is worth mentioning that
the internal model-based control system
includes more than one feedback loop.
The external feedback loop transfers infor-
mation	flows	 (command	 (u),	 disturbance	
(d), system state attributes (y)) between

ronment. Therefore, we are convinced that
the adoption of the the internal modeling
approach for the software system interop-
erability looks like a promising and novel
solution. Researchers have already applied
principles of control theory in software
development (i.e., intelligent agent tech-
nologies, autonomic computing), but the
employment of the internal models for
application interoperability are arguably
rarely occurring.

The role of the internal model in control
theory and the role of the domain model in
the knowledge-based software engineer-
ing – both approaches are well compatible
with each other, because they are relevant
to the principle of internal modeling (Fig.
No.	1)	(Gudas	2016).	In	general,	the	internal	

88

modeling focus on the discovering of deep
knowledge of the problem domain, i.e., the
internal modeling is aimed to reveal causal
dependencies of the problem domain.

 Examples of usage of the internal
modeling	approach	 (quality	management,	
risk management, business process manage-
ment)	(Moen	et	al.	2006;	Brache	2002)	are	
provided in frameworks: Fayol’s business
function model (Fayol 2016); Deming’s
PDCA cycle; Porter’s Value Chain Model
(Porter	et	al.	1985);	Rummler-Brach’s	en-
terprise performance management model.

The concepts of control theory have
a need for controlling interactions of
enterprise software components and the
integration of applications. Researchers
apply	control	theory	in	multiple	fields,	e.g.,	
intelligent agents, autonomic computing
(Kephart et al. 2003), reactive software
applications	(Winter	et	al.	1998),	adaptive	
systems (Mareels et al. 1996) and comput-
ing	systems	(Abdelzaher	et	al.	2008).

Considering the internal model (IM) as
a knowledge model of the problem domain
inside the control system used to maintain
the stable behavior. IM is also considered
as a white-box of the problem domain (A
Controlled system S in Fig. No. 1), which
specifies	 the	 essential	 elements	 and	 their	
dependencies of the problem domain (laws
of behavior inside a domain).

Analysis of the role of the internal model
(IM) in control systems allows concluding
that the adaptation of the internal model
(IM) in the context of software systems de-
velopment is a relevant topic for enhancing
intelligent technologies.

The architecture of the intelligent
software components with the internal
model (e.g., intelligent agents or autonomic
components) in Fig. No. 2 is relevant to
the structure of the internal model control
system (Fig. No. 1). The similarity of real
world	RW	process	control	systems	and	the	
intelligent software systems is evident if
both systems include the internal models of
the subject domain. The internal model in
relation to MDA processes models is cre-
ated using MDA approach in M in Internal
Model of Domain in the IMC-based item of
each software system (Fig. No. 2).

3. Two Modeling Paradigms in
Model-Driven Software Enginee-
ring
At present in software engineering external
modeling paradigm is prevailing, because of
black box approach modeling usage in vari-
ous SDLC phases. In science and engineer-
ing, a black box is a device or systems which
the inputs and outputs without any knowl-
edge of its internal structure and processes.

 Figure No. 2. The architecture of a software component with the internal model.

Subject
Domain (S)

IM Controler
(Performance

element)

Internal Model
of Domain

(M)

Duplicate of
Control flow

(c)

Reference input
(r)

Estimated effect of
disturbance

IMC-based item of Software System

Output
(y)

Effectors

Sensors
Percepts

Actions

State
attributes

(a)

Feedback
flow (d)

Measurements of
subject domain

Control flow (c)

89

Enterprise information system (soft-
ware) engineering methods include business
domain	modeling	languages	(e.g.,	BPMN,	
DMN, UPDM, UEML), enterprise architec-
ture frameworks (e.g., DoDAF, MODAF,
ARIS) and software design languages (e.g.,
UML, SysML, UPDM). These languages
and frameworks are used to construct the
project	models	required	by	the	correspond-
ing SDLC phase, which is essentially an
assembly (hierarchy) of black boxes (Input,
Output)	with	 the	 identifier	 (name).	 It	 is	
important to note that such methods do not
seek to reveal the domain causation; it is
enough to describe the externally monitored
interactions.

The business process modeling, busi-
ness activity modeling are the source of
knowledge for software development solu-
tions, and, arguably, integration experts can
use those for supporting the interoperability
of business management applications (e.g.,
ERP, CRM, E-commerce, accounting sys-
tems, collaborative software).

The	concept	of	“an	internal	model”	is	
covering a range of models, which are de-
veloped using prior knowledge of problem
domain, i.e., an internal model is relevant

to the grey-box and white-box models.
Multiple domains apply to the Internal
models, i.e., in medicine and biology theo-
ries of visual perception, brain functioning,
and the motor control system of the body
(Francis et al. 1976) underlie an ability to
control the unknown and underdetermined
changes in the environment. Important is
the usage of the Internal models in the busi-
ness management domain (e.g., risk man-
agement, capital management), whereas
this domain is an organizational system,
the same type of complex systems as well
as in enterprise software engineering. The
necessity of the internal modeling for
acquiring	a	deep	knowledge	is	confirmed	
by	the	R.	Ashby	conclusions	6/18	of	 the	
assembly	of	black	boxes	and	“emergent”	
properties	 (Ashby	 1957,	 110):	 “Thus	 an	
assembly	of	Black	Boxes,	in	these	condi-
tions, will show no ‘emergent’ properties;
i.e. no properties that could not have been
predicted from knowledge of the parts and
their	couplings.”

The level of awareness of the real-world
domain (i.e., the level of a prior knowledge)
is increasing when moving from black-box
models	 toward	 a	 grey-box	 and,	 finally,	 a	
white-box	model	(Fig.	No.	4).	The	signifi-

Figure No. 3. The significance of the white-box/grey-box models is a depth
of insight into the problem domain.

Black-box
models White-box modelsGrey-box models

Level of insight into real world domain (a complex system) -
Level of awareness

Input –
process –

output
models

Deep knowledge:
Causal

dependencies,
Laws,

Consistent
patterns,

...

Prior Knowledge:
Equations,

Business rules,
...

Internal modelling

Maximum
(knowledge

of causation)
Minimum
(external

observation)

External modelling

90

cance of internal models is the depth of in-
sight into the complex systems (problem do-
main). The depth of knowledge is increased
sequentially	 in	 the	 transition	 from	 the	
grey-box models to the white-box models (a
white-box concept marks a maximum level
of insight). The internal modeling paradigm
introduced in the model-driven software
engineering with the intention to enhance
the knowledge-based software development
methods. In relation to MDA, its modeling
techniques	can	be	considered	as	gray	box	
modeling	in	our	specific	scenario,	and	that	
still gives us additional information for the
interoperability solutions on application
structure and about the interrelations of the
application via business process modeling.
The better the MDA models are, the deeper
the knowledge there is, and the better the
Internal model controller performs with the
autonomic functions.

4. External and Internal Modeling
in the Enterprise Software
Engineering

4.1. Model-Driven Development and
Two Modeling Paradigms
The usage of the internal modeling in the
MDA for intelligent software development
and deep knowledge discovery (the elicita-
tion of the internal model of the enterprise)
are two corelated issues.

Fig. No. 5 illustrates the role of the
internal	model	in	the	MDA	approach.	We	
accept that transitions between two layers of
MDA are possible only because of a role of
IM: a higher-level IM is used to control the
transformation between layers, and to get a
content of the mode on the lower layer. The
role of the internal models IM(1) – IM(4) in
the transformations between MDA layers is
twofold. Primarily, the internal models are

a	part	of	the	“awareness”	of	the	staff	(e.g.,	
the business analyst, the architect) used
for the development of solutions on the
corresponding layer. Second, in the case of
software-based mapping between the MDA
layers, the internal models could serve as
key elements of intelligent (or autonomic)
software components (agents).

The	 additional	 layer	 of	 Real	World	
(RW)	domain	is	added	to	depict	the	domain	
knowledge elicitation step. The mapping
of	the	RW	domain	to	CIM	layer	models	is	
defined	 as	 domain	 knowledge	 discovery	
(knowledge elicitation, Fig. No. 5). Domain
modeling	reveals	that	the	adequacy	of	the	
follow-up project solution directly depends
on	the	“deepness”	of	domain	modeling,	i.e.,	
it depends on the capabilities of the knowl-
edge elicitation methods. The CIM layer
content	adequacy	to	RW	domain	properties	
(the validity of CIM content) depends on
the modeling paradigm, as discussed above.
So, the advantage is on the side of the in-
ternal modeling paradigm-based methods.
For	instance,	the	OMG	reference	for	CIM	
layer	modeling	is	BPMN,	which	represents	
an external paradigm based language: the
BPMN	diagrams	are	(input,	output)	descrip-
tions of real-world processes (black boxes)
and	can’t	be	called	specifications	of	domain	
causality.	Meanwhile,	the	new	OMG	speci-
fication	DMN	 (Decision	Modeling	Nota-
tion) is an example of language, based on
the internal modeling paradigm. DMN is a
new	step	in	RW	domain	gray	box	modeling,	
because it is focused on the domain internal
dependencies – business rules modeling
(Kardoš et al. 2010).

Some	workflow	modeling	methodolo-
gies attempt to model the domain causality,
i.e., internal dependencies modeling, e.g.,
the	ActionWorkflow	Approach,	Workflow	
Management (communication-based work-

91

flows, Winograd	et	al.	1987;	Medina-Mora	
et	al.	1992),	and	the	transactional	workflows	
(Georgakopoulos	et	al.	1995).

An example of the internal domain
modeling from the functional perspective
is that the domain modeling method de-
veloped by Osis (2004). The Functioning
Cycle in the mentioned study (Osis 2004)
is a key construct of the domain, a form of
cause-and-effect relations modeling for the
software engineering needs.

 Some enterprise software development
methodologies are based on the domain-re-
lated theory (e.g., meta-models, ontologies).
Some are aimed to capture deep knowledge
while exploring the domain meta-models:
UEML	–	the	Unified	Enterprise	Modeling	
Language (Vernadat 2002), EEML – the
Extended Enterprise Modeling Language
(Krogstie 2005); enterprise domain ontolo-
gies	(Zachman	et	al.	1987;	Dietz	2006).	

The	modified	MDA	approach	 in	 Fig.	
No. 4 includes two modeling paradigms:
external and internal. The external modeling
paradigm is explored by traditional software

development methods, when software
development begins on a CIM layer using
BPMN	(e.g.,	IDEF,	DFD)	to	represent	the	
external observations of domain activities,
i.e., to omit the domain knowledge dis-
covery (based on some theory of domain).
The internal modeling paradigm is theoreti-
cally based on the good regulator theorem
(Conant et al. 1970; Francis et al., 1976).
Further, this manuscript presents the inter-
nal	modeling	based	technique	to	maintain	
the interoperability of applications. Internal
modeling can be a basis for the enhance-
ment of the knowledge-based software
development methods.

4.2 Assumptions of the Development
of Internal Modeling Based Enterpri-
se Software
This approach of internal modeling in en-
terprise software engineering is based on
the assumptions as follow:

Assumption No. 1. The knowledge-
based software development methods
should be deep knowledge-oriented, i.e.,

Figure No. 4. The modified MDA schema includes two modeling paradigms.

RW knowledge
discovery layer

CIM layer

PIM layer

PSM layer

Software layer

Computational-independent
model (CIM)

Real World domain

White boxesGrey boxes

Platform-independent
model (PIM)

PSM: Platform-specific
(detailed) system model

Internal modeling paradigm

Business
analyst

Code

Architect/
Designer

Developer/
Tester

External modeling
paradigm

Black boxes

IM(2)

IM(1)

IM(3)

IM(4)

Developer/
Tester

CIM >> PIM
transformation

PIM >> PSM
transformation

PSM >> Code
transformation

Domain knowledge discovery methods

IM – internal models

RW >> CIM
mapping

92

based on the domain causal dependencies
discovery, and this is the internal modeling
paradigm.

Assumpt ion No. 2 . The modified
MDA approach (Fig. No. 4) includes the
knowledge	discovery	layer,	and	is	defined	
as	the	sequence	of	cross-layer	transforma-
tions based on the internal model control
principle:

IM(1) à IM(2) à IM(3) à IM(4), (1)

here IM(1) is a domain knowledge model
(DKM), IM(2) is an enterprise/business
process model (CIM), IM(3) is a software
system architecture (PIM), IM(4) is a de-
tailed software system model (PSM).

Assumpt ion No. 3 . The essential
features of the real world domain, which
accumulate in the internal model IM(1),
must remain in the lower layers of MDA,
i.e., they should transfer (transform and
remain) in the internal models IM(2), IM(3)
and IM(4). The extended model of the MDA
approach (Fig. No. 4) includes two model-
ing paradigms: external and internal model-
ing (see Fig. No. 1). Thus arises the second
dimension in the MDA, which evaluates
the validity (accuracy) of modeling, i.e.,
the depth of the obtained knowledge on the
CIM, PIM and PSM layers. The matter of
using the internal modeling paradigm is to
acquire	the	essential	(deep)	knowledge	of	
the subject domain for software develop-
ment needs, while paying attention to the
specifics	 of	 a	 domain.	 In	 some	 software	
technologies (e.g., intelligent agents), the
domain knowledge model has been in-
cluded: the condition-action rules, utility
functions, performance elements.

There	 are	 two	 questions	 concerning	
the validity (relevance, completeness, ac-
curacy) of IM in the engineering methods
of the enterprise software system:

1) Does the IM includes or does not
contain any deep knowledge of the do-
main?	The	question	is	of	the	degree	of	
relevance of IM content against causal
dependencies of the real world domain:
is IM an external model (a black box),
or is IM an internal model (a gray box
or a white box model) of the domain
causality.

2) Is there enough of IM content for the
needs of the software development met-
hod?	The	question	is	of	the	relevance	of	
IM content against the particular metho-
dology and the methods of the enterprise
software development approach.
 ▫ Arguments for Assumption No. 1

The assumption one is proven by the
analysis	of	the	qualitative	differences	of	the	
internal modeling and external modeling
of	the	enterprise	domain	in	(Gudas,	2016),	
(Gudas	et	al.,	2016).	We	focus	the	internal	
modeling paradigm on the deep knowledge
seeking to reveal the consistent patterns and
dependencies (laws) within the problem
domain. Therefore the internal modeling
is critical for advancing knowledge-based
modeling methods. An enterprise domain
perceived as a type of complex systems -
an organizational system, a self-managed
system with hierarchical structure, goal-
driven activities, that transform the data and
knowledge and are directed to produce the
output of the system. Such understanding
of domain properties is in line with the 2nd
order-cybernetics viewpoint (Heylighen et
al. 2001).

Fig. No. 5 depicts the key elements of
the enterprise meta-model described in stud-
ies	by	Gudas	(2016;	2012a).	Our	approach	
works in with the condition that enterprise
management activity, in a real world, is a
self-managed system. The management
transaction (MT) defines causal depen-

93

dencies inside the enterprise management
activity, namely, a feedback loop between
management function (Fi) and enterprise
process (Pj). The management transaction
(MT) is a control view-based content of an
enterprise management activity on level 1
in	 Fig.	No.	 5a	 (Gudas	 2016).	Therefore,	
an internal model of MT is the elemen-
tary management cycle (EMC), which is
depicted on level 2 and must also be as a
self-managed system. The general internal
structure of EMC (Fig. No. 5a) is discussed
in	the	abovementioned	studies	(Gudas	2016;	
Gudas	2012a).

An example of the management transac-
tion (MTij) in Porter’s Value Chain Model
(VCM) is an interaction between primary
activity (manufacturing process Pj) and
support activity (management function Fi).
Fig. No. 5b depicts an example of EMC(i,j),
which, adopted for enterprise software en-
gineering	needs,	is	in	the	BPMN	notation.	
The elements of the EMC (i,j) contains the
process	(Pj),	the	goal	(G),	and	the	manage-
ment function (Fi). They, in turn, comprise
the goal-driven information transformation
steps (IN, DP, DM, and RE), the informa-

tion	flows	(Flow1,	..,	Flow5),	the	impact	of	
goal	(information	flow	S),	and	a	feedback	
loop with the process (Pj). So, an example
of any deep knowledge of the enterprise
domain are these two components – the
management transaction (MT) and the
Elementary Management Cycle (EMC) –
both considered as a self-managed system
(Gudas	2016).	

 ▫ Arguments for Assumption No. 2
The second assumption is that the soft-

ware	development	as	a	sequence	of	internal	
models mappings IM(1) à IM(2) à IM(3) à
IM(4) could be proven using the enterprise
architecture development methods. The en-
terprise architecture (EA) frameworks (e.g.,
DoDAF, MODAF, NAF) usually include
few modeling layers (so called views or
viewpoints) as follows: motivation/strategy
view (corresponds to IM1), operation view
(corresponds to IM2), system view and
service view (corresponds to IM3). The
enterprise architecture (EA) development
process is based on the mappings between
these EA views. Fig. No. 6 presents the
OMG	MDA	approach	alignment	with	the	
ArchiMate meta model (fragment).

Figure No. 5. The knowledge components of the enterprise domain:
a) The conceptual representation of a management transaction (MT) at level 1)

and an elementary management cycle (EMC) at level 2).

Management
Transaction (MT)

Enterprise
management goal

 Gw

Enterprise process
Pj

Enterprise
management

function Fi

Information
flow A

Information
flow V

Material
flow

Material
flow

OutputInput

LEVEL 1

Enterprise
management goal

(Gw)

Function 1
 (Step 1)

Function 2
(Step 2)

Function n
(Step n)

Function n-1
(Step n-1)

Enterprise Process
Pj(Gw)

Management
information A

Management
information C

Management
information M

Management
information N

Management
information V

Output
(Material flow)

Input
(Material flow)

Management function Fi(Gw)

LEVEL 2

94

Figure No. 6. The knowledge components of an enterprise domain:
b) Adopted for enterprise software engineering MT and EMC frameworks (BPMN notation).

En
te

rp
ris

e
Go

al
s

En
te

rp
ris

e
M

an
ag

em
en

t
Fu

nc
tio

ns

En
te

pr
ise

Pr

oc
es

se
s

Enterprise goal
(G)

 A:
State attributes

Management
function (F)

Process (P)

Impact S
 to F

Impact S
to P

V: Controls

 Input (I1) Output (O1)

Impact S
to A

Impact S
 to V

En

te
rp

ris
e

M
an

ag
em

en
t F

un
ct

io
ns

En
te

rp
ris

e
Pr

oc
es

se
s

En
te

rp
ris

e
Go

al
s

Process (P)

Impact
of goal (S)

Flow5:
V - controls

Step1: IN –
interpre-

tation

Step2: DP
– data

processing

Flow2

Step3: DM –
decision
making

Flow3

Impact of goal (S)
Step4: RE -
realization

Flow4

Impact of
goal (S)

Internal steps of
management
function (F)

Flow1:
A -State

attributes

Goal (G)

Input (I1)

Output (O1)

Impact of goal (S)

The ArchiMate framework is one of
the examples of the external modeling ap-
proach (ArchiMate 2016), because here,
the key concepts are modeled in layers
(e.g., business, application, technology,
strategy, and motivation), and cross-layer
transformations are based on the mappings
of concept to concept. The alignment of the
MDA	approach	(OMG)	and	ArchiMate	in	
Fig. No. 6 reveal some typical properties of
the external modeling:
•	 Considering IM1: Domain knowledge

model	is	not	specified	explicitly	in	the	
MDA approach. Assumably, the CIM
level includes the elicitation of domain
knowledge. However, a domain know-
ledge discovery is an important issue for
ensuring	 system	quality;	 so,	 it	 should	
be	specified	explicitly.	The	ArchiMate	
framework	includes	RW	domain	know-
ledge (IM1), whereas motivation and
strategy elements (e.g., goals, drivers,
requirements,	 capabilities)	 are	 repre-
senting the needs of stakeholder: the
motivation element Goal realized by the
strategy element Requirement, which
adjusts through the Capability element.
However, the mapping of IM1 to IM2

is carried out through only one concept
of Capability to the concept of Business
Service (or Business Process or Business
Function or Business Interaction).
IM2 corresponds to CIM in MDA, and

to	the	Business	layer	model	in	ArchiMate.	
Both	are	focused	on	the	business	require-
ments (business logic and rules). However,
properties	 of	CIM	are	 not	 predefined	 (or	
constrained) by the meta-model. Therefore,
each domain modeling method is appropri-
ate.	The	recommended	one	is	BPMN,	and	
now even DMN (since 2016). Meta-model
predefines	 IM2	 in	ArchiMate.	Although,	
it is a concept map, which based on the
experience	 (has	 no	 theoretical	 justifica-
tion). Considering IM2 in both cases (for
MDA and ArchiMate) it can be asserted
that a real world domain not perceived as a
complex system, i.e., IM2 is not intended
to capture the causal dependencies of the
domain. So, in both cases, IM2 can be seen
as a black-box model (an external modeling
paradigm).
•	 Considering IM3: Internal Model (IM3)

corresponds to PIM in MDA approach.
IM3 belongs to the application layer in
ArchiMate framework and meta-model

95

defines	 it.	 IM3	 is	 a	 kind	of	 a	 concept	
map, based on the experience (has no
theoretical	justification).	

•	 Considering transformation IM2 to IM3:
MDA	defines	 the	 transformation	CIM	
to	PIM	as	a	generalized	requirement	-	
the CIM constructs should be traceable
to the PIM, and PSM constructs that
implement them (and vice-versa). In
ArchiMate the transformation IM2 to
IM3	is	predefined	in	the	meta-model	by	
cross-layer associations of key concepts
(Fig. No. 7). In both cases, the mapping
of IM2 to IM3 is seen as a mapping
between concepts (entities, or objects).
So, the transformation IM2 to IM3 is
not	defined	here	as	the	mapping	between	
complex structures, when it includes
transference of systems regularities.

 ▫ Arguments for assumption 3
The third assumption is that the trans-

ferring of the essential features of the RW
domain on the lower layers of modeling is
proven by the comparison of IM1, IM2, and
IM3	internal	structures	(Fig.	No.	8).	

First of all, the relevance of the domain
knowledge discovery method to the type
of the domain is an issue. This issue is a
fundamental issue of the domain modeling,
which determines the relevance (validity) of
IM1	against	the	RW	domain:	are	the	causal	
dependencies captured in IM1 enough for
research	purposes	or	not?	From	the	inter-
nal modeling perspective, a theoretical
background	 (domain	 theory)	 is	 required	
for recognizing essential features of the
domain by domain analyst (presented as
IM1-Control	in	Fig.	No.	8).	

Figure No. 7. The OMG MDA approach alignment with the ArchiMate framework.

MDA:
CIM Layer

ArchiMate:
Motivation
and
Strategy Layers

ArchiMate:
Application Layer

Domain model

Active Structure
Elements

Stakeholder

ArchiMate:
Business Layer

MDA:
PIM Layer

IM1
(Real World

Domain Knowledge Model)

Motivation Elements

Capability Resource

Requirement

Course of Action

DriverGoal Assesment

Business Service

 Internal Behavior Elements

Process Function Business Object Business Actor Business RoleInteraction

Business Analyst

CIM elements

Architect / Designer

Business process model

PIM
elements

Outcome

Strategy Elements

Principle

Mapping: IM1 to IM2

Associated with

Tracing: IM2 to IM1

Application ServiceApplication
Function Application Process Application

Component IM3
(ArchiMate: System Architecture Model)

 (PIM - Platform Independent Model)

Internal Structure elements

IM2
(ArchiMate: Business Model)

(CIM - Computational independent model)

Tracing: IM3 to IM2
Transformation: IM2 to IM3

96

The second issue focuses on the internal
modeling	requirements	for	the	MDA	cross-
layers interactions. The internal modeling
paradigm	using	in	the	modified	MDA	(Fig.	
No.	 4)	 requires	maintaining	 the	 essential	
feature of the IMC system discussed above
(Fig. No. 1). Namely, the IMC system
consists of two components: Controller
(C), which forms a control solution, and
the Internal Model (IM), which is the inner
knowledge of the IMC and is correlated
with the content of a particular layer.

In the present case, the mapping of
captured	RW	knowledge	(IM1)	to	the	lower	
layer (IM2) is under control of IM2-Control
component. The mapping IM1 to IM2 is
performed by a business analyst or soft-
ware tool in a way when substantial causal
dependencies	(fixed	in	IM1)	transferred	to	

the lower layer model IM2. It is evident that
the output of the IM2-Control is IM2. The
content of IM2 depends on the input (IM1),
and on the internal knowledge model IM2*
of	the	IM2-Control	component,	required	to	
control	IM1	mapping	to	IM2.	We	notice	that	
a business analyst or software tool should
perform a transformation of IM2 to IM3.
The content of IM3 depends on the input
(IM2) and on the internal knowledge model
IM3* of the IM3-Control component, which
is	required	to	control	the	mapping	of	IM2	
to IM3.

The third issue: whether there are struc-
ture and content within IM2-Control and
whether IM3-Control is comprehensive
enough to handle the transformations of
IM1 to IM2 and IM2 to IM3. This issue
directly correlates with the relevance of

Fig. No. 8. The internal modeling paradigm is illustrated using a modified MDA schema.

CIM Layer

(Includes Motivation
and Strategy Layers of
ArchiMate)

(Application Layer
of ArchiMate)

IM1
 (r)

Domain theory

Domain analyst

Domain
Knowledge
Discovery Layer

(Business Layer of
ArchiMate)

PIM Layer

IM1 – Real World Domain Knowledge Model
(RW is perceived as a self-managed system)

Motivation and Strategy Elements

Capability Resource

 IM1-Control

Business Service*

 Internal Behavior Elements

Business
Object

Business
Actor

Business
Role

IM2 – Internal model of enterprise
(Enterprise is defined as a self-managed system)

(CIM - Computational independent model)

IM2-Control
(Business Analyst)

Instructions (u)

IM3-Control
(Architect / Designer)

IM2
 (r)

Specifications (u)

Application ServiceApplication Function Application Process Application Component

IM3 – Enterprise software system architecture model
(ESS is specified as an autonomic system)

 (PIM - Platform Independent Model)

Domain causality description

Internal Structure elements

Management functional dependencies

Business management transactions

Elementary Management Cycle
Process Management function

Autonomic Component

State of IM2
(y)

State of IM3
(y)

97

domain knowledge discovery method and
traceability (top-down and vice-versa) of
the essential features of the domain between
the layers. Furthermore, the internal model
control system includes two feedback loops
to ensure a self-management capability (see
Fig. No. 1). An external feedback cycle is
between the system (S) and IMC system,
and the second (internal) feedback cycle is
inside IMC between the Controller (C) and
the Internal Model (IM).

Consequently,	 the	 cross-layer	 trans-
formations (IM1 to IM2, IM2 to IM3, and
IM3 to IM4) in Fig. No. 4 are under the
control of the IM-Control components
(IM1-Control, IM2-Control, and IM3-
Control). The external feedback cycles are
between the relevant IM-Control and IM of
the lower level, i.e., between IM2-Control
and IM2, and IM3-Control and IM3. The
second (internal) feedback cycle is inside
the IM-Control blocks. An example of the
implementation of the internal model IM3*
of the IM3-Control system is a framework
of the autonomic computing component
presented in Fig. No. 10.

An analysis of the cross-layer depen-
dency between IM3 and IM4 (i.e. mapping
PIM	 to	PSM	 in	Fig.	No.	 8)	 is	 out	 of	 the	
scope of this article.

The assumption three about the transfer-
ring	of	the	essential	features	of	the	RW	do-
main on the lower layers of modeling proven
by	the	modified	MDA	schema	in	Fig.	No.	8.	
Here an enterprise domain is perceived as
a self-managed system in the context of
second-order	cybernetics	(Glanville	et.	Al.	
2002). Enterprise management activities
are	specified	using	management functional
dependency, management transaction (MT),
and elementary management cycle (EMC)
concepts	introduced	in	(Gudas,	2016),	(Gu-
das, 2012a). The principle of the Internal

Model Control (Fig. No. 1) is explored for
cross-layer	mapping	 control	 (Fig.	No.	8).	
The	cross-layer	mapping	is	defined	as	the	
transformation of the complex structures,
assuring the traceability of the causal depen-
dencies	(i.e.,	regularities	fixed	on	the	upper	
layer) between the layers, starting from IM1.
The	causality	of	RW	domain	is	captured	in	
IM1 and transferred and transformed for its
intended purpose on the lower layers of the
framework. For instance, the similarities of
the internal architecture of MT and EMC
frameworks	(IM2)	are	reflected	in	the	auto-
nomic computing conceptual model (IM3)
depicted in Fig. No. 10.

Examples	in	Fig.	No.	7	and	Fig.	No.	8	
highlight	the	qualitative	differences	of	the	
two modeling paradigms:
•	 In the case of external	modeling,	RW	

domain perceived as the needs of the
domain	 (stakeholder),	which	 specified	
as an empirical concept map (IM1).
However,	 in	 this	 way,	 RW	 domain	
knowledge becomes fragmented and
relies on the experience of the business
analyst, because the use of a set of the
key concepts (e.g., requirements, capa-
bilities)	is	not	sufficient	to	capture	RW	
causality (i.e., deep knowledge). The
cross-layer relationships are based on
the mapping concept to concept, but not
on the transference of systems regulari-
ties by mapping structure to structure.

•	 In	the	case	of	internal	modeling,	RW	do-
main is perceived as a complex system
on the domain-related theoretical basis;
in this way, a complex system captures
the essential (deep) knowledge of the
domain	 and	 specifies	 as	 IM1;	 then,	 it	
transmits through all layers due to the
IMC-based cross-layer transformations.
By	 setting	 up	 the	 internal	modeling	

paradigm	in	the	modified	MDA	scheme	for	

98

the	enterprise	domain	(Fig.	No.	8),	it	was	
established that:
•	 Fig. No. 6 presents the method of enter-

prise management knowledge discovery
and provides a view of what is captured
in IM1 – the essential content of man-
agement activities: enterprise goals,
management information, data, data/
knowledge transformations.

•	 The knowledge transfer between lay-
ers (a cross-layer mapping) is iterative,
includes	a	 feedback	flow	(y),	and	 that	
corresponds with the principle of the in-
ternal model control system (Fig. No. 1).

•	 On a CIM layer, an internal model IM(2)
is considered as a complex system (self-
managed, goal-driven). The conceptu-
alization of IM2 by using management
transaction (MT) and EMC frameworks
(Fig. No. 6) is relevant to capture the
essential features of the domain.

•	 On a PIM layer, an internal model IM(3)
is illustrated through the generalized
architecture of the intelligent agent (Fig.
No. 3) and the autonomic computing
component (Fig. No. 10).

collaborate, and act independently with a
degree of automatism.

Software agents allow delegation of
tasks	 to	 the	agents.	We	want	 to	delegate	
integration and interoperability tasks to
agents. For this purpose, the agent must
understand domain environment and have
an internal model of this environment.
There are multiple types of agents: Simple
reflex	agents,	model	“	based	reflex	agents,	
goal	“	based	agents,	utility	based	agents,	
and learning agents. Agents can also be
reactive and proactive. There are few types
of intelligent agents such as collaborative
agents, interface agents, mobile agents,
information/internet agents, reactive
agents,	hybrid	agents,	smart	agents	(Geor-
gakarakou	 et	 al.).	We	 are	 only	 focusing	
on the intelligent agents with the internal
model (IM) of the environment as follows:
Goal-based	 agents,	Utility-based	 agents,	
learning agents. These agents are usually
classified	to	be	hybrid	agents,	smart	agents,	
and believable agents.

The capabilities of the intelligent agents
(Fig.	No.	9)	are	classified	as	follows:

Fig. No. 9. The capabilities of the intelligent agent’s types.

The intelligent agents and autonomic
computing components are major tech-
nologies, used for the implementation of
the internal modeling paradigm.

4.3. Capabilities of the Intelligent
Agents
Autonomic computing components mostly
are implemented using agent technologies
(Kephart et al., 2003). Multiple autonomic
managers of the software systems can learn,

1. Monitors states of data processing in
applications;

2.	Reacts	to	the	specific	state	of	data	pro-
cessing if necessary;

3. Understands data structure in each con-
nected application (application environ-
ment);

4. Understands/perceives application pro-
cesses (when and which data to use);

5. Uses utility functions to check structure
changes proactively;

99

6.	Creativity:	determines	and	fixes	problems	
in different applications;

7. Learning ability: has internal simulation/
testing abilities, is able to optimize one’s
behavior;
The conceptual structure of the intelli-

gent agents meets the generalized structure
of the software component with the internal
model (Fig. No. 3). All types of the intel-
ligent agents include a domain model (en-
vironment model) as a set of rules needed
to follow under certain conditions. The
internal model of different intelligent agents
captures the various knowledge items of
the domain:
•	 Th	IM	of	the	model-based	reflex	agent	

includes a state of the world, a set of
actions, a set of condition-action rules;

•	 The IM of the goal-based agent includes
a state of the world, a set of actions,
goals, decision-making element;

•	 The IM of the utility-based agent inclu-
des a state of the world, utility function,
a set of actions, decision making ele-
ment;

•	 The IM of the learning agent includes a
state of the world, a learning sub-system,
a performance element.
The capabilities (1–7) of the intelligent

agents are corelated with the complexity of
the internal model (IM) of the agent type.
As a rule, the content of an IM of the in-
telligent agents is determined empirically;
based on the experience of stakeholders
(analysts, designers, and programmers), as
a rule, it does not explore the fundamental
theories of some particular domain type.
Only the theoretical knowledge of a par-
ticular domain type is explored, and the
resulting IM encapsulates causal dependen-
cies	and	could	be	classified	as	a	gray	box	
or a white box.

4.4. Autonomic Computing
Components
Autonomic computing systems are aimed
to overcome growing software manage-
ment complexity by introducing self-man-
agement capabilities (Kephart et al. 2003).
The autonomic computing approach is an
example of applying control theory con-
cepts in software applications. It is already
known that control theory-based approaches
can be useful in a dynamic environment for
the development of software to monitor and
manage the behavior of system elements
(Gaudin	et	al.	2011).	Autonomic	computing	
technologies	 exhibit	 four	 “self-manage-
ment”	characteristics	(Kephart	et	al.	2003).	
First,	self-configuration	(able	to	configure	
its parameters) (Peukert et al. 2012; Feinerer
2007). Second, self-optimization (ability
to reach optimal functioning). Third, self-
healing (ability to restore work after distur-
bances). Finally, self-protection (ability to
avoid disturbances/stay secure) (Heubscher
et	al.	2008;	Parashar	et	al.	2005).

The elements of the autonomic comput-
ing component are as follows: the Monitor
(M), Analyze (A), Plan (P), Execute (E) and
Knowledge model. The Knowledge Model
encapsulates knowledge of the situation
and environment: rules, constraints, poli-
cies, and facts (Kephart et al. 2003). The
content of the Knowledge model helps the
elements M, A, P and E to recognize states
and eventually respond to changes.

Fig. No. 10 depicts a version of the au-
tonomic manager specialized for enterprise
management; it is developed using the in-
ternal modeling paradigm and the enterprise
management frameworks discussed above.
This autonomic manager includes the
knowledge model KM, which is the result
of cross-layer transitions starting from the
internal model of enterprise domain (IM1)

100

(Fig. No. 6). So, by using our approach, we
obtain the following results: the autonomic
manager on the application layer (Fig.
No. 10) and the enterprise management
frameworks (MT and EMC, in Fig. No. 6)
on the business layer are similar conceptual
structures of the self-managed systems, but
on the different layers of modeling.

The ArchiMate model exchange format
(MEFF) was used for transforming IM
(business layer) to KM (application layer)
(The	Open	Group,	ArchiMate®	Model	
Exchange File Format 2015). Using MEFF,
the business model reduces to a set of rules
understandable for the autonomic manager.

Autonomic managers (AM) may form a
hierarchical structure: a lower level AM(i)
is controlled by upper-level AM(i-1) and
so on.

The architecture of the enterprise
management system with the autonomic
manager (AM) in Fig. No. 10 reveals that
conceptualizations in Fig. Nos. 6 and 10 are
in line with each other, and this is a valida-
tion of the third assumption. The conceptual
structure of the enterprise management
framework (elements of EMC) matches the
components of the autonomic manager con-
tains eight matching components. Interpre-
tation (IN) matches the component Moni-

Fig. No. 10. Enterprise Architecture with autonomic manager based
on the internal modeling paradigm.

Autonomic Manager AM(i)

Execute
(Ei)

Plan
(Pi)

Monitor
(Mi)

Analyse
(Ai)

Software component touchpoint

Data /Message (Sj)

Data / Message (Ni)

Data /Message (Vj)

Autonomic software component SC(j)

Sensors (j) Effectors (j)

Sensors (i)

Data / Message
(Li)Data /Message

(Mi)

Effectors (i)

Management Functional Dependency (MFD)
Business Management Transaction (MT)

(see Fig. 6)
(Capability)

Layer 1

Layer 2

Layer 3

ArchiMate Application
Layer: autonomic

components, software
agents,

Knowledge
(KMi)

(MDA CIM layer)

MDA PIM layer

(MDA PSM layer)

RW Knowledge
Discovery

layer

(ArchiMate Business
 Layer)

Real World Domain Knowledge Model (IM1)

Internal Model of Enterprise (IM2)

Internal Behavior Elements
Elementary Management Cycle (EMC) (see Fig. 6)

(Business Service)

Internal Structure Elements
(Business Objects, Business Actor, Business Role)

 Software layer

Layer 4
Autonomic software component SC(n)

...

(...)
(ArchiMate

Motivation&Strategy
 Layer)

Enterprise
management layer

 Autonomic
components layer

101

tor (M), Data Processing (DP) matches the
component Analyze (A), Decision Making
(DM) matches the component Plan (P), the
Realization of decision (RE) corresponds
to the component Execute (E), respectively.
The autonomic manager AMi on the layer
three focus on the control of the software
components SC(j) on layer 4 (i.e., it could
be the enterprise applications (e.g. CRM,
E-Commerce). A control loop for control
of software component SC(j) comprises
Monitor (Mi), Analyze (Ai), Plan (Pi), and
Execute (Ei) components and the data/
message	flows	Sj,	Li,	Ni,	Mi,	and	Vi.	The	
feedback	 (information	flows	Ki)	between	
knowledge component (KMi) and other
elements of the autonomic manager (AM(i))
ensures a self-management capabilities
(Fig. No. 10). The feedback information
flows	Ki,	from	components	M,	A,	P,	E	to	
KMi, contain information of the previous
task’s execution on event logs (start, stop
and error logs).

Enterprise management applications
controlled by the autonomic manager over
web services or direct data connections to
the database. Sensors in Fig. No. 10 are web
services or direct data access points that al-
low	data	extraction	(using	Get	operations).	
Effectors are web services or direct data
access points that allow data input (using
Set operations) (Fig. No. 10). An autonomic
manager	 retrieves	 data	 through	data	flow	
Vi	(Get	operation)	and	pushes	data	through	
data	flow	Si.	The	component	Monitor	(Mi)	
follows the content of domain knowledge
captured in the Knowledge component
(KMi). The business layer data and knowl-
edge items obtained through data/knowl-
edge	flows	(Vi,	Si).	The	result	of	monitor-
ing is a message Ji passed by component
Monitor (Mi) to component Analyse (Ai).
The autonomic manager-based architecture

of the interoperable enterprise applications
presented in the next section.

5. Approach to Application Intero-
perability using the Internal Model

5.1. The Problem of Applications
Interoperability

In this section, the issue of interoper-
ability of applications is discussed in
more detail. In the real world enterprise
scenario,	a	specific	software	system	(a	set	
of applications and databases, mainframes,
workstations, data) supports some business
processes (e.g., customer registering, manu-
facturing, selling, shipping). The applica-
tion	requires	a	feedback	loop,	determined	
for the mutual interaction scenario of some
business process (Fig. No. 11). An example
of the business activity scenario: a sort of
a manufacturing plant uses devices with
sensors to observe manufacturing processes,
product testing, and packing processes. The
software system of each manufacturing fa-
cility has the multiple interfaces to receive
data from the sensors. Our approach is
different from other interoperability meth-
ods, because, in this paper, we research a
dimension that slices through three distinct
interoperability levels (Technical, Seman-
tic/Data and Organization); these levels are
clearly	defined	in	the	European	Interoper-
ability Framework (EIF) and mentioned
in	multiple	other	articles	 (EIF	2004;	F.B.	
Vernadat 2007).

In a dynamic enterprise environment,
applications might be changed and adapted
following	the	business	requirements	chang-
es, so the business process model should
be	modified	 as	well.	Consider	 a	 case	 of	
business changes, where a new generation
device (collecting robot or some other new
device) is installed (Fig. No. 11). A new ap-

102

plication (depicted in Fig. No. 11 as a pair
(F(new), P(new)) has different interfaces
or slightly different data formats that have
not been registered in the plant database
before. The challenge is that the new device
can cause changes in the business process
flow,	and	efficiency	problems	can	appear.	
For instance, additional work will be re-
quired	to	integrate	with	the	legacy	software	
if a new device is not able to adapt itself
correctly. The manufacturing staff (users)
and programmers have to work together to
modify interfaces of the existing software
systems due to that new installation, ensur-
ing full interoperability among the new and
old software systems.

as	follows:	to	find	the	issue	–	to	understand	
the	issue	–	to	fix	the	issue.	

The integration of the new installations
and the existing software systems is the
issue. Fig. No. 12 presents the architecture
of the autonomic integration system. It is
developed using as a background the modi-
fied	MDA	(Fig.	No.	8),	the	knowledge	com-
ponents of enterprise domain (Fig. No. 6)
and autonomous computing components
(Kephart et al. 2003).

Fig. No. 11 presents the system with
the interoperability component. Looking to
the enterprise system from the perspective
of the internal modeling based MDD (the
modified	MDA	scheme	in	Fig.	No.	8),	we	

Figure No. 11. Interoperability in the enterprise system.

a) Legacy system (a lack of interoperability capability)

b) System with interoperability component

Application
layer

Business
layer

Application
layer

Business
layer

P1 P(new) P2 P2

F1 F(new) F2 F3

P1 P2 P2

F1

Integrated
F(new)

F2 F3

Direct
management

Indirect
management
(via autonomic
component)

Process flow

If an existing (legacy) software system is
not	flexible	enough	to	handle	with	changes	
(Fig. No. 11a – a lack of interoperability
capability),	additional	efforts	are	required	
for the software system integration when
the changes occurred. The legacy applica-
tions would not be able to communicate
without introducing a new device to all the
existing software systems of the enterprise.
A	 typical	 case	 of	 the	 required	 efforts	 to	
ensure the integrity of the software system
of any organization is the work put in to
restore business and software integration.
Restoring integration is an iterative process

found out that two-way communication
between the business layer and application
layer	is	required.	The	cross-layer	feedback	
loop ensures system integrity and is deter-
mined using knowledge models (IM2 and
IM3	in	Fig.	No.	8).	

The new application Integrated F(new)
is an autonomic component (application
layer in Fig. No. 11b), which is able for
self-integration with existing (legacy) ap-
plications due to the internal knowledge
(captured in KMi, see Fig. No. 10). In this
case, due to such functionality of the self-
integration of the Integrated F(new), there is

103

no need for changes in the existing business
processes	(Business	layer	in	Fig.	No.	11b).

5.2. State of the Art in Application
Interoperability Solutions
There are a lot of different types of the
enterprise application interactions in the
dynamic environment (e.g. Customer entry
to the application, order placement). To
maintain the application interoperability is
complicated if data structures or the web
service composition are not available.

Method to find the best solution for
designing the interoperability of enterprise
applications	is	described	in	(Galasso	et	al.	
2016). The important point is that based
on accurate and relevant business process
model the measurement of interoperability
performance.	Presented	in	(Galasso	et	al.,	
2016) methods are focused on the evalua-
tion of the complexity of interoperability
projects and choices of the best interop-
erability solution based on the business
process modeling.

In dealing with the applications in-
teroperability problem, Papazoglou et al.
(2008)	declare	a	need	for	service-oriented	
computing, known as SOC. However, they
do not mention problems of application
communication	difficulties	 (between	web	
services or schema alignment) (McCann et
al. 2005), record linkage, data fusion (Dong
et al. 2013), application communication
orchestration or choreography.

Dervice-oriented architecture (SOA) is
used	to	define	communication	of	the	web	
services (Krafzig et al. 2005; Michlmayr et
al. 2007). However, the web service itself
does not communicate with other systems
without medium application. Middleware
integration	 application	 defines	 how	 and	
when data migrate and perform migration
actions from one web service to another.

B.	Benatalah	et	al.	(Benatallah	et	al.	2005)	
analyzed	 the	 requirements	 of	 the	 special	
adapters to web services to integrate enter-
prise applications. However, the authors do
not mention how to solve interoperability
issues in a dynamic enterprise environment
when the application structure changes.

Neither Lankhorst (Lankhorst 2013)
nor	Open	Group	 (Georgakarakou	 et	 al.)	
provided a detailed description of the ap-
plication	collaboration.	In	the	Open	Group	
documentation, it seems that a collaboration
element can only be collaborating with the
components of the same application but not
with the elements of different applications.

In a common case, the applications
do not have direct access to use the inner
components of other applications and thus
are not able to ensure interoperability on
the component level (without external
impact).	When	 examining	 the	 SOA	API	
interface	specifications,	we	can	determine	
the interface data structures and their types,
but the data attributes matching can not
be	 identified.	 Furthermore,	 the	SOA	API	
interface	 specifications	not	 determine	 the	
sequence	of	actions	 (which	should	define	
the	flow	of	integration	with	each	applica-
tion). However, business process model
helps	 to	 discover	 such	 sequence.	 Since	
it is impossible to obtain an internal data
structure of other application, the alterna-
tive is to use the detailed (deep knowledge)
captured by the domain model. Only using
a deep knowledge would allow determining
the	integration	actions	and	the	sequence	of	
actions.

The	modified	MDA	(Fig.	No.	8)	based	
approach to the autonomic integration was
developed using the knowledge components
of enterprise domain (Fig. No. 6) and au-
tonomous computing components (Kephart
et al., 2003). This applications interoper-

104

ability solution based on the deep domain
knowledge model. Fig. No. 12 depicts the
architecture of the interoperable enterprise
applications. Considering the internal mod-
eling perspective applied at the each layer
of	modified	MDA	(Fig.	No.	8),	the	internal	
models (IM2, IM3, IM4) preserve the map-
pings of the essential dependencies of the
particular	RW	domain,	which	are	captured	
at the top layer (knowledge discovery layer)
and	fixed	as	IM1.

5.3. The Architecture of the Interope-
rable Enterprise Applications
The architecture of the interoperable enter-
prise applications presented in Fig. No. 12.
The key element of the solution is a middle-
ware called the autonomic interoperability
application. Autonomic interoperability
application acts as a medium between mul-
tiple	legacy	applications	Application	1,	…,	
Application n (Fig. No. 12).

The enterprise model IM2 (MDA CIM,
or	ArchiMate	business	layer	in	Fig.	No.	8)	

describes enterprise management activities
and enterprise environment. The most im-
portant part of the enterprise model IM2 is
the	business	activity	sequence	(workflow)	
of	 the	management	 transaction,	 specified	
in detail by an elementary management
cycle	 (Fig.	No.	 8).	 IM2	 is	 content	 of	 the	
knowledge element KM2 of the autonomic
interoperability	application.	Business	pro-
cess	flow	rules	might	also	be	derived	from	
WSDL	file	of	web	service	(Valatavicius	et	
al. 2014). Also, the data might duplicate in
the different applications of a single enter-
prise,	the	data	structures,	and	fields	naming	
can	be	heterogeneous	(that	require	changing	
format)	(Bernstein	et	al.	2011)).	

What	 is	more	 complicated,	 the	 appli-
cation data management process can be
different, and this is the reason why the
business process model is so important
for	retracing	the	sequence	of	data	manage-
ment events. Therefore, business modeling
language should describe what data and in
what order transferred between applica-

Fig. No. 12. The architecture of the interoperable enterprise applications.

Application n Application 1

Autonomic Interoperability Application
Sensors Effectors

Knowledge (KM3)

Interface n Interface 1

SensorsEffectorsSensorsEffectors

Data OUTData IN

Monitor() Execute()

Data OutData IN

Analyze() Plan()Data

Enterprise model analysis application
Knowledge (KM2)

Domain knowledge analysis application

Knowledge (KM1)

Autonomic components layer
(MDA PIM layer)

Data Data

105

tions. The collaboration element should
use application interfaces, not application
components. The modeling languages (e.g.,
UML,	BPMN,	ArchiMate)	discussed	in	the	
previous chapter have limited capabilities
for	the	specification	of	the	application	col-
laboration element.

The relation between the business pro-
cess model and application management
process is explained by creating an internal
model of relationships between them. The
internal model should remain as a ruleset
in the knowledge elements (KMi) of each
autonomic component. The architecture of
the interoperable enterprise applications
is depicted in Fig. No. 12, and it includes
the autonomic interoperability application
(AIA). AIA monitors other application
interfaces (two or more) for data records
changes using web service interfaces. AIA
transfers	the	modified	data	copies	to	other	
applications.	The	required	business	process	
flow	is	identified	by	AIA	using	the	knowl-
edge elements (KMi).

The autonomic computing element
stems	 from	 IBM	 autonomic	 computing	
methodology (Jackob et al. 2004). The

knowledge element must contain basic
rules and policies to have self-management
capabilities. To record the state of the inte-
grated applications in a dynamic business
environment, the autonomic component
has to monitor sensors placed in managed
applications.

The presented in Fig. No. 12 autonomic
application can collaborate with other ap-
plications related with the same domain or
can	require	an	additional	input	(knowledge).

6. The Prototype of the Software
Interoperability Validation

The prototype version for testing of enter-
prise application integration solutions is
under development (the screenshot in Fig.
No. 13). Currently, the prototype calculates
the number of the records in applications for
each integration method. If the difference is
zero	(=0)	the	specified	application	compo-
nent is interoperable, if the difference is not
zero (> 0), it is not interoperable.

However, this prototype does not cover
some issues of schema matching. For the
experimental verification of proposed

Fig. No. 13. Screenshot of the prototype for software interoperability validation.

106

solution of the autonomic interoperability
component with the internal model (Fig.
No. 12), we prepared a simple ArchiMate
business layer model that covers processes
of	the	fictional	organization	(Fig.	No.	14).	
This model covers only a very tiny part
of the processes (i.e., only the registration
of clients, customers or suppliers). The
business model depicted in Fig. No. 14 is
extracted using the model exchange format
of the Dublin Core schema version 1.1. Fig.
No.	 14	 presents	 specifications	 extracted	
from this document as part of knowledge
content	 required	 for	 the	 autonomic	 com-
puting element KM3. KM3 stores the real-
world knowledge (Fig. No. 14) in a Model
Exchange File Format (MEFF).

On an experimental basis, we can say
that:

•	 By	using	native	code	integration	solu-
tions (i.e., c# interoperability solution),
the	complex	logic	required	for	interope-
rability application middleware can be
achieved, but all manageability efforts
belong to the programmer. Integration
specialist or interoperability adminis-
trator should manually implement every
new adaptation to the environment.

•	 The development of the interoperabi-
lity solution is easier with enterprise
application integration (EAI) due to a
graphical designer. Here, the scheme
of all application components is visu-
alized and can be mapped easily. The
manageability level is higher than using
native code.
In Fig. No. 15a, we present the chore-

ography of one-way interoperability of two

Fig. No. 14. Business architecture layer covering registration of clients and
its conversion to the MEFF format.

107

different software components: the applica-
tion’s	“SuiteCRM”	component	“Contacts”	
is	 integrated	with	 the	 “Prestashop”	 com-
ponent	“Customer.”	In	Fig.	No.	16b,	there	
is	a	specification	of	the	Map	element	that	
describes	the	mapping	of	attributes	(fields)	
of two different components in the various
applications.	The	more	fields	corresponding	
to one of the other, the better the chances
that the components are interoperable. In
other words, these components are repre-
sentations of the same entity of the real
world. Choreography (Fig. No. 15a) is
fully dependent on the business architecture
(Fig.	No.	14)	and	its	elements	“Migrate	to	
CRM,”	 “Migrate	 to	E-Shop”	dictates	 the	
execution order of components described
in Fig. No. 14.

By	 the	 links	 between	 the	 component	
fields	depicted	 in	Fig.	No.	15b,	 it	 can	be	
concluded	that	the	“Suite	CRM”	component	
“Contacts”	 is	 semantically	 interoperable	
with	the	“Prestashop”	component	“Custom-
ers.”	In	our	prototype,	validation	indicates	
when the difference of record count is zero
(=0).	 For	 instance,	with	 a	 new	 record	 in	

Contacts (CRM) created a new record for
the same entity should appear in Customers
(E-Shop), and the difference of record count
is	 zero	 (=0)	 showing	 the	 interoperability	
succeeded.

Our research is still in progress, and we
need to continue working on the autonomic
interoperability component usage in the
dynamic business environment.

Conclusions
The	scientific	contribution	of	our	approach	
is a new viewpoint toward the interoperabil-
ity of applications. Our research suggests
that to achieve higher levels of autonomy,
every smart system should encapsulate a
deep	 knowledge	 of	 a	 target	 domain.	By	
integrating the internal modeling paradigm
with MDA approach and using this method
to the development of interoperability solu-
tions, we seek to create more autonomous
software systems in the enterprise environ-
ment. The review of the modeling method-
ologies reveals the relationships between
the business domain modeling paradigms,

Fig. No. 15. Choreography (a) and schema matching (b) in “Talend Open Studio
for Data Integration” (EAI).

108

enterprise architecture modeling, software
architecture modeling.

Our research shows that autonomic ap-
plication interoperability can be achieved
using	 IBM’s	 autonomic	 computing	 ap-
proach together with a deep knowledge
of the real world domain (i.e., the inter-
nal model), but the challenge is in the
understanding how these models can be
integrated together. Moreover, our research
reveals the main perceived causality of the
target domain at the enterprise architecture
modeling and current implementation of
applications in business. From our research,
it is clear that the software engineering
target domain is an enterprise – a complex
organizational	system.	Other	findings	state	
that functional management dependencies
of the management activities are the es-
sential knowledge in the business domain
required	for	business	software	engineering.	
In practice, no model of enterprise architec-
ture and business models are used before
designing and developing interoperability
between multiple applications. Our solution
suggests that the models be created using a
modified	MDA	approach;	enterprise	archi-
tecture and business process models can
be used to reach higher levels of autonomy
of interoperable application solutions. The
constructed theoretical background includes
internal modeling paradigm definitions
from second order cybernetics and auto-
nomic computing approach, and it allows
model autonomous integration as well as
interoperability solutions. The relevance of
the domain knowledge discovery method is
currently the main roadblock to continuing
our research and by itself is a fundamental
issue of the domain modeling, which deter-
mines the relevance (validity) of IM against
the	RW	domain.	A	theoretical	background	
(domain	 theory)	 requires	 for	 recognizing	
the essential features of the domain type.

An analysis of the role of the internal
model (IM) in control systems allows for
concluding that the adaptation of the inter-
nal model (IM) in the context of software
systems development is a relevant topic for
enhancing intelligent technologies. The dis-
crepancy of domain complexity and mod-
eling capabilities causes problems of the
enterprise applications development, inte-
gration, and adjustment to the environment
changes.	The	reason	for	the	deficiency	is	the	
modeling methodology, because enterprise
domain is modeling languages is based
on the external modeling paradigm. Such
models are not focused on the modeling
of the business dynamic (i.e., not focused
on the domain causal dependencies), and
therefore	currently	are	inadequate	to	support	
the development of the intelligent enterprise
software (e.g., autonomous applications).
The prerogative is using the internal model-
ing paradigm.

Our paper contributes to the theory of
application interoperability by proposing
an interdimension approach of multiple
integration levels (organizational, data/
semantical, technical) mentioned in the Eu-
ropean Interoperability Framework (EIF).

The internal modeling paradigm con-
solidation with the model, which is the
driven	architecture	approach	(OMG	MDA),	
is described and illustrated. The peculiar-
ity	of	the	modified	MDA	is	a	focus	on	the	
cross-layer transferring of domain causal-
ity. The internal modeling concentrate on
the discovering of deep knowledge of the
problem domain, i.e., the internal modeling
is aimed to reveal causal dependencies of
the problem domain. The adapting of the
internal modeling approach for enterprise
domain modeling and intelligent software
system development looks promising. The
proposed modified MDA framework is

109

based on the three assumptions as follows.
First, the knowledge-based enterprise
software development methods should
be focused on the modeling of the causal
dependencies of the domain. The second
assumption of the software system develop-
ment	definition	as	the	cross-layer	mapping	
(e.g., motivation, business, application and
technology layers) of the internal models
confirmed	by	the	layered	structure	of	the	en-
terprise architecture frameworks. The third
assumption for the transference of essential
features of the real world domain across
the layers is a fundamental condition; it is
shown by the similarity of the knowledge
model CIM layer (MDA) and PIM level
knowledge models. The capabilities of the
intelligent software systems (applications)
strongly depend on the real world domain
causality discovering on the top layer and
the	cross-layer	transferring	of	the	identified	
causal dependencies. The cross-layer rela-
tionships	in	OMG	MDA	is	a	mild	statement;	
it is characterized as the mapping of models
(CIM to PIM, PIM to PSM). The cross-layer
transferring of the deep knowledge in the
context of the internal modeling paradigm
(as well as the good regulator theorem)
requires	stricter	definition.	

In the case of external modeling, a real
world domain is perceived in terms of cer-
tain stakeholder needs, which are revealed
and	specified	as	a	concept	map	(IM1).	In	
this way, real world domain knowledge is
fragmented, only a few key concepts (e.g.,
the	 requirements	and	capabilities)	are	 the	
background for the next stage of develop-
ment.	We	discovered	that	the	contents	of	all	
other layers depend on the main concepts
of the upper layer, i.e., that they depend
more on the experience of an analyst and
the selected modeling method. So, by con-
sidering the internal modeling perspective,

each	layer	of	the	modified	MDA	(Fig.	No.	
8)	contains	the	transformed	necessary	de-
pendencies of the domain (IM2, IM3 and
IM4, respectively), which are captured and
fixed	as	 IM1	at	 the	 top	 layer	 (knowledge	
discovery layer).

We	were	 able	 to	 find	 similarities	 be-
tweem the internal model of enterprise
domain (IM2), enterprise architecture
model (IM3), and the autonomic computing
component architecture. The similarities
are namely the general internal structure
(internal models) of these different types
of systems; in particular, the similarities of
the internal transactions (feedback loops),
including the information and knowledge,
flows	in	the	feedback	loops.

This internal modeling paradigm is con-
solidated with the model that is driven by
the software development approach and is
illustrated by a case study of the interoper-
ability problems, using the autonomic com-
puting components approach. The knowl-
edge element of the autonomic component
contains a complex model of the dynamic
environment and controls the behavior
of integration processes. This autonomic
interoperability component is focused on
evaluating the state of the other applications
and ensure the integration of applications in
a dynamic business environment.

The architecture of the interoperable
enterprise applications with the autonomic
integration component is presented and
demonstrated by the prototype. However,
further work is needed to make the compari-
son to existing interoperability solutions.
The presented approach is different from
other interoperability methods, because in
this paper, we research a dimension that
slices through three distinct interoperability
levels (Technical, Semantic/Data, and Or-
ganiZation).	The	assumption	is	that	nothing	

110

can have a properly designed interoper-
ability of enterprise applications if it has
no knowledge of domain causality, which
should be transferred across the modeling
layers from the business process modeling
to these enterprise applications develop-
ment. In most rival articles on interoper-
ability, there is a lack of analysis of the
mutual relations of application and business
processes. Therefore, this approach is aimed
to get more insights into the autonomic
interoperability subject, which would be
based on the deep knowledge of the domain.

The experimental verification of the
proposed method was made for an E-Shop

environment using three software systems:
Webshops	 (Prestashop	 and	Oscommerce)	
and CRM (SuiteCRM). The ongoing experi-
ment	confirms	that	application	integration	
and interoperability solutions are not an
easy task, even in a static environment.
There is still a lot of work to be done to
gather evidence that autonomic interoper-
ability application with the internal enter-
prise domain model is a reliable solution.
With	 the	 initial	 prototype	 created	 for	 the	
validation of interoperability of applica-
tions, we observed that deep knowledge
(internal model) is essential for effective
interoperability.

REFERENCES

ABDELZAHER,	Tarek,	et	al.	(2008).	Introduction	
to control theory and its application to computing
systems. In: Performance Modeling and Engineering.
Springer	US,	p.	185–215.

ArchiMate® 3.0 Specification [interactive], The
Open	Group,	 2016.	Document	Number:	C162	 [re-
viewed 2017 y. June 15 d.]. Internet access: <http://
pubs.opengroup.org/architecture/archimate3-doc/>.
ISBN:	1-937218-74-4.

ASHBY,	W.	Ross	(2017).	An introduction to cy-
bernetics. S. l.: London Chapman & Hall Ltd, 1956
[reviewed 2017 y. June 9 d.]. Internet access: <http://
dspace.utalca.cl/bitstream/1950/6344/2/IntroCyb.
pdf>.

BARTON,	 Rick	 (2013).	Talend Open Studio
Cookbook.	Packt	Publishing	Ltd.	ISBN:1782167277.

BENATALLAH,	Boualem	et	al.	(2005).	Develop-
ing adapters for web services integration. In Interna-
tional Conference on Advanced Information Systems
Engineering.	Springer	Berlin	Heidelberg,	p.	415–429.	

BERNSTEIN,	Philip	A.,	 et	 al.	 (2011).	Generic	
schema matching, ten years later. In: Proceedings of
the VLDB Endowment, 4(11) p. 695–701.

BRACHE,	Alan	 P.	 (2002).	How organizations
work: Taking a holistic approach to enterprise health.
John	Wiley	&	Sons.	

CONANT,	Roger	C.;	ASHBY,	W.	(1970).	Ross.	
Every good regulator of a system must be a model
of that system. In: International journal of systems
science,	1	(2),	p.	89–97.

CZARNECKI,	 Krzysztof;	 HELSEN	 Simon	
(2003).	Classification	 of	model	 transformation	 ap-
proaches. In: Proceedings of the 2nd OOPSLA Work-
shop on Generative Techniques in the Context of the
Model Driven Architecture, 45(3).

DIETZ,	 Jan	LG.	 (2006).	The	 deep	 structure	 of	
business processes. Communications of the ACM,
49(5),	p.	58–64.	

DONG,	Xin	Luna;	NAUMANN	Felix	 (2009).	
Data	fusion:	resolving	data	conflicts	for	integration.	
In: Proceedings of the VLDB Endowment, 2(2),
p. 1654–1655.

DONG,	Xin	Luna;	SRIVASTAVA,	Divesh	(2013).	
Big data integration. In: Data Engineering (ICDE),
IEEE	29th	International	Conference,	p.	1245–1248.	

European interoperability framework for pan-
european egovernment services. European Com-
munities, 2004 [reviewed 2017 y. June 3 d.]. Internet
access: <http://ec.europa.eu/idabc/servlets/Docd552.
pdf>.	ISBN	92-894-8389-X.

EL-HALWAGI,	Mahmoud	M.	 (2016).	Process
integration.	Academic	Press,	7.	ISBN	0-12-370532-0.

FAYOL, Henri (2016). General and industrial
management.	Ravenio	Books.	

FEINERER, Ingo (2007). A formal treatment of
UML	class	diagrams	as	an	efficient	method	for	con-
figuration	management.	

FOWLER,	Martin.	UML distilled: a brief guide
to the standard object modeling language. Addison-
Wesley	Professional,	2004.	

111

FRANCIS,	Bruce	A.;	WONHAM,	W.	Murray	
(1976). The internal model principle of control theory.
Automatica, 12(5), p. 457–465.

	GALASSO,	François,	et	al.	(2016).	A	method	to	
select a successful interoperability solution through
a simulation approach. Journal of Intelligent Manu-
facturing, 27(1), p. 217–229.

GAUDIN,	Benoit,	et	al.	(2011).	Nixon	A	Control	
Theory-Based	Approach	 for	 Self-Healing	 of	Un-
handled Runtime Exceptions. In: Proceeding of the
8th ACM international conference on Autonomic
computing, ACM, p. 217–220.

GEORGAKARAKOU,	Chrysanthi	E.;	ECONO-
MIDES, Anastasios A. (2003). Software Agent
Technology:	 an	Οverview	Application	 to	Virtual	
Enterprises. In: Agent and Web Service Technolo-
gies in Virtual Enterprises, N. Protogeros (ed.). Idea
Group	Publ.

GEORGAKOPOULOS,	 Diimitrios;	 HORN-
ICK, Mark; SHETH, Amit (1995). An Overview of
Workflow	Management:	From	Process	Modeling	to	
Workflow	Automation	Infrastructure.	Distributed and
Parallel Databases, 3(2), p. 119–153.

GLANVILLE,	Ranulph	 (2002).	 Second	 order	
cybernetics. In: Systems Science and Cybernetics,
p.	59–85.

GROSSMANN,	 Georg;	 SCHREFL	Michael;	
STUMPTNER, Markus (2007). Exploiting semantics
of inter-process dependencies to instantiate predefined
integration patterns. Australian Computer Society,
p. 155–156.

GUDAS,	 Saulius	 (2016).	 Information	Systems	
Engineering	and	Knowledge-Based	Enterprise	Mod-
elling: Towards Foundations of Theory. In: Springer
Proceedings in Business and Economics,	p.	481–497.	
ISBN	978-3-319-33865-1.

GUDAS,	Saulius;	LOPATA,	Audrius	(2016). To-
wards internal modelling of the information systems
application domain. Informatica, 27(1), p. 1–29. ISSN
0868-4952.

GUDAS,	 Saulius;	 LOPATA,	Audrius	 (2015).	
Meta-model based development of use case model
for a business function. Information Technology and
Control, 36 (3).

GUDAS,	 Saulius	 (2012).	Foundations of the
information systems’ engineering theory. Vilnius
University	Press,	p.	384.

GUDAS,	Saulius	(2012).	Knowledge-Based	En-
terprise Framework: A Management Control View. In:
New Research on Knowledge Management Models
and Methods. InTech, 2012.

HALEVY, Alon; RAJARAMAN, Anand; OR-
DILLE, Joann (2006). Data integration: the teenage
years. In: Proceedings of the 32nd international
conference on Very large data bases. VLDB Endow-
ment, p. 9–16.

HEYLIGHEN,	Francis;	 JOSLYN,	Cliff	 (2001).	
Cybernetics, and Second-Order Cybernetics. In:
Encyclopedia of Physical science & Technology, 4,
p. 155–170.

HOHPE,	Gregor;	WOOLF,	Bobby	 (2002).	En-
terprise integration patterns. In: 9th Conference on
Pattern Language of Programs, p. 1–9.

HUEBSCHER,	Markus	C.;	MCCANN,	Julie	A.	
(2008).	A	survey	of	autonomic	computing-degrees,	
models, and applications. ACM Computing Surveys
(CSUR), 40(3), p. 7.

JACOB,	Bart,	 et	 al.	 (2004).	A	 practical	 guide	
to	 the	 IBM	autonomic	 computing	 toolkit.	 In: IBM
Redbooks, 4, p. 10.

KARDOŠ,	Martin;	DROZDOVÁ,	Matilda	(2010).	
Analytical method of CIM to PIM transformation in
Model Driven Architecture (MDA). Journal of Infor-
mation and Organizational Sciences,	34(1),	p.	89–99.	

KEPHART, Jeffrey O.; CHESS, David M. (2003).
The vision of autonomic computing. In: Computer,
36(1), p. 41–50.

KUMAR, Shrawan (2012). Kac-Moody groups,
their flag varieties, and representation theory.
Springer	Science	&	Business	Media.	

KUTSCHE, Ralf-Detlef; MILANOVIC Nikola,
eds.	(2008).	Model-Based	Software	and	Data	Integra-
tion:	First	International	Workshop.	In:	Proceedings,
vol.	8.	Springer	Science	&	Business	Media.	MBSDI.	

KRAFZIG,	Dirk;	BANKE	Karl;	SLAMA,	Dirk	
(2005).. Enterprise SOA: service-oriented architecture
best practices. Prentice Hall Professional.

KROGSTIE,	John	(2005).	EEML2005:	extended	
enterprise modeling language. Norvegian University
of Science and Technology.

LABROU,	Y.	Peng1,	et	al.	(1998).	A multi-agent
system for enterprise integration.

LANKHORST, Marc (2013). Communication of
Enterprise Architectures. In: Enterprise Architecture
at Work, p. 61–74.

LI,	Li;	WU,	Baolin;	YANG,	Yun	(2005).	Agent-
based ontology integration for ontology-based ap-
plications. In: Proceedings of the 2005 Australasian
Ontology Workshop,	 vol.	 58.	Australian	Computer	
Society, Inc., p. 53–59.

MAREELS,	 Iven;	 POLDERMAN,	 Jan	Willem	
(2012). Adaptive systems: an introduction. Springer
Science	&	Business	Media.	ISBN	978-1-4612-6414-9.

112

MCCANN, Robert, et al. (2005). Mapping main-
tenance for data integration systems. In: Proceedings
of the 31st international conference on Very large data
bases.	VLDB	Endowment,	p.	1018–1029.	

MEDINA-MORA, Raul, et al. (1992). The action
workflow	approach	to	workflow	management	technol-
ogy. In: Proceedings of the 1992 ACM conference on
Computer-supported cooperative work. ACM.

MICHLMAYR, Anton, et al. (2007). Towards
recovering the broken SOA triangle: a software
engineering perspective. In: 2nd international work-
shop on Service oriented software engineering: in
conjunction with the 6th ESEC/FSE joint meeting.
ACM,	p.	22–28.	

MOEN, Ronald; NORMAN Clifford (2006).
Evolution of the PDCA cycle.

OSIS, Janis (2004). Software development with
topological model in the framework of MDA. CAiSE
Workshops, 1, p. 211–220.

OVEREINDER,	Benno	 J.;	VERKAIK,	 P.	D.;	
BRAZIER,	Frances	MT	(2008).	Web	service	access	
management for integration with agent systems. In:
Proceedings of the 2008 ACM symposium on Applied
computing.	ACM,	p.	1854–1860.	

PAPAZOGLOU,	Michael	 P.,	 et	 al.	 (2008).	
Service-oriented computing: a research roadmap.
International Journal of Cooperative Information
Systems,17(2), p. 223–255.

PARASHAR, Manish; HARIRI Salim (2005). Au-
tonomic computing: An overview. In: Unconventional
Programming Paradigms, p. 97–97.

PAVLIN,	Gregor;	KAMERMANS,	Michiel;	SCA-
FES, Mihnea (2010). Dynamic process integration
framework:	Toward	efficient	information	processing	
in complex distributed systems. Informatica, 34(4).

PEUKERT,	Eric;	EBERIUS	Julian;	RAHM	Erhard	
(2012).	A	self-configuring	schema	matching	system.	
In: IEEE 28th International Conference on Data
Engineering. IEEE, p. 306–317.

PORTER,	Michael	E.;	MILLAR	Victor	E.	(1985).	
How information gives you a competitive advantage.

RAHM,	Erhard;	BERNSTEIN,	Philip	A.	(2001).	A	
survey of approaches to automatic schema matching.
The VLDB Journal, p. 334–350.

SENDALL,	 Shane;	 KOZACZYNSKI	Wojtek	
(2003). Model transformation: The heart and soul of
model-driven software development. IEEE software,
20(5), p. 42–45.

SHVAIKO,	 Pavel;	 EUZENAT	 Jérôme	 (2013).	
Ontology matching: state of the art and future chal-
lenges. In: IEEE Transactions on knowledge and data
engineering,	25(1),	p.	158–176.	

SILVERSTON,	Len;	INMON,	William	H.;	GRA-
ZIANO	Kent	(1997).	The data model resource book:
a library of logical data models and data warehouse
designs.	John	Wiley	&	Sons,	Inc.	ISBN:0471153672.

 TIN, Chung; POON, Chi-Sang (2005). Internal
models in sensorimotor integration: perspectives from
adaptive control theory. Journal of Neural Engineer-
ing, 2(3), S147.

TROTTA,	Gian	(2003).	Dancing Around EAI’Bear
Traps’.	Business	Process	Management	(BPM)	Best	
Practices.

VALATAVICIUS, Andrius; DILIJONAS, Darius
(2014).	Dynamic	B2B	process	 integration.	In:	Pro-
ceedings of “Informacinės Technologijos”, p. 34–39.

VALATVICIUS,	Andrius;	 GUDAS,	 Saulius	
(2015). Enterprise Software System Integration Us-
ing Autonomic Computing.	CEUR-WS.	 org,	 1420,	
p. 156–163.

VAN	DEN	BOSCH,	Marcel	APM,	et	al.	(2010).	
A selection-method for Enterprise Application Inte-
gration solutions. In: International Conference on
Business Informatics Research,	p.	176–187.

VERNADAT,	François	 (2002).	UEML:	 towards	
a	 unified	 enterprise	modelling	 language.	 Interna-
tional Journal of Production Research, 40(17),
p. 4309–4321.

VERNADAT,	François	B.	 (2007).	 Interoperable	
enterprise systems: Principles, concepts, and methods.
In: Annual Reviews in Control, 31(1), p. 137–145.

WINOGRAD,	Terry;	FLORES	Fernando	(1986).	
Understanding computers and cognition: A new
foundation for design.	Intellect	Books.	

WHITE,	 Stephen	A.,	 et	 al.	 (2011).	BPMN 2.0
handbook second edition: methods, concepts, case
studies and standards in business process modeling
notation. Future strategies, Inc.

WINTER,	Kirsten;	SANTEN	Thomas;	HEISEL	
Maritta	 (1998).	An	 agenda	 for	 specifying	 software	
components with complex data models. In: Computer
Safety, Reliability and Security, p. 16–31.

ZACHMAN,	John	A.	(1987).	A	framework	for	in-
formation systems architecture. IBM Systems Journal,
26(3), p. 276–292.

ZINNIKUS,	 Ingo;	HAHN	Christian;	FISCHER	
Klaus	(2008).	A	model-driven,	agent-based	approach	
for the integration of services into a collaborative
business process. In: Proceedings of the 7th interna-
tional joint conference on Autonomous agents and
multiagent systems, vol. 1. International Foundation
for Autonomous Agents and Multiagent Systems,
p.	241–248.

113

APIE TAIKOMŲJŲ PROGRAMŲ SĄVEIKUMO METODOLOGIJĄ, GRINDŽIAMĄ
GILUMINĖMIS ŽINIOMIS

Andrius Valatavičius, Saulius Gudas
S a n t r a u k a

Įmonių	 taikomųjų	 programų	 sąveika	 dinamiškoje	
aplinkoje	 yra	 aktuali	 problema.	 Būtina	 ieškoti	
naujų	metodologijų	ir	sprendimų.	Siūlomo	metodo	
metodologinis pagrindas yra vidinio modeliavi-
mo	 paradigma,	 kuri	 integruota	 su	MDA	 (OMG)	
metodu.	Modifikuota	MDA	 schema	 apima	 naują	
modeliavimo	 sluoksnį,	 skirtą	 žinioms	 apie	 realy-
bės	 domeno	 savybes	 aprašyti,	 naudojami	 veiklos	
vidinio	modeliavimo	karkasai,	grindžiami	valdymo	
transakcijos	 konceptu.	Modifikuota	MDA	 schema	
leidžia	apibrėžti	organizacijos	veiklos	srities	realybės	
priežastinius	ryšius	ir	juos	perduoti	į	skirtingus	MDA	
sluoksnių	modelius.	Tyrimas	remiasi	prielaida,	kad	
organizacijų	veiklos	sritis	yra	tikslo	siekianti	ir	save	
valdanti sistema. Valdymo transakcija yra esminis
veiklos valdymo vidinio modeliavimo konceptas,
nes	atskleidžia	kiekvienos	tikslo	siekiančios	veiklos	

vidines informacijos transformacijas (tai giliosios
žinios	 apie	 save	 valdančias	 veiklas).	 Panaudoti	
veiklos	vidinio	modeliavimo	karkasai	leidžia	atsekti	
realybės	domeno	–	organizacijos	veiklos	–	priežas-
tines	priklausomybes	per	visus	programinės	įrangos	
kūrimo	MDA	 sluoksnius	 ir	 taip	 nustatyti	 domeno	
priežastingumo	 įtaką	 programos	 vientisumui	 ir	
sąveikai.	Šis	metodas	 jungia	veiklos	modeliavimo	
metodus ir reguliavimo teorijos principus, veiklos
architektūros	modeliavimo	karkasus	ir	autonominio	
skaičiavimo	koncepciją.	Veiklos	architektūros	mode-
liavimo	kalba	ArchiMate	yra	vartojama	priežastinių	
ryšių	perdavimui	tarp	modelių,	kurie	yra	skirtinguose	
MDA sluoksniuose, iliustruoti. Aprašyta šiuo metodu
sukurta	taikomųjų	programų	sąveikumą	užtikrinanti	
programų	 sistemos	 architektūra	 su	 autonominiu	
integravimo komponentu.

2017 m. rugpjūčio 8 d.

