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Introduction 

Euclidean distance matrices (EDM) have been receiving increased attention in recently active fields of 
research. In this paper, non-singularity of EDM, from the point of application to scattered data extrapolation is 
explored.

Let us consider the data set of K d-dimensional vectors: 

X = x1, x2,.., xK( ) , (1)

xi ∈ℜd , 1≤ i ≤ K . Assume the values of some response function, obtained at these points by physical 
measurements or computer simulation, are given:

Y = y1, y2,..., yK( )T  (2)

Denote by A = xi − x j( )
δ⎡

⎣⎢
⎤
⎦⎥ i, j=1

K

the K × K matrix of fractional degrees of square Euclidean distances 

among pairs of vectors of the set X, called the fractional Euclidean distances matrix (FEDM), where 0 ≤ δ ≤ 1,  

|xi – xj| = (xi – xj)
T · (xi – xj) 

, and E = (1,1,...,1)T is the vector with K components equal to 1. The important case is 

of usual Euclidean distances, when δ = 1
2

.

Let us define the linear extrapolator y :ℜd →ℜ  by the following way:

y(x) = YT · u(x), (3)

where weight functions u :ℜd →ℜK  satisfy the following properties:

1) ET · u(x) = 1, 
2) ui(x) = 1, if x = xi, 1 ≤ i ≤ K.

The well-known approach for extrapolation is given by Shepard method, [6]):

y(x) =
Y T ⋅w(x)
ET ⋅w(x)

, if xi − x ≠ 0 ∀i

yi , if xi − x = 0,

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (4)

where the weights are chosen by the following way:
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w(x) = 1
x1 − x

δ ,
1

x2 − x
δ ,...,

1
xK − x

δ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟.

  
(5)

It is easy to see that Shepard extrapolator satisfies the definition of the linear extrapolator.  
Modeling the response function by random Gaussian field, the following extrapolator has been derived, 

[5]):

y(x) =Y T ⋅A−1 ⋅ τ (x)−E ⋅ E
T ⋅A−1 ⋅τ (x)−1
ET ⋅A−1 ⋅E

⎛

⎝
⎜

⎞

⎠
⎟ , (6)

This formula is obtained as the conditional expectation of the random Gaussian field, to which the 
conditional variance is relating: 

s2 (x) = d 2 ⋅ τ (x)T ⋅A−1 ⋅τ (x)−
ET ⋅A−1 ⋅τ (x)−1( )

2

ET ⋅A−1 ⋅E

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,  (7)

d 2 = 1
K
⋅ Y T ⋅A−1 ⋅Y −

Y T ⋅A−1 ⋅E( )
2

ET ⋅A−1 ⋅E

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,  (8)

τ (x) = x1 − x
δ , x2 − x

δ ,..., xK − x
δ( ) . Since the quality of both extrapolators depends on smoothing parameter 

δ it is of the interest to consider extrapolation models that differ from classical cases δ = 1
2

 or δ = 1. The proper-

ties of extrapolator considered depend on the properties of matrix A, which are investigated in the next section.

1. Fractional Euclidean distance matrices

Properties of the extrapolator defined by (6), (7), (8) have not been studied yet. At first, let us study the 
properties of the matrices with arbitrary degrees 0 ≤ δ < 1 of square Euclidean distances in more detail. Denote  
K × K unit matrix by I, the K - dimensional vector of ones by E. Let us introduce the kernel matrix, [1], [4], [7]): 

F = − 1
2
⋅ I −E ⋅ sT( ) ⋅A ⋅ I − s ⋅ET( ) ,  (9) 

where s ∈ℜK , sT ⋅E =1 . 

Since the kernel matrices, when s = E
K

 and s = (0,0,...,1) are studied most often, it is of the interest to study 

their properties in general case of s. As one can see below, the main property of matrices with arbitrary fractional 
degrees 0 ≤ δ < 1 of square Euclidean distances, is that the kernel matrix is positive semi-definite of rank K – 1  
if no points coincide in the set (1), whereas the rank of square Euclidean distance matrix can be less than K – 1   
in general [1], [4], [7]. 

Theorem 1. The kernel matrix F of the matrix A = xi − x j( )
T
⋅ xi − x j( )( )

δ⎡

⎣⎢
⎤

⎦⎥i, j=1

K

 is positive semi-definite 

of rank K – 1, here xi ∈ℜp , xi ≠ xj, i ≠ j, 1 ≤ i, j ≤ K, sT · E = 1, 0 ≤ δ < 1. 
Proof.  If δ = 0, then the set X can be taken coinciding with vertices of regular K p - dimensional simplex 

with edges of length 1, and the theorem proposition is easy verified, taking that A = E · ET – I.
As 0 < δ < 1, one can derive:
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rij
δ = h δ ⋅

1− e
−
u2⋅rij
2

u2⋅δ+10

∞

∫ du , where hδ =1
1− e

−
u2

2

u2⋅δ+10

∞

∫ du .  (10)

The next formula follows from Gaussian integral:

e
−
u2⋅rij
2 = e

−
u2⋅ xi−x j( )T xi−x j( )⋅

2 = (2π )
−
K
2 ⋅ ei⋅v⋅u⋅(xi−x j ) ⋅e

−
v 2

2 ⋅dv
ℜK∫ .  (11)

Now after some manipulation one can get sure because of (10), (11) the following quadric: 

ξ T ⋅F ⋅ξ = −ξ T ⋅
1
2
I −E ⋅ sT( ) ⋅A ⋅ I − s ⋅ET( ) ⋅ξ =

= −
1
2
⋅ ξ T − ξ T ⋅E( ) ⋅ sT( ) ⋅A ⋅ ξ − ξ T ⋅E( ) ⋅ s( ) =

=
−hδ

2 ⋅ (2π )
K
2

⋅ ξi − ξ T ⋅E( ) ⋅ si( ) ⋅
j=1

K

∑
i=1

K

∑ ξ j − ξ T ⋅E( ) ⋅ sj( ) ⋅ 1− ei⋅u⋅v⋅(xi−x j )

u2⋅δ+1
⋅e

−
v 2

2 dv
ℜK
∫

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟du

0

∞

∫ =

=
hδ

2 ⋅ (2π )
K
2

⋅

ξi − ξ T ⋅E( ) ⋅ si( ) ⋅ei⋅u⋅v⋅xi
i=1

K

∑
2

− ξ T ⋅E( ) ⋅ 1− sT ⋅E( )( )( )
2

u2⋅δ+1
⋅e

−
v 2

2 dv
ℜK
∫

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

du
0

∞

∫

  (12)

Note, under the theorem condition sT · E = 1 the function under integration in (12) is equal to zero for any 
value of integration vector v only if ξ = s. For any other value ξ ≠ s, the function under integration is positive for 
certain values of v, and consequently, the integral (12) is positive, so the kernel matrix is positive semi-definite 
of rank K – 1∇

Theorem 2. Under the conditions of Theorem 1, the matrix A = xi − x j( )
T
⋅ xi − x j( )( )

δ⎡

⎣⎢
⎤

⎦⎥i, j=1

K

 
is nonsingular, 

namely, |A| ≠ 0.
Proof: In order to study determinant of matrix A, let us write down the block matrices:

A =
!A a
aT 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, F =
!F f
f T ν

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, I −E ⋅ sT =
!S c
gT r

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (13)

where Ã, F̃, S̃ are (K – 1) × (K – 1) matrices, a, f, c, g are K – 1 dimensional vectors, v, r are scalars. Let us 
introduce the block matrices:

W =
!F w
wT 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, Ŝ =
!S 0
0T 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (14)

where w = − 1
2
!S ⋅a , 0 is K – 1 dimensional vector of zeros. Assume without loss of generality sK ≠ 0. Next, 
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W =
−
1
2
!S ⋅ !A ⋅ !ST − 1

2
c ⋅aT ⋅ !ST − 1

2
!S ⋅a ⋅ gT −

1
2
!S ⋅a

−
1
2
a ⋅ !ST 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,  (15)

 

Let us note that the vector c consists of elements equal to Kth component sK of the vector s. Thus, the de-
terminant of matrix W remains the same when adding the Kth  row multiplied by - sK to all other columns of this 
matrix, [2]. Similarly, this determinant does not change when adding the Kth column multiplied by –si, to ith row, 
1 ≤ i ≤ K –1. 
Hence,  

W = −
1
2
⋅ Ŝ ⋅A ⋅ ŜT = −

1
2

⎛

⎝
⎜

⎞

⎠
⎟
K

⋅ !S
2
⋅ A .  (16)

On the other hand, using the block matrix determinant formula, [2] for (14), it is easy to make sure that  

W = − !F ⋅wT ⋅ !F−1 ⋅w . (17)

It follows from Theorem 1 that !F > 0  and wT ⋅ !F−1 ⋅w > 0  as well. Thus, |W| ≠ 0. This and !S ≠ 0  (be-
cause of sK ≠ 0) implies |A| ≠ 0. ∇ 

As follows from Theorem 2, the inverse of matrix A exists, hence the extrapolator expressions (6), (7), (8) 
are correct and can be calculated for any data set (1) consisting of different points and any 0 < δ < 1.

2. Computer modeling 

In this study, a set of analytic test functions yTF (x)  was chosen (Table 1) for the comparison of the deve-
loped extrapolator (6) with the Shepard extrapolator (4).

Table 1. Test functions and domains

TEST FUNCTION / Mathematical expression Test domain
Branin

yTF (x) = x2 −
5x1

2

4π 2 +
5x1
π

− 6
⎛

⎝
⎜

⎞

⎠
⎟

2

+10 1− 1
8π

⎛

⎝
⎜

⎞

⎠
⎟cos x1 +10

[-6,6]

Linear

yTF (x) = x1
2 + x1 cos(x1)+ x2 cos(x2 )

[1,3]

Rosenbrook

yTF (x) =100 x2 − x1
2( )
2
+ 1− x1( )2 [-5,5]

Considered functions are classical test functions usually applied for testing numerical algorithms.  The first 
one is a Branin function (fourth-order polynomials) which shows a dominant second-order trend. This function 
has an extremely complex and highly non-linear behavior.  The second test function is a Linear function compo-
sed of polynomials and trigonometric functions, which shows a strong first-order trend. The Rosenbrook function 
enable us to study extrapolation in data with both the first and second-order trends.

In the test domain for each test function, N=20 (200) samples consisting of K=200 (20) points were uni-
formly randomly generated and corresponding extrapolation surfaces according to (6) were created. The approxi-
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mation surface was compared with test function values in M=200 points, uniformly randomly distributed in the 
domain. 

To compare the accuracy of the model the True Error parameter of the sample point is introduced following 
to, [3]):

TE = 1
N

1
M

y(x j
i )− yTF (x j

i )( )
2

j=1

M

∑
i=1

N

∑ ,  (18)

where y(x) - extrapolator defined as shown in (6).

TEShepard =
1
N

1
M

yShepard (x j
i )− yTF (x j

i )( )
2

j=1

M

∑
i=1

N

∑ , (19)

where yShepard (x) - Shepard extrapolator defined as shown in (4).
Second statistical estimation parameter - the Mean Square Error (MSE) [3], defined: 

MSE(yMSE ) =
1
2

1
N ⋅M

s2 (x j
i )

j=1

M

∑
i=1

N

∑ , (20)

where s2(x) - defined as shown in (7). The results for different δ(δ = 1
3

, δ = 1
2

, δ = 2
3

) are summarized in Table 
2 and Table 3.

1. A comparison with a sample size 20 (1 sample consists of 200 points). 

Table 2. Error results

TEST FUNCTION
(Number of sample points 200) TE(y(x)) TE(yShepard(x)) δ MSE(yMSE(x))

BRANIN
9.675 118.076 1/3 16.802
6.153 98.867 1/2 10.22
4.083 77.873 2/3 6.42

LINEAR
0.073 1.309 1/3 0.145
0.041 1.054 1/2 0.078
0.024 0.796 2/3 0.042

ROSENBROOK
2.921*103 1.602*104 1/3 4.424*103

2.12*103 1.437*104 1/2 3.048*103

1.586*103 1.232*104 2/3 2.165*103

2. A comparison with a sample size 200 (1 sample consists of 20 points).

Table 3. Error results

TEST FUNCTION
(Number of sample points 200) TE(y(x)) TE(yShepard(x)) δ MSE(yMSE(x))

BRANIN 58.048 123.501 1/3 56.295
48.23 109.614 1/2 42.866
40.92 97.366 2/3 33.528

LINEAR 0.441 1.396 1/3 0.58
0.306 1.211 1/2 0.397
0.209 1.047 2/3 0.269

ROSENBROOK 1.212*104 1.68*104 1/3 1.154*104

1.12*104 1.589*104 1/2 9.978*103

1.049*104 1.511*104 2/3 8.86*103
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Hence, computer modeling enables us to conclude that the extrapolator (6) presents itself the efficient 
extrapolator of scattered data, because it significantly outperforms the well-known Shepard extrapolator. Quality 
of extrapolation depends on the parameter δ and its choice should be a subject other research. In its turn, the con-
ditional variance (7) can be taken as a measure of error of extrapolation. 

Conclusions

The approach to scattered data extrapolation constructed by FEDM has been developed in the paper. The 
resulting model is rather simple and depends on a small set of parameters. Results of extrapolator construction 
by the approach considered for analytically computed surfaces illustrate its applicability for scattered data ex-
trapolation.  

The model developed allows us to represent the information obtained from any number of measurements 
of objective function obtained computing in a computational code or physical experiment and apply for solving 
practical extrapolation tasks with scattered data in computer graphics, experimental design, etc. At present, the 
extrapolator  is built using only precise information that some measure gave some value. The extrapolator allows 
prevision (values in the future) or reconstruction of missing data (values in the past). Of course, the model cons-
tructed might be generalised  for multimodal case and noisy measurements. The best choice of parameter δ and 
study of matrices with non-Euclidean distances is the subject of future research.
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Summary

FRACTIONAL EUCLIDEAN DISTANCE MATRICES EXTRAPOLATOR  
FOR SCATTERED DATA

N. Pozniak, L. Sakalauskas

The paper deals with application of fractional distance matrices to construct the efficient extrapolator of scattered data. 
The properties of fractional distance matrices are studied in order to develop the linear extrapolator. Study and comparison 
of developed extrapolator with Shepard extrapolator is performed by computer simulation.

Keywords: Euclidean distance matrices, fractional distance matrices, Shepard extrapolator, linear extrapolator, scattered 
data. 
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Santrauka

ATSTUMŲ MATRICŲ SU TRUPMENINIAIS LAIPSNIŲ RODIKLIAIS TAIKYMAS 
DUOMENŲ EKSTRAPOLIAVIMUI

N. Pozniak, L. Sakalauskas

Darbas yra skirtas atstumų matricų, taikomų ekstrapoliavimui, savybių tyrimui bei jų panaudojimui, kuriant efektyviai 
veikiantį tiesinį išsibarsčiusių duomenų ekstrapoliatorių. Taikant kompiuterinį modeliavimą, naudojant sukurtą ekstrapolia-
torių ir žinomą Šepardo ektrapoliatorių, atlikti skaičiavimai ir palyginti rezultatai. 

Prasminiai žodžiai: Atstumų matricos su trupmeniniais laipsnių rodikliais, Euklido atstumas, Šepardo ekstrapoliato-
rius, tiesinis ekstrapoliatorius, išsibarstę duomenys.
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