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Abstract. In this paper, we extend the definition of a random angle and the definition of a probability
distribution of a random angle. We expand P. Lévy’s researches related to wrapping the probability
distributions defined on R. We determine a relation between quasi-lattice probability distributions
on R and lattice probability distributions on the unit circle S. We use the Bergström identity for
comparison of a convolution of probability distributions of random angles. We also prove an inverse
formula for lattice probability distributions on S.
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1 Preface

Von Mises [17], Perrin [15] and Fisher [6] have made the start of the new trend in
statistics. In present, it is called a statistical analysis of directional observations. In 1939,
Lévy [11] published methods useful analyzing distributions on torus T using the results
of probability theory distributions on the real line R.

In the encyclopedic publication “Probability measures on locally compact groups”,
in 1977, Heyer has noticed that the theory of Gaussian distribution on the unit circle
was developed by von Mises [17], Lévy [11] and it was widely discussed in Mardia’s
monograph [13], which was translated into Russian in 1978 [12]. Mardia’s book is useful
to solve statistical problems when probability distributions are on the unit circle. The
developed theory is of great significance in various applications, for example, in spec-
troscopy, geodesy, navigation etc. Mardia book is a comprehensive monograph useful
to practitioners and for all whose researches are related to probability distributions on
the unit circle. Later, in 1999, Mardia and Jupp published a monograph [14] in which
one can find more well-founded statements about directional statistics. In 2013, Pewsey,
Neuhauser, Ruxton [16] published a book useful in working with software environment R.

In the translation of Mardia book [12], editor L.N. Bolshev submitted notes about def-
initions of random variables and their distributions. In this paper, definitions that did not
cause discussion questions are used. We also consider the subjects related to probability
distributions on locally compact Abelian (LCA) groups [4, 7, 18].
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434 S. Staskevičiūtė

In the articles of statisticians and probability theory specialists, distributions on the
unit circle

S =
{(

cos θ, sin θ
)
: 0 6 θ < 2π

}
,

the centre of which is at the origin, are constructed not only directly on the unit circle, but
also using the following methods: wrapping, offsetting, characterizing and stereographic
projection [1, 6, 9]. The methods are based on probability distributions on the real line R
or on the space R2. In this paper, we do not discuss the offsetting method. The main
results are related to the wrapped probability distributions and probability distributions
constructed directly on S.

2 Preliminaries

Suppose, {Ω,F} is a measurable space.

Definition 1. We say Θ = Θ(ω) is a random angle given on measurable space {Ω,F} if
for every Borel set B ∈ B(S), {

ω: Θ(ω) ∈ B
}
∈ F .

Thus, the random angle Θ generates measurable space {S,B(S)}, where S is the unit
circle, and B(S) is σ-algebra of Borel sets generated by S. Suppose, P denotes a proba-
bility on {Ω,F}.

Definition 2. We call the function

PΘ(B) = P
{
ω: Θ(ω) ∈ B

}
of all Borel sets B ∈ B(S) a probability distribution of random angle Θ given on the
space {S,B(S)}.

Definition 3. The function

FΘ(θ) = P
{
ω: 0 < Θ(ω) 6 θ

}
, θ ∈ [0, 2π),

which satisfies the equality

FΘ(θ + 2π)− FΘ(θ) = 1, −∞ < θ <∞,

is a distribution function of a random angle Θ.

One can find the definition of a probability function of a random angle and its proper-
ties in [13, 14]

For −∞ < α < β <∞ and β − α < 2π,

PΘ
(
[α;β)

)
= FΘ(β)− FΘ(α) =

β∫
α

dFΘ(x),

where the integral is a Lebesgue–Stieltjes integral.
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The main results of the paper are related to distributions of a lattice random angle.
Before introducing its definition, we remind the definition of lattice and quasi-lattice
random variables.

Definition 4. A random variable ξ is lattice if it takes values in

La,h = {a+ hν: ν = 0,±1,±2, . . .},

i.e.
∞∑

ν=−∞
P{ξ = a+ hν} = 1,

where a ∈ R and h > 0.

Esseen [5] was the first who widely used lattice random variables in the theory of
sums of independent random variables. He proves an inverse formula

P{ξ = a+ hν} = h

2π

π/h∫
−π/h

e−it(a+hν)Eeitξ dt, (1)

where

Eeitξ =

∞∑
ν=−∞

eit(a+hν)P{ξ = a+ hν}.

In [2], a quasi-lattice random variable is defined. One can also find an inverse formula
of the same type as (1) for the quasi-lattice random variable in [2].

Definition 5. A random variable η is quasi-lattice if it takes its values in

Lβ1,β2
= {β1ν1 + β2ν2: ν1, ν2 = 0,±1,±2, . . .}

with probabilities
∞∑

ν1=−∞

∞∑
ν2=−∞

P{η = β1ν1 + β2ν2} = 1,

where β1, β2 > 0 are rationally independent, i.e.

β1ν1 + β2ν2 = 0

if and only if ν1 = ν2 = 0.

If η is quasi-lattice, then its characteristic function is

Eeitη =

∞∑
ν1=−∞

∞∑
ν2=−∞

eit(β1ν1+β2ν2)P{η = β1ν1 + β2ν2}.

Nonlinear Anal. Model. Control, 24(3):433–446
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In [2], the inverse formula

P{η = β1ν1 + β2ν2}

=
β1β2
(2π)2

π/β1∫
−π/β1

π/β2∫
−π/β2

e−i(t1β1ν1+t2β2ν2)Eei(γ1t1+γ2t2) dt1 dt2 (2)

obtained, where (γ1, γ2) is a two-dimensional lattice random vector, and its characteristic
function is

Eeit1γ1+it2γ2 =

∞∑
ν1=−∞

∞∑
ν2=−∞

eit1β1ν1+it2β2ν2P{γ1 = β1ν1, γ2 = β2ν2}.

The random vector (γ1, γ2) is related to the random variable η:

P{γ1 = β1ν1, γ2 = β2ν2} = P{η = β1ν1 + β2ν2}.

One can find the definition of distributions of lattice random angles in Mardia book
[13] on page 54.

Definition 6. The distribution of a random angle Θ is called lattice if for some l > 1,

l−1∑
r=0

P

{
Θ =

2πr

l
(mod 2π)

}
= 1.

We write P{Θ = 2πr/l} instead of P{Θ = 2πr/l (mod 2π)}.
It follows from the definition above that a characteristic function of a lattice random

angle Θ is

EeipΘ =

l−1∑
r=0

ei
2π
l rpP

{
Θ =

2π

l
r

}
, p = 0,±1,±2, . . . . (3)

For instance, Mardia [13, p. 54] calls the random angle Θ as Poisson if it takes the
values

Θ :=
2π

l
r, r = 0, 1, . . . , l − 1,

where l is integer and l > 1, with probabilities

P

{
Θ =

2π

l
r

}
=

∞∑
ρ=0

λ(r+lρ)

(r + lρ)!
e−λ, λ > 0.

Let ξ be a random variable defined on the real line R, and let Fξ(x), x ∈ R, be its
probability function.
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Definition 7. We say that the distribution function FΘ(θ) of a random angle

Θw = ξ (mod 2π)

is wrapped if its distribution function is

Fw(θ) =

∞∑
k=−∞

[
Fξ(θ + 2kπ)− Fξ(2kπ)

]
, (4)

where 0 6 θ < 2π (see [14, pp. 47–48].

Now we present some properties of wrapping that can be found in [13, 14].

(i) Wrapping is a homomorphism from R to S:

(x+ y)w = xw + yw,

operation + in the right-hand side of the equality denotes addition modulo 2π.
(ii) If ξ is a random variable and Θw = ξ (mod 2π) is a random angle, then their

characteristic functions are related by

EeipΘw = Eeitξ
∣∣
t=p

, p = 0,±1,±2, . . . .

(iii) If a random variable ξ is infinitely divisible, then a random angle Θw = ξ
(mod 2π) is also infinitely divisible.

One can also wrap the probabilities of a random variable, which takes integer values.
If ξ is a random variable, which takes values m = 0,±1,±2, . . . with probabilities
P{ξ = m}, then the random angle Θw = 2πξ/l (mod 2π) takes its values in the lattice{

2π

l
r: r = 0, 1, . . . , l − 1

}
, l > 1,

with probabilities

P

{
Θw =

2π

l
r

}
=

∞∑
ρ=−∞

P{ξ = r + lρ}.

Lévy [11] obtained the definition of Poisson distribution on S by wrapping the Poisson
distribution

P{ξ = m} = λme−λ

m!
, m = 0, 1, . . . ; λ > 0,

on the circumference of the unit circle S with the centre at the origin. One can find
a wrapped t-distribution in [10], a wrapped classic exponential distribution and the Laplace
probability distribution in [8]. Thus, the wrapping relates the probability distributions on S
to probability distributions on R.

The main results of this paper are related to the wrapped lattice and quasi-lattice
probability distributions.

Nonlinear Anal. Model. Control, 24(3):433–446
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3 Main results

Suppose, we have a random variable ξ and a random angle Θw = ξ (mod 2π) given
on probability space {Ω,F ,P}. First of all, we are going to make an important notice,
which enables us to write the wrapped distribution function in a useful form. So, we can
use the set

B(θ) =

∞⋃
k=−∞

[2kπ, θ + 2kπ), 0 6 θ < 2π, (5)

in equality (4) and to write the wrapped distribution function as follows:

Fw(θ) =

∞∑
k=−∞

P
{
ξ ∈ [2kπ, θ + 2kπ)

}
= P

{
ξ ∈ B(θ)

}
(6)

for all θ ∈ [0; 2π) if
∞∑

k=−∞

P{ξ = 2kπ} = 0.

Remark 1. In equality (5), the defined Borel set B(θ) is a union of disjoint intervals
[2kπ, θ + 2kπ), k ∈ Z, as 0 6 θ < 2π.

Thus, it follows from equality (6) that

P{0 < Θw 6 θ} = P
{
ξ ∈ B(θ)

}
, θ ∈ [0; 2π),

if
∞∑

k=−∞

P{ξ = 2kπ} = 0.

A natural question arises whether we get the probability distribution of a lattice ran-
dom angle by wrapping the probability distribution of a quasi-lattice random variable.
A hypothesis would be that we obtain the Haar probability distribution.

Theorem 1. Assume that ξ is a random variable taking values in

{β1ν1 + β2ν2: ν1, ν2 = 0,±1,±2, . . .},

where (β1, β2) is the integer basis. After wrapping the probability function of the random
variable ξ on the unit circle S, we obtain the probability distribution of random angle Θξ,
which takes its values with probabilities

P

{
Θξ =

2π

l
r

}
=

∞∑
ρ=−∞

∞∑
ν=−∞

P
{
ξ = β1(r + lρ) + β2ν

}
(7)

for all r = 0, 1, . . . , l − 1 and any integer l > 1.
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We use formula (7) to obtain the Bergström identity on the unit circle S.

Proof of Theorem 1. It is obvious that

l−1∑
r=0

∞∑
ρ=−∞

∞∑
ν=−∞

P
{
ξ = β1(r + lρ) + β2ν

}
= 1.

Let us refer to the characteristic function of a quasi-lattice random variable on R, i.e.
the function

Eeitξ =

∞∑
ν1=−∞

∞∑
ν2=−∞

eit(β1ν1+β2ν2)P{ξ = β1ν1 + β2ν2}.

We can rewrite it in another form using equality (12). Let

ν1 = r1 + lρ1 and ν2 = r2 + lρ2,

where r1, r2 = 0, 1, . . . , l − 1, l > 1, ρ1, ρ2 = 0,±1,±2, . . . . Then

∞∑
ν1=−∞

∞∑
ν2=−∞

{β1ν1 + β2ν2}

=

l−1∑
r1=0

∞∑
ρ1=−∞

l−1∑
r2=0

∞∑
ρ2=−∞

{
β1(r1 + lρ1) + β2(r2 + lρ2)

}
.

Hence

Eeitξ =

l−1∑
r1=0

∞∑
ρ1=−∞

eitβ1(r1+ρ1l)

×
l−1∑
r2=0

∞∑
ρ2=−∞

eitβ2(r2+ρ2l)P
{
ξ = β1(r1 + lρ1) + β2(r2 + lρ2)

}
for all t ∈ R.

Let us take
t =

2π

lβ2
t′, t′ ∈ R.

Then

Eei
2π
lβ2

t′ξ =

l−1∑
r1=0

∞∑
ρ1=−∞

ei
2π
lβ2

t′β1(r1+ρ1l)
l−1∑
r2=0

ei
2π
lβ2

t′r2β2

×
∞∑

ρ2=−∞
ei

2π
lβ2

t′ρ2lβ2P
{
ξ = β1(r1 + lρ1) + β2(r2 + lρ2)

}
.

Nonlinear Anal. Model. Control, 24(3):433–446



440 S. Staskevičiūtė

Let us substitute p = 0,±1,±2, . . . for t′ in the previous equality. Therefore

Eei
2π
lβ2

pξ =

l−1∑
r1=0

ei
2π
l
β1
β2
r1p

∞∑
ρ1=−∞

ei2π
β1
β2
ρ1p

l−1∑
r2=0

ei
2π
l pr2

×
∞∑

ρ2=−∞
P
{
ξ = β1(r1 + lρ1) + β2(r2 + lρ2)

}
. (8)

Note that β1 and β2 are rationally independent, i.e.

β1ν1 + β2ν2 = 0

if all ν1 = ν2 = 0. Consequently, β1/β2 is not a rational number and

ei2π
β1
β2
ρ1p 6= 1

as ρ1 or p 6= 0.
Let us substitute t ∈ R for p in equality (8). We obtain

Eei
2π
lβ2

tξ =

l−1∑
r1=0

ei
2π
l
β1
β2
r1t

∞∑
ρ1=−∞

ei2π
β1
β2
ρ1t

l−1∑
r2=0

ei
2π
l tr2

×
∞∑

ρ2=−∞
P
{
ξ = β1(r1 + lρ1) + β2(r2 + lρ2)

}
. (9)

In the previous equality, the number series absolutely converges for all t ∈ R. Conse-
quently, we take

t = lt′, t′ ∈ R,

in equality (9). Then we substitute p = 0,±1,±2, . . . for t′. Hence

Eei
2π
lβ2

lpξ = Eei
2π
β2
pξ

=

l−1∑
r1=0

ei
2π
l
β1
β2
r1lp

∞∑
ρ1=−∞

ei2π
β1
β2
ρ1lp

×
l−1∑
r2=0

∞∑
ρ2=−∞

P
{
ξ = β1(r1 + lρ1) + β2(r2 + lρ2)

}
. (10)

Once again we substitute t ∈ R for p in equality (10) and obtain

Eei
2π
β2
tξ =

l−1∑
r1=0

ei2π
β1
β2
r1t

∞∑
ρ1=−∞

ei2π
β1
β2
ρ1lt

×
∞∑

ν2=−∞
P
{
ξ = β1(r1 + lρ1) + β2ν2

}
. (11)
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In equality (11), it is useful to choose

t =
β2t
′

β1l
, t′ ∈ R,

and then to substitute p = 0,±1,±2, . . . for t′. We get

Eei
2π
β1l

pξ =

l−1∑
r1=0

ei
2π
l pr1

∞∑
ρ1=−∞

∞∑
ν2=−∞

P
{
ξ = β1(r1 + lρ1) + β2ν2

}
.

On the right-hand side of the previous equality, there is the characteristic function of
random angle Θξ = ξ (mod 2π), and

P

{
Θξ =

2π

l
r

}
=

∞∑
ρ=−∞

∞∑
ν=−∞

P
{
ξ = β1(r + lρ) + β2ν

}
.

Now we must verify the conditions of the definition of a lattice random angle on S. Hence

(i) It is obvious that
∞∑

ρ=−∞

∞∑
ν=−∞

P
{
ξ = β1(r + lρ) + β2ν

}
> 0;

(ii) It is true that

l−1∑
r=0

∞∑
ρ=−∞

∞∑
ν2=−∞

P
{
ξ = β1(r + lρ) + β2ν2

}
=

∞∑
ν1=−∞

∞∑
ν2=−∞

P{ξ = β1ν1 + β2ν2} = 1.

This equality follows from the fact that ξ is a quasi-lattice random variable.

The proof of Theorem 1 is complete.

Remark 2. If ξ is quasi-lattice random variable taking values in {β1ν1 + β2ν2: ν1, ν2 =
0,±1,±2, . . .}, where (β1, β2) is the integer basis, then the values of random angleΘξ =
ξ (mod 2π) do not depend on the parameters β1 and β2.

Remark 3. In the proof of Theorem 1, one can find a method how to wrap the probability
distribution on S.

Corollary 1. Suppose that a random variable ξ takes values hν, ν = 0,±1,±2, . . . ,
h > 0, and Θw = 2πξ/lh (mod 2π), l > 1 is integer, h > 0. For any h > 0 and any
integer l > 1, the following equality is true:

P

{
Θw =

2π

l
r

}
=

∞∑
ρ=−∞

P
{
ξ = h(r + ρl)

}
, r = 0, 1, . . . , l − 1.
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The statement of Corollary 1 is easy to see, but in proving it, the point is to demon-
strate a method how to wrap the probability distribution of a random variable on the
circumference of the unit circle.

Proof of Corollary 1. From the definition of the random variable ξ it follows that

Eeitξ =

∞∑
ν=−∞

eithνP{ξ = hν}.

It is easy to see that
∞⋃

ν=−∞
{ν} =

l−1⋃
r=0

∞⋃
ρ=−∞

{r + ρl}, (12)

where l is the integer and l > 1. Thus, the characteristic function of the random vari-
able ξ is

Eeitξ =

l−1∑
r=0

eitrh
∞∑

ρ=−∞
eitρhlP

{
ξ = h(r + ρl)

}
, t ∈ R. (13)

In formula (13), let us choose

t =
2π

lh
t′, t′ ∈ R,

and after this, let us substitute p = 0,±1,±2, . . . for t′. Consequently,

Eei
2π
lh pξ =

l−1∑
r=0

ei
2π
l rp

∞∑
ρ=−∞

P
{
ξ = h(r + ρl)

}
for all p = 0,±1,±2, . . . .

According to (3), on the right-hand side of the previous equality we have the charac-
teristic function of the random angle Θw = ξ (mod 2π), which takes values 2πr/l with
probabilities

P

{
Θw =

2π

l
r

}
=

∞∑
ρ=−∞

P
{
ξ = h(r + ρl)

}
for all r = 0, 1, . . . , l − 1 and any integer l > 1.

The proof of Corollary 1 is complete.

Corollary 2. The values of lattice random angleΘw = ξ (mod 2π) do not depend on the
span h of the distribution of lattice random variable ξ.

Let us take probability distributions of two quasi-lattice random angles ξ and η defined
in the integer base

xν1,ν2 = β1ν1 + β2ν2, β1, β2 > 0, ν1, ν2 ∈ Z,

where β1, β2 are rationally independent.
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By using formula (7) we derive

P

{
Θξ =

2π

l
r

}
=
∑
ρ∈Z

∑
ν∈Z

P
{
ξ = β1(r + lρ) + β2ν

}
,

P

{
Θη =

2π

l
r

}
=
∑
ρ∈Z

∑
ν∈Z

P
{
η = β1(r + lρ) + β2ν

}
.

Note that ξ and η are defined in the same base (β1;β2).
For comparison of distributions of random angles Θξ and Θη we can use the equality

P

{
Θξ =

2π

l
r

}
−P

{
Θη =

2π

l
r

}
=
∑
ρ∈Z

∑
ν∈Z

[
P
{
ξ = β1(r + lρ) + β2ν

}
−P

{
η = β1(r + lρ) + β2ν

}]
for all r = 0, 1, . . . , l − 1 and for the chosen integer l > 1.

The Bergström identity on S has the following form.

Theorem 2. Assume that Sn = ξ1 + ξ2 + · · · + ξn and Zn = η1 + η2 + · · · + ηn,
where ξ1, ξ2, . . . , ξn and η1, η2, . . . , ηn are independent and identically distributed ran-
dom variables on the real line R. Then for all r = 0, 1, . . . , l − 1 and for any integer
l > 1, it is true that

P

{
ΘSn =

2π

l
r

}
−P

{
ΘZn =

2π

l
r

}
=

s−1∑
j=0

(
1

n

)j s∑
ν=j+1

(−1)j

ν!
C(j)
ν P∗(n−ν)η1 ∗

(
n(Pξ1 − Pη1)

)∗ν(
Bl(r)

)
+

(
n

s+ 1

)
(Pξ1 − Pη1)

∗(s+1) ∗E
(
P
∗(n−λ)
ξ1

∗ P∗(λ−s−1)η1

)(
Bl(r)

)
,

where
Bl(r) =

⋃
ρ∈Z

⋃
ν∈Z

{
β1(r + lρ) + β2ν

}
.

Proof. From Theorem 1 it follows that

P

{
ΘSn =

2π

l
r

}
−P

{
ΘZn =

2π

l
r

}
=
∑
ρ∈Z

∑
ν∈Z

[
P{Sn = β1(r + lρ) + β2ν} −P{Zn = β1(r + lρ) + β2ν}

]
.

Let us take the difference

P
{
Sn = β1(r + lρ) + β2ν

}
−P

{
Zn = β1(r + lρ) + β2ν

}
= P

{
Sn ∈

{
β1(r + lρ) + β2ν

}}
−P

{
Zn ∈

{
β1(r + lρ) + β2ν

}}
for all r = 0, 1, . . . , l − 1, ρ ∈ Z and ν ∈ Z.
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Since ⋃
ρ∈Z

⋃
ν∈Z

{
β1(r + lρ) + β2ν

}
= Bl(r), r = 0, 1, . . . , l − 1,

and
Bl(r1) ∩Bl(r2) = ∅ if r1 6= r2,

we obtain
l−1⋃
r=0

⋃
ρ∈Z

⋃
ν∈Z

{
β1(r + lρ) + β2ν

}
= R = (−∞;∞).

Accordingly,

P

{
ΘSn =

2π

l
r

}
−P

{
ΘZn =

2π

l
r

}
= P

{
Sn ∈ Bl(r)

}
−P{Zn ∈ Bl(r)} = P∗nξ

(
Bl(r)

)
− P∗nη

(
Bl(r)

)
for all r = 0, 1, . . . , l − 1, where

Pξ(A) = P{ξ ∈ A}, Pη(A) = P{η ∈ A}

for all A ∈ B(R).
We use the modified Bergström identity (see [3]) to complete the proof of the theorem.
The proof of Theorem 2 is complete.

Let us go back to lattice probability distributions constructed directly on the unit
circle S. Suppose, we have the random angleΘ given on the probability space {Ω,F ,P}.
A natural question arises whether we have an inverse formula type as (1) or (2) if the
random angle Θ is lattice random angle. We have not found such a type of formulas in
papers and books. Therefore we obtain an inverse formula of the lattice random angle Θ.

Theorem 3. For any integer l > 1 and for any m0 = 0, 1, . . . , l − 1, the following
equality holds:

P

{
Θ =

2π

l
m0

}
=

1

l

l/2∫
−l/2

e−it
2π
l m0Eeitη dt,

where η is a lattice random variable taking values 2πm/l, m = 0,±1,±2, . . . , l > 1,
with probabilities

P̃

{
η =

2π

l
m

}
=

{
P{Θ = 2π

l m
}

if m = 0, 1, . . . , l − 1,

0 if m = −1,−2 . . . and m = l, l + 1, . . . .

Proof. Suppose, we have a lattice random angle Θ. In expression (3), let us substitute
p = 0,±1,±2, . . . for t ∈ R. Then

Eeitη =

∞∑
m=−∞

ei
2π
l mtP

{
η =

2π

l
m

}
,
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where η is a random variable, and

P

{
η =

2π

l
m

}
=

{
P{Θ = 2π

l m} if m = 0, 1, . . . , l − 1,

0 if m = −1,−2 . . . and m = l, l + 1, . . . .

We have already noticed that there exists an inverse formula for the lattice random
variable ξ (see formula (1), where a = 0, h = 2π/l ). Consequently,

P

{
η =

2π

l
m0

}
=

1

l

l−1∑
m=0

l/2∫
−l/2

e−itm0
2π
l +itm 2π

l P

{
η =

2π

l
m

}
dt. (14)

Denote h = 2π/l. After replacing th = u in the integral

h

2π

π/h∫
−π/h

e−ith(m0−m) dt,

we obtain

1

2π

π∫
−π

e−iu(m0−m) du =

{
1 if m = m0,

0 if m 6= m0.

From the equality above and equality (14) it follows that

P

{
η =

2π

l
m0

}
=

1

l

l/2∫
−l/2

e−it
2π
l m0Eeitη dt = P

{
Θ =

2π

l
m0

}
.

The proof of Theorem 3 is complete.

4 Conclusions

(i) Expressions of a wrapped distribution function and a wrapped quasi-lattice distri-
bution has been constructed. These expressions have been constructed by defining
special Borel sets.

(ii) It has been proved that the values of wrapped lattice distribution do not depend on the
span of a lattice distribution, which was wrapped, only the probabilities depend on
the span of a lattice distribution. Also, it has been proved that the values of wrapped
quasi-lattice distribution does not depend on the quasi-lattice parameters, only the
probabilities depend on parameters. The method, how to wrap the distribution de-
fined on R on the unitcircle has been demonstrated in this paper.

(iii) The Bergström identity has been proved for wrapped quasi-lattice distributions. This
identity might be useful for asymptotic analysis of distributions of random angles.

(iv) The inverse formula for lattice distributions on S has been proved.

Nonlinear Anal. Model. Control, 24(3):433–446
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