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Abstract. This paper concerns the existence, localization and multiplicity of positive solutions for
a φ-Laplacian problem with a perturbed term that may have discontinuities in the state variable.
First, the initial discontinuous differential equation is replaced by a differential inclusion with
an upper semicontinuous term. Next, the existence and localization of a positive solution of the
inclusion is obtained via a compression-expansion fixed point theorem for a composition of two
multivalued maps, and finally, a suitable control of discontinuities allows to prove that any solution
of the inclusion is a solution in the sense of Carathéodory of the initial discontinuous equation. No
monotonicity assumptions on the nonlinearity are required.

Keywords: discontinuous differential equation, φ-Laplacian problem, positive solution, fixed point,
multivalued map, infinitely many solutions.

1 Introduction

In this paper, we establish new existence, localization and multiplicity results of positive
solutions for the problem

−
(
φ
(
u′)
)′

= f(t, u) a.e. in I := [0, 1],

u(0)− αu′(0) = u′(1) = 0,
(1)

where α> 0, φ : (−a, a)→ (−b, b) is an increasing homeomorphism such that φ(0)= 0,
0 < a, b 6 ∞, and the function f : I × R+ → R+ may have discontinuities even
with respect to the second variable. Also, we achieve a multiplicity result concerning
the existence of infinitely many solutions to problem (1).
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Differential equations with discontinuous nonlinearities (discontinuous differential
equations, for short) arise from mathematical modeling of real processes from physics,
engineering, biology, medicine, economics etc., whose dynamics are designed by dis-
continuous feedback controllers. For example, the regulation of temperature in a room
is achieved discontinuously by switching on and off the cooling system as operated by
a thermostat. In mechanics, such a process is the movement in presence of dry fric-
tion [26], while in population dynamics, it is the harvesting whose intensity is changed
depending on some population thresholds. A nonstandard example of discontinuous dif-
ferential equation can be found in [14] modeling opinion dynamics. In mathematics,
discontinuous differential equations appear in control theory, where, even when a system
is controllable, it may fail to admit a continuous feedback, which stabilizes it [1, 16, 20].

Discontinuous differential equations have been studied by many authors, see, e.g.,
[4, 5, 8, 10, 15, 25, 32] and the references therein. To this aim, several techniques have
been used, such as methods of fixed point theory [19, 27], lower and upper solution
techniques [32], or methods of nonsmooth critical point theory [5, 7, 8]. In connection
with the investigation methods, several notions of solution have been defined, most of
them as solutions of some differential inclusions, see [22, 31].

Also, in the last decades, φ-Laplacian equations have been extensively studied by
different authors and a variety of tools, see, e.g., [3, 12, 30]. However, not many results
on discontinuous φ-Laplacian equations are known in the literature. The existing ones are
based on monotonicity hypotheses for nonlinearities [11] or use solutions in the sense of
set-valued analysis, mainly, as Filippov or Krasovskij solutions; see [2, 9]. Compared to
these results, in our case, the solutions are in the Carathéodory sense, and no monotonicity
assumptions are required.

Problem (1) with a continuous nonlinearity f was previously studied in [23,24], using
Krasnosel’skiı̆’s compression-expansion fixed point theorem in cones and a Harnack-type
inequality.

In the present paper, since the function f may be discontinuous, we first consider the
regularized problem in the Filippov sense [20], namely the boundary value problem for
a differential inclusion

−
(
φ(u′))′ ∈ F (t, u) a.e. in I,

u(0)− αu′(0) = u′(1) = 0,
(2)

where the multivalued map F : I × R+ → P(R+) is defined as

F (t, x) =
⋂
ε>0

cof
(
t, Bε(x) ∩ R+

)
(3)

with co standing for the closed convex hull and Bε(x) := [x− ε, x+ ε].
Unfortunately, the standard generalization of Krasnosel’skiı̆’s fixed point theorem

to upper semicontinuous multivalued maps with convex values, due to Fitzpatrick and
Petryshyn [21], is not applicable to the integral operator associated to problem (2). The
reason is that the values of the integral operator are not convex in general due to the
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nonlinearity of φ. To overcome this difficulty, we will apply a compression-expansion
fixed point theorem established in [17] for the composition of two multivalued operators
(see also the coincidence point theorems in [6]).

After obtaining and localizing a solution of the regularized problem, we shall concen-
trate on proving that any solution of the regularized problem is also a solution of the initial
discontinuous equation in the sense of Carathéodory. We shall succeed in this, by using
the technique from [15,18,19,27,29], under the assumption that the function f is discon-
tinuous over the graphs of a countable number of curves satisfying some “transversality”
condition.

Finally, for problems with nonlinearities having excessive oscillations towards zero
or infinity, by using the localization result, we are able to emphasize the existence of
infinitely many positive solutions.

2 The fixed point setting

In [17, 28], an existence theory for the operator inclusion

x ∈ ΨΦx, (4)

where Ψ and Φ are two single or multivalued operators, was developed.
Let X be a normed linear space. Let us introduce the following notations:

Pfc(X) =
{
A ⊂ X: A is nonempty, closed and convex

}
,

Pkwc(X) =
{
A ⊂ X: is nonempty, weakly compact and convex

}
.

Also, recall that a multivalued operator Φ from a subset D of a normed linear space to an
other normed linear space is said to be

• upper semicontinuous (usc, for short) on D if for every closed subset C of D, the
set

Φ−(C) =
{
x ∈ D: C ∩ Φx 6= ∅

}
is closed in D.

• sequentially weakly upper semicontinuous (w-usc, for short) on D if for every
weakly closed subset C of D, the set Φ−(C) is sequentially closed for the weak
topology on D.

Now we state the compression-expansion fixed point theorem for inclusion (4).

Theorem 1. (See [17, Thm. 2.3].) Let (X, ‖·‖) and Y be normed linear spaces, and
K a wedge of X . Let Φ : K → Pkwc(Y ), Ψ : C → Pfc(K) be two bounded multivalued
maps, where C = co({0} ∪ Φ(K)). Assume that

(i) if A ⊂ K, A = co({0} ∪ Ψ(co({0} ∪ Φ(A)))), then A is weakly compact, and
Φ, Ψ are w-usc on A and co({0} ∪ Φ(A)), respectively.

In addition, assume that there exist r1, r2 > 0, r1 6= r2, and h ∈ K \ {0} such that

(ii) x /∈ λΨΦx for λ ∈ (0, 1) and x ∈ K with ‖x‖ = r1; and x /∈ ΨΦx + µh for
µ > 0 and x ∈ K with ‖x‖ = r2.
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Then there exists at least one x ∈ K with x ∈ ΨΦx such that

min{r1, r2} 6 ‖x‖ 6 max{r1, r2}.

Remark 1. Since any usc map on a compact set is sequentially w-usc, Theorem 1 remains
true if instead of (i) we assume condition

(iii) if A ⊂ K, A = co({0} ∪ Ψ(co({0} ∪ Φ(A)))), then A is compact, and Φ, Ψ are
usc on A and co({0} ∪ Φ(A)), respectively.

3 Main result

In this section, we study the existence of positive solutions to problem (1), that is, a func-
tion u ∈ C1(I), u > 0, u 6≡ 0, with u(0)− αu′(0) = u′(1) = 0 such that

φ ◦ u′ ∈W 1,1(I) and −
(
φ
(
u′(t)

))′
= f

(
t, u(t)

)
for a.a. t ∈ I.

Equivalently, we will look for fixed points of the integral operator T : P → P given
by

Tu(t) = αφ−1

( 1∫
0

f
(
s, u(s)

)
ds

)
+

t∫
0

φ−1

( 1∫
r

f
(
s, u(s)

)
ds

)
dr, (5)

where P is the cone of nonnegative functions in the Banach space of the continuous
functions with the maximum norm (C(I), ‖·‖∞).

As mentioned above, since f is not necessarily continuous, the operator T may be
discontinuous, and the usual compression-expansion-type results are not applicable. This
is the motivation to consider inclusion (2) and to look for solutions of this problem by
means of the multivalued operator T : P → P(P ) defined as

Tu(t) = αφ−1

( 1∫
0

F
(
s, u(s)

)
ds

)
+

t∫
0

φ−1

( 1∫
r

F
(
s, u(s)

)
ds

)
dr, (6)

where F stands for the map obtained after “convexification” of the function f as in (3).
Notice that the operator T can be decomposed as

T = ΨΦ,

where for every v ∈ P ,

Ψv(t) = αφ−1
(
v(0)

)
+

t∫
0

φ−1
(
v(s)

)
ds, t ∈ I,

and
Φv(t) = ΛNF v(t)
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with

Λw(t) =

1∫
t

w(s) ds

and the Nemytskii operator

NF (u) =
{
v ∈ L1(I): v(t) ∈ F

(
t, u(t)

)
for a.a. t ∈ I

}
. (7)

First, let us mention the following result about the upper semicontinuity of the Ne-
mytskii operator (for details, see [13, 29]).

Lemma 1. Assume that the function f : I×R+ → R+ satisfies the following conditions:

(H1) The composed function f(·, u(·)) is measurable for every u ∈ P ;
(H2) f(t, u) < b on I × R+, and if b = ∞, there exist c1, c2 ∈ R+ and p > 1 such

that f(t, u) 6 c1u
p + c2 for a.a. t ∈ I and all u ∈ R+.

Then the Nemytskii operator NF : P → P(L1(I)) defined as in (7) is an usc map on P
from the topology of C(I) to that of L1(I).

In order to apply Theorem 1, we need the following Harnack-type inequality estab-
lished in [23,24] for the case a =∞. Notice that with the same proof, the result still holds
true for a <∞.

Lemma 2. For each c ∈ (0, 1) and any u ∈ C1(I), u > 0, with u(0) − αu′(0) =
u′(1) = 0 and φ ◦ u′ nonincreasing in I , one has

u(t) >M‖u‖∞ for all t ∈ [c, 1],

where M = (α+ c)/(α+ 1).

From now on, the point c ∈ (0, 1) is fixed. The essential properties of the operators Φ
and Ψ from above are given by the following theorem involving two subcones of P ,
namely

K1 =
{
u ∈ P : u(t) >M‖u‖∞ for all t ∈ [c, 1]

}
,

K2 =
{
u ∈ P : u is nonincreasing, u(1) = 0

}
,

and, exclusively, the topology of C(I).

Theorem 2. If the function f satisfies conditions (H1) and (H2), then the operators

Φ : K1 → Pfc(K2) and Ψ : K2 → K1

are well defined; Φ is usc and maps bounded sets into relatively compact sets; and Ψ is
a single-valued continuous operator, which maps bounded sets into relatively compact
sets.

Proof. Since Φ=ΛNF , it follows from the definition of the operator Λ that Φ(K1)⊂K2.
To show that Ψ(K2) ⊂ K1, take any v ∈ K2 and let u := Ψ(v). Clearly, u ∈ P . Also,
φ ◦ u′ = v, and so φ ◦ u′ is nonincreasing in I . Moreover, u(0) − αu′(0) = u′(1) = 0.
Consequently, by Lemma 2, u(t) >M‖u‖∞ for all t ∈ [c, 1]. Hence u ∈ K1, as desired.

Nonlinear Anal. Model. Control, 24(3):447–461



452 R. Precup, J, Rodríguez-López

In addition, Λ, as a linear operator from L1(I) to C(I), is compact, while in view of
Lemma 1,NF is usc from the topology of C(I) to that of L1(I). Thus Φ is usc and maps
bounded sets into relatively compact sets.

Clearly, Φ has convex values. To show that its values are also closed in C(I), take any
element u ∈ K1 and any sequence vn ∈ Φu with vn → v in C(I). Then vn = Λwn

for some wn ∈ NF (u). From the definition of F we have that NF (u)(t) is bounded
uniformly with respect to t ∈ I . As a result, the sequence wn is bounded in Lp(I) for
any (fixed) p ∈ (1,∞). The space Lp(I) (for 1 < p < ∞) being reflexive, we may
assume without less of generality that wn is weakly convergent in Lp(I) to some w. It is
easy to see that w ∈ NF (u). Then there is a sequence wn of convex combinations of wn,
which strongly converges in Lp(I), and consequently in L1(I), to w. From vn = Λwn

we deduce that the corresponding sequence vn of convex combinations of vn converges
in C(I) to Λw. But since vn → v, the limit of vn is v. Then v = Λw, where w ∈ NF (u),
which proves that v ∈ Φu, as wished.

Finally, the continuity and the compactness of the operator Ψ are standard conse-
quences of Lebesgue’s dominated convergence and Ascoli–Arzela’s theorems.

Now we are ready to state and prove the main result about the existence and localiza-
tion of positive solutions to the discontinuous problem (1).

Theorem 3. Assume that the function f satisfies conditions (H1), (H2) and

(H3) There is a countable number of functions γn ∈ C1(I) (n ∈ N) with φ ◦ γ′n ∈
W 1,1(I) and a countable number of closed subintervals In of I such that{
−
(
φ
(
γ′n(t)

))′} ∩ F (t, γn(t)) ⊂ {f(t, γn(t))} for a.a. t ∈ In, n ∈ N, (8)

and

f(t, ·) is continuous on R+ \
⋃

{n: t∈In}

{
γn(t)

}
for a.a. t ∈ I. (9)

In addition, assume that there exist 0 < r1, r2, r1 6= r2, and ε > 0 such that

αφ−1

( 1∫
0

Γ ε
r1(s) ds

)
+

1∫
0

φ−1

( 1∫
r

Γ ε
r1(s) ds

)
dr 6 r1, (10)

αφ−1

( 1∫
c

Γr2,ε(s) ds

)
+

1∫
c

φ−1

( 1∫
r

Γr2,ε(s) ds

)
dr > r2, (11)

where

Γ ε
r1(s) = max

x∈[0, r1+ε]
f(s, x) and Γr2,ε(s) = min

x∈[(r2−ε)M, r2+ε]
f(s, x).

Then problem (1) has at least one positive solution u such that

min{r1, r2} 6 ‖u‖∞ 6 max{r1, r2}. (12)
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Proof. We apply Theorem 1. In virtue of Theorem 2, it only remains to prove that the
operator T = ΨΦ satisfies the compression-expansion conditions as in (ii).

We first show that

‖v‖∞ 6 r1 for all v ∈ Tu and u ∈ K1 with ‖u‖∞ = r1,

which implies that

u /∈ λTu for all λ ∈ (0, 1) and u ∈ K1 with ‖u‖∞ = r1.

Assume the contrary. Then there exists v ∈ Tu and u ∈ K1 with ‖u‖∞ = r1 such that
r1 < ‖v‖∞. Notice that for any ε > 0, if w ∈ NF (u) and ‖u‖∞ = r1, then

w(s) 6 max
x∈[0, r1+ε]

f(s, x) =: Γ ε
r1(s) for all s ∈ I.

Hence, by the fact that v ∈ Tu and (10),

‖v‖∞ 6 αφ−1

( 1∫
0

Γ ε
r1(s) ds

)
+

1∫
0

φ−1

( 1∫
r

Γ ε
r1(s) ds

)
dr 6 r1,

which yields the contradiction r1 < r1.
Next, we have to show that

r2 6 ‖v‖∞ for all v ∈ Tu and u ∈ K1 with ‖u‖∞ = r2,

which implies that

u /∈ Tu+ µ for all µ > 0 and u ∈ K1 with ‖u‖∞ = r2.

The proof is similar and is based on the fact that for every ε > 0, if w ∈ NF (u) and
‖u‖∞ = r2,

w(s) > Γr2,ε(s) for all s ∈ [c, 1].

The details are left to the reader.
Therefore, Theorem 1 applies and yields the existence of a fixed point u ∈ P for the

operator T satisfying (12). Then

−
(
φ
(
u′(t)

))′ ∈ F (t, u(t)) for a.a. t ∈ I. (13)

Now we prove that u (in fact, any fixed point of T) solves the initial discontinuous
problem (1). To this aim, define

Jn :=
{
t ∈ In: u(t) = γn(t)

}
, n ∈ N.

Clearly
−
(
φ
(
u′(t)

))′
= −

(
φ
(
γ′n(t)

))′
for a.a. t ∈ Jn.
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Hence, by (13),

−
(
φ
(
γ′n(t)

))′ ∈ F (t, u(t)) = F
(
t, γn(t)

)
for a.a. t ∈ Jn.

This, based on condition (8), implies

−
(
φ
(
γ′n(t)

))′
= f

(
t, γn(t)

)
for a.a. t ∈ Jn,

equivalently,
−
(
φ
(
u′(t)

))′
= f

(
t, u(t)

)
for a.a. t ∈ Jn.

Thus u satisfies the initial discontinuous differential equation a.e. in J =
⋃

n∈N Jn.
Finally, from (9) one has

F
(
t, u(t)

)
=
{
f
(
t, u(t)

)}
for t ∈ I \ J.

This together with (13) shows that u also satisfies the initial discontinuous differential
equations a.e. in I \ J . Therefore, u solves (1) in I .

Remark 2. If the function f is nondecreasing with respect to the second variable, then
conditions (10) and (11) can be written as

αφ−1

( 1∫
0

f(s, r1 + ε) ds

)
+

1∫
0

φ−1

( 1∫
r

f(s, r1 + ε) ds

)
dr 6 r1,

αφ−1

( 1∫
c

f
(
s, M(r2 − ε)

)
ds

)
+

1∫
c

φ−1

( 1∫
r

f
(
s, M(r2 − ε)

)
ds

)
dr > r2,

and they are analogous to those considered in [23] for the case of a continuous nonlinear-
ity.

Remark 3 [Asymptotic conditions]. In virtue of Remark 2, if the function f is non-
decreasing with respect to the second variable, the existence of two numbers r1 and r2
satisfying (10) and (11) is guaranteed by any one of the following two conditions:

(a)
lim inf
x→0

αφ−1(
∫ 1

0
f(s, x) ds) +

∫ 1

0
φ−1(

∫ 1

r
f(s, x) ds) dr

x
< 1,

lim sup
x→∞

αφ−1(
∫ 1

c
f(s,Mx) ds) +

∫ 1

c
φ−1(

∫ 1

r
f(s,Mx) ds) dr

x
> 1;

(14)

(b)
lim inf
x→∞

αφ−1(
∫ 1

0
f(s, x) ds) +

∫ 1

0
φ−1(

∫ 1

r
f(s, x) ds) dr

x
< 1,

lim sup
x→0

αφ−1(
∫ 1

c
f(s,Mx) ds) +

∫ 1

c
φ−1(

∫ 1

r
f(s,Mx) ds) dr

x
> 1.

(15)
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Observe that the first case is only possible if a = +∞ and b = +∞. Otherwise, if
a < +∞, then φ−1 is bounded, and if b < +∞, then f < b, so the numerator being
bounded,

lim sup
x→∞

αφ−1(
∫ 1

c
f(s,Mx) ds) +

∫ 1

c
φ−1(

∫ 1

r
f(s,Mx) ds) dr

x
= 0.

The “transversality” condition (8) was previously presented in [29] and recalls the
notion of viable and inviable curves introduced in [19, 27]. It allows the function f to
be discontinuous over time-dependent sets that generalize the discontinuity sets of [5, 7].
The meaning of (8) is clarified by the next remark, where some sufficient conditions are
given.

Remark 4. Assumption (8) is satisfied if one of the following two conditions holds:

(i) −(φ(γ′n(t)))′ = f(t, γn(t)) for a.a. t ∈ In;
(ii) {−(φ(γ′n(t)))′} /∈ F (t, γn(t)) for a.a. t ∈ In.

In particular, alternative (ii) is satisfied if there exist δ, ε > 0 such that

−
(
φ
(
γ′n(t)

))′
+ δ 6 f(t, y) for a.a. t ∈ In and all y ∈

[
γn(t)− ε, γn(t) + ε

]
, (16)

or
−
(
φ
(
γ′n(t)

))′ − δ > f(t, y) for a.a. t ∈ In and all y ∈
[
γn(t)− ε, γn(t) + ε

]
. (17)

Observe also that conditions (16) and (17) recall the notion of lower and upper solutions
for the differential equation −(φ(u′))′ = f(t, u).

To finish this section, we illustrate the applicability of our main result by an example.

Example 1. Consider the differential problem involving the curvature operator in Eu-
clidean space

−
(

u′√
1 + u′2

)′
= f(t, u) := 3

√
ue−u +

1

2
cos2

([
1

u+ t

])
a.e. in I,

u(0) = u′(1) = 0,

(18)

where [x] denotes the integer part of x. Here, φ : R→ (−1, 1) is given by

φ(τ) =
τ√

1 + τ2
and φ−1(τ) =

τ√
1− τ2

.

Also, notice that f(t, u) < 1.
For this example,

γn = −t+ 1

n
and In =

[
0,

1

n

]
, n ∈ N.

Nonlinear Anal. Model. Control, 24(3):447–461
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Clearly, the function u 7→ f(t, u) is continuous on R+ \
⋃
{n: t∈In}{γn(t)} for a.a. t ∈ I .

Note that
−
(
φ
(
γ′n(t)

))′
= 0 for a.a. t ∈ In and n ∈ N,

so condition (16) is obviously satisfied for δ, ε > 0 small enough since cos2 n > 0 for all
n ∈ N .

Finally, if we take c = 1/2, thenM = 1/2, and it is easy to verify that conditions (10)
and (11) (with α = 0) hold for r1 = 1 and r2 = 1/50, respectively.

Therefore, Theorem 3 ensures the existence of a positive solution of problem (18)
such that 1/50 6 ‖u‖∞ 6 1.

4 Infinitely many solutions

The existence and localization result, Theorem 3, yields multiplicity results for prob-
lem (1) when several couples of numbers r1 and r2 satisfying conditions (10) and (11)
exist such that the corresponding intervals (r,R) are disjoint.

Taking this into account and using asymptotic conditions, it is possible to derive
a multiplicity result concerning the existence of infinitely many positive solutions for
problem (1).

Theorem 4. Assume that the function f satisfies conditions (H1)–(H3). Moreover, assume
that f is a nondecreasing function with respect to the second variable. If the following
asymptotic condition

(c)
lim inf
x→∞

αφ−1(
∫ 1

0
f(s, x) ds) +

∫ 1

0
φ−1(

∫ 1

r
f(s, x) ds) dr

x
< 1,

lim sup
x→∞

αφ−1(
∫ 1

c
f(s,Mx) ds) +

∫ 1

c
φ−1(

∫ 1

r
f(s,Mx) ds) dr

x
> 1

holds, then problem (1) has a sequence of positive solutions (un)n∈N such that
‖un‖∞ →∞ as n→∞.

If the condition

(d)
lim inf
x→0

αφ−1(
∫ 1

0
f(s, x) ds) +

∫ 1

0
φ−1(

∫ 1

r
f(s, x) ds) dr

x
< 1,

lim sup
x→0

αφ−1(
∫ 1

c
f(s,Mx) ds) +

∫ 1

c
φ−1(

∫ 1

r
f(s,Mx) ds) dr

x
> 1

holds, then problem (1) has a sequence of positive solutions (un)n∈N such that
‖un‖∞ → 0 as n→∞.

Proof. Notice that, in view of Remarks 2 and 3, condition (c) ensures that there exist two
sequences (r1,n)n∈N and (r2,n)n∈N such that

0 < r1,n < r2,n < r1,n+1 for n ∈ N, r1,n →∞ as n→∞, (19)
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and for each n ∈ N, the numbers r1,n and r2,n satisfy (10) and (11). Therefore, for each
n ∈ N, Theorem 3 ensures the existence of a solution un such that

r1,n 6 ‖un‖∞ 6 r2,n. (20)

Now (19) and (20) show that the solutions un are distinct being located in disjoint annular
sets, and also that ‖un‖∞ →∞ as n→∞.

In a similar way, condition (d) and Theorem 3 ensure the existence of a sequence of
positive solutions (un)n∈N in the conditions of the statement.

We illustrate Theorem 4 by two examples where the nonlinearities are discontinuous
perturbations of those in [23, Addendum, Examples 4.2 and 4.3].

Example 2. Consider the problem

−u′′ = f(u), u(0) = u′(1) = 0, (21)

where
f(u) := αu+ β[u] + ρu sin

(
δ ln(u+ 1)

)
,

α, β, ρ and δ are positive constants, and [x] denotes the integer part of x.
Assume that

α > ρ(δ + 1). (22)

Then, it is easy to verify that f takes nonnegative values and is nondecreasing on R+.
Obviously, f is discontinuous at the natural numbers (the points where the integer part
function is discontinuous) and so,

γn(t) ≡ n and In = [0, 1] for n ∈ N.

Observe that infu∈[1/2,∞) f(u) > 0, and thus condition (16) in Remark 4 is clearly
satisfied for the functions γn, n ∈ N , and φ(u) = u (a = b = +∞).

Now we compute the limits in condition (c) from Theorem 4, and we find

lim inf
x→∞

∫ 1

0

∫ 1

r
f(x) dsdr

x
6

1

2
(α+ β − ρ),

lim sup
x→∞

∫ 1

c

∫ 1

r
f(cx) dsdr

x
>
c(1− c)2

2

(
α+

β

2
+ ρ

)
.

Hence, if we choose c = 1/2, then the following inequalities

α+
β

2
+ ρ > 16 and α+ β − ρ < 2 (23)

guarantee that condition (c) holds. Therefore, under conditions (22) and (23), Theorem 4
ensures that problem (21) has a sequence of positive solutions (un)n∈N with ‖un‖∞→∞
as n→∞.

For example, conditions (22) and (23) hold for the following values of parameters:

α = 8.5, β = 0.5, ρ = 8, δ = 0.05.
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In the next example, φ is not the identity function, while the right-hand side is a slight
modification of that from Example 2.

Example 3. Consider the problem

−
(
|u′|p−2u′

)′
= f(u), u(0) = u′(1) = 0, (24)

where p > 1,
f(u) := g(u)p−1,

g(u) = αu+ β[u] + ρu sin

(
δ ln

1

u

)
for u > 0, g(0) = 0,

and α, β, ρ, δ are positive constants.
Here, φ : R→ R,

φ(x) = |x|p−2x and φ−1(x) = |x|1/(p−1) signx.

As in the previous example, under assumption (22), f is nonnegative and nondecreasing
on R+. Also, f is discontinuous at the natural numbers, which are admissible discontinu-
ity points.

Let us compute the limits in condition (c) from Theorem 4. We obtain

lim inf
x→∞

∫ 1

0
φ−1(

∫ 1

r
f(x) ds) dr

x
=
p− 1

p
lim inf
x→∞

g(x)

x
6
p− 1

p
(α+ β − ρ),

lim sup
x→∞

∫ 1

c
φ−1(

∫ 1

r
f(cx) ds) dr

x
=
p− 1

p
(1− c)p/(p−1) lim sup

x→∞

g(cx)

x

>
p− 1

p
(1− c)p/(p−1)c

(
α+

β

2
+ ρ

)
.

If we choose c = 1/2, then the following inequalities

α+
β

2
+ ρ >

4p

p− 1
21/(p−1) and α+ β − ρ < p

p− 1
(25)

guarantee that condition (c) holds. Therefore, under conditions (22) and (25), Theorem 4
ensures that problem (24) has a sequence of positive solutions (un)n∈N with ‖un‖∞→∞
as n→∞.

Moreover, we have

lim inf
x→0

∫ 1

0
φ−1(

∫ 1

r
f(x) ds) dr

x
=
p− 1

p
(α− ρ),

lim sup
x→0

∫ 1

c
φ−1(

∫ 1

r
f(cx) ds) dr

x
=
p− 1

p
(1− c)p/(p−1)c(α+ ρ).
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If we choose c = 1/2, then the following inequalities

α+ ρ >
4p

p− 1
21/(p−1) and α− ρ < p

p− 1
(26)

guarantee that condition (d) holds. Hence, under conditions (22) and (26), Theorem 4
implies that problem (24) has a sequence of positive solutions (vn)n∈N with ‖vn‖∞ → 0
as n→∞.

Let us remark that both conditions (25) and (26) hold if

α+ ρ >
4p

p− 1
21/(p−1) and α+ β − ρ < p

p− 1
(27)

when problem (24) has two sequences of positive solutions (un)n∈N, (vn)n∈N with
‖un‖∞ →∞ and ‖vn‖∞ → 0 as n→∞.

Notice that for p > 2 since 21/(p−1) 6 2 and 1 < p/(p − 1) 6 2), in order to fulfill
conditions (27), it suffices that

α+ ρ > 16 and α+ β − ρ 6 1.

For example, these inequalities and (22) are satisfied for the following values of parame-
ters:

α = 8.5, β = 0.25, ρ = 8, δ = 0.05.
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