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Abstract. In this paper, we propose an HBV viral infection model with continuous age structure
and nonlinear incidence rate. Asymptotic smoothness of the semi-flow generated by the model is
studied. Then we calculate the basic reproduction number and prove that it is a sharp threshold
determining whether the infection dies out or not. We give a rigorous mathematical analysis on
uniform persistence by reformulating the system as a system of Volterra integral equations. The
global dynamics of the model is established by using suitable Lyapunov functionals and LaSalle’s
invariance principle. We further investigate the global behaviors of the HBV viral infection model
with saturation incidence through numerical simulations.

Keywords: age structure, saturation incidence, asymptotic smoothness, Lyapunov functional,
global stability.

1 Introduction

Over the past few years, within-host virus models have been studied extensively to de-
scribe the dynamics inside the host of various infectious diseases such as HIV, HBV and
so on. For it is not easy to obtain accurate information of patients, specific hypotheses
testing based on clinical data is an arduous task. Therefore, many researchers have made
great efforts by mathematical models in this area of research [4, 8, 10, 13, 15–17, 26],
presenting assumptions that the death rate and virus production rate of infected cells are
both constant in their works. However, biological observations show that the death rate of
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infected cells has been different during the period of infection, and there exists a maximal
bud rate of viruses when virus particles gradually bud out of the host cell until the cell
is dead. Thus, age structure is employed to make HBV infection model more realistic. In
particular, the fact has been explained that the mortality rate and viral production rate of
infected cells are functions of the infection age of the infected cells instead of constants.

It is worth noting that there exists direct cell-to-cell infection in vivo spread of the
virus. Besides, the infection is more potent and efficient means of virus propagation
than the virus-to-cell infection mechanism. Viral particles can be simultaneously trans-
ferred from infected target cells to uninfected ones through virological synapses during
cell-to-cell infection. Thus, it is necessary to understand the viral dynamics in terms of
applications. There exist less age-structured virus models to take both virus-to-cell and
cell-to-cell infection into consideration. Recently, Wang et al. [20] established an HIV
infection model containing the two modes of infection and allowing age-dependent death
rate of infected cells and age-dependent production rate of virus. Meanwhile, considering
antiretroviral therapy of HIV, Xu et al. [27] has proposed the following model:

T ′(t) = λ− dT (t)− (1− ηrt)β1T (t)VI(t)− T (t)

∞∫
0

(
1− η(2)

p

)
β2(a)i(t, a) da,

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −δ(a)i(t, a),

i(t, 0) = (1− ηrt)β1T (t)VI(t) + T (t)

∞∫
0

(
1− η(2)

p

)
β2(a)i(t, a) da,

V ′I (t) = (1− η(1)
p )

∞∫
0

p(a)i(t, a) da− µVI(t),

V ′NI(t) = η(1)
p

∞∫
0

p(a)i(t, a) da− µVNI(t).

There is no certain observation suggesting that viruses infect cells with linear inci-
dence rate. Motivated by this fact, several within-host virus dynamics models have been
constructed to investigate the dynamics of models to take saturation incidence rate or other
nonlinear incidence rate into consideration [2, 6, 7, 9, 19, 21–25, 28, 29]. However, almost
none of these investigations take both age structure and cell-to-cell infection into account.
For biological consideration, we introduce a more general incidence rate to formulate the
following model:

x′(t) = λ− dx(t)− β1x(t)f(vI)− x(t)

∞∫
0

(
1− η(2)

p

)
β2(a)i(t, a) da,

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −δ(a)i(t, a),

(1a)
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i(t, 0) = β1x(t)f(vI) + x(t)

∞∫
0

(
1− η(2)

p

)
β2(a)i(t, a) da,

v′I(t) =
(
1− η(1)

p

) ∞∫
0

p(a)i(t, a) da− µvI(t),

v′NI(t) = η(1)
p

∞∫
0

p(a)i(t, a) da− µvNI(t)

(1b)

with initial condition

x(0) = x0 > 0, i(0, a) = i0(a) =: ϕ(a) ∈ L1
+(0,∞),

vI(0) = vI0 > 0, vNI(0) = vNI0 > 0.
(2)

Here x(t), vI(t), vNI(t) denote the concentration of susceptible cells, infectious virions
and noninfectious virions at time t, respectively. The density of infected target cells of
infection age a (i.e., the time that has elapsed since an HBV virion has penetrated cell)
at time t is denoted by i(t, a). λ is the recruitment rate of healthy susceptible cells, d is
the per capita death rate of uninfected cells, δ(a) is the age-dependent remove rate of
infected cells, µ is the clearance rate of virions, β1 is the infection rate of free virus.
η

(1)
p denotes the efficacy of the PI inhibitor. We also assume that the efficacy of the PI

inhibitor, which blocks the cell-to-cell infection is denoted by η(2)
p . The function β2(a) ∈

L∞+ (0,∞) is the infection-age specific transmission rate of reproductively infected cells,
which is Lipschitz continuous and has a finite essential upper bound. p(a) is the viral
production rate of an infected cell with age a. We also assume that functions p(a) and
δ(a) are all Lipschitz continuous and satisfy the conditions: (i) δ(a), p(a) ∈ L∞+ (0,∞)
and δ+ := ess supa∈[0,∞) δ(a) < +∞, p+ := ess supa∈[0,∞) p(a) < +∞; (ii) there exits
a positive constant δmin such that δ(a) > δmin for all a > 0; (iii) there exits a maximum
age â > 0 for the viral production such that p(a) > 0 for a ∈ (0, â).

Evidently, the last equation of system (1) is independent to the others because vNI(t)
does not exist in the first four equations of system (1). Let k(a) = (1 − η(2)

p )β2(a) and
q(a) = (1− η(1)

p )p(a) to simplify the notation. Then we consider the following reduced

Figure 1. Flowchart of HBV infection in system (1).
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system:

x′(t) = λ− dx(t)− β1x(t)f(vI)− x(t)

∞∫
0

k(a)i(t, a) da,

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −δ(a)i(t, a),

i(t, 0) = β1x(t)f(vI) + x(t)

∞∫
0

k(a)i(t, a) da,

v′I(t) =

∞∫
0

q(a)i(t, a) da− µvI(t).

(3)

Denote function space Z = R+ × L1
+(0,∞)× R+ equipped with the norm

∥∥(z1, z2, z3)
∥∥
Z = z1 +

∞∫
0

∣∣z2(a)
∣∣ da+ z3.

By the standard theory of age-structured model, it can be verified that system (3) with
initial condition (2) has a unique nonnegative solution. Thus, system (3) generates a con-
tinuous semi-flow Φ : R+ × Z → Z , which takes the form Φ(t, z0) = Φt(z0) =
(x(t), i(t, ·), vI(t)), t > 0, z0 = (x0, i0(·), vI(0)) ∈ Z , with

∥∥Φt(z0)
∥∥
Z =

∥∥(x(t), i(t, ·), vI(t)
)∥∥
Z = x(t) +

∞∫
0

∣∣i(t, a)
∣∣da+ vI(t).

The organization of this paper is as follows. In Section 2, we present some prelim-
inaries results of the system (3). Asymptotic smoothness of the semi-flow generated by
system (3) is analyzed. Then we study the existence of equilibria and obtain the expression
of the basic reproduction number R0. In Section 3, the global stability of equilibria is
proved. More details concerning the global stability analysis of virus models, we refer
readers to [5–7, 9, 14, 18–25, 28, 29].

2 Preliminaries

To study the global dynamics of the model, it is necessary to make assumptions about
f(vI) as follows.

Assumption 1. We assume that:

(i) f(vI) is a continuously differentiable nonnegative function;
(ii) f(0) = 0;

(iii) f ′(vI)vI 6 f(vI) 6 f ′(0)vI .

https://www.mii.vu.lt/NA
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Set I(t) =
∫∞

0
i(t, a) da, which represents the total number of infected cells at

time t. Biologically, there exists a finite maximum age, thus it is reasonable to assume
that lima→∞ i(t, a) = 0. Then from system (3) we have

(
x(t) + I(t)

)′
= λ− dx(t)− i(t, 0) +

∞∫
0

(
−∂i(t, a)

∂a
− δ(a)i(t, a)

)
da

= λ− dx(t)−
∞∫

0

δ(a)i(t, a) da

6 λ−min{d, δmin}
(
x(t) + I(t)

)
.

Thus, x(t) +
∫∞

0
i(t, a) da 6 λ/min{d, δmin}.

According to the assumption of p(a) and the fourth equation of system (3), it is easy
to get

v′I(t) 6
(
1− η(1)

p

)
p+

∞∫
0

i(t, a) da− µvI(t),

thus, we have vI(t) 6 (1− η(1)
p )p+λ/(µmin{d, δmin}). Integrating the second equation

of system (3) along the characteristic line t− a = const yields

i(t, a) =

{
i(t− a, 0)e−

∫ a
0
δ(τ) dτ , t > a,

i0(a− t)e−
∫ a
a−t δ(τ) dτ , a > t.

(4)

Obviously, i(a, t) remains nonnegative for nonnegative initial condition. Suppose that
there exists t0 such that x(t0) = 0 and x(t) > 0 for t ∈ [0, t0). Then x′(t0) = λ > 0,
which implies that x(t) > 0 for all t > 0. Furthermore, from the forth equation of
system (3) we have v′I(t) + µvI(t) =

∫∞
0
q(a)i(t, a) da, which gives d(vI(t)e

µt)/dt =

eµt
∫∞

0
q(a)i(t, a) da, then we have vI(t) = e−µtvI(0)+

∫ t
0

e−µ(t−s) ∫∞
0
q(a)i(t, a) da ds.

Thus, vI(t) > 0 for all positive initial data, and f(vI(t)) > 0 for all positive initial data,
which implies that i(t, a) > 0. Then the positive invariant set of system (3) can be given as

D =

{
(x, i, vI): x+

∞∫
0

i(t, a) da 6
λ

min{d, δmin}
, vI 6

(1− η(1)
p )p+λ

µmin{d, δmin}

}
.

2.1 Asymptotic smoothness

To analyze the global dynamics of system (3), it is necessary to prove the smoothness of
the semi-flow generated by system (3). Firstly, we introduce some lemmas as follows.

Lemma 1. For each t > 0, suppose Φ(t) = Θ(t) + U(t) : Z → Z has the property that
U(t) is complete continuous and there is a continuous function g : R+×R+ → R+ such
that g(t, r) → 0 as t → 0 and Θ(t)χ 6 g(t, r) if |χ| < r. Then Φ(t) is asymptotically
smooth.

Nonlinear Anal. Model. Control, 24(1):47–72
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Lemma 2. If Φ(t) : Z → Z , t > 0 is asymptotically smooth point dissipative and orbits
of bounded sets are bounded, then there exists a global attractor A0. If Φ(t) is also one-
to-one on A0, then Φ(t)/A0 is a Cr-group. In addition, if Z is a Banach space, then A0

is connected.

By using the similar method in [1,12], we can state the following result, which shows
that system (3) has a global compact attractor.

Lemma 3. Assume that R0 > 1, then there exists A0, a compact subset of Z0, which is
a global attractor for the semi-flow of system (3) in Z0. Moreover, A0 is invariant under
the semi-flow, that is,

Ψ(t, χ0) ⊆ A0 ∀χ0 ∈ A0, t > 0.

Proof. Denote
Ψ
(
t, x0, i0(·), vI0

)
=
(
x(t), i(t, ·), vI(t)

)
,

Ψ : [0,∞) × Z0 → Z0 with Ψ(t, Ψ(s, ·)) = Ψ(t + s, ·) for all t, s > 0, and Ψ(0, ·)
being the identity map. In order to utilize Lemmas 1 and 2, we decompose the solution
semi-flow into two parts Ψ = Ψ̂(t, χ0) + Ψ̃(t, χ0). This decomposition is done in such
a way that limt→∞ Ψ̂(t, χ0) = 0 for every χ0 ∈ Z0, and for a fixed t and any bounded
set Ω in Z0, then the set {Ψ̃(t, χ0): χ0 ∈ Ω} is precompact. Here Ψ̂ and Ψ̃ are defined as
follows:

Ψ̂(t, x0, i0(·), v0I) =
(
0, î(t, ·), 0

)
,

Ψ̃(t, x0, i0(·), v0I) =
(
x(t), ĩ(t, ·), vI(t)

)
.

Notice that x(t) and vI(t) satisfy system (3) with i(t, a) = î(t, a) + ĩ(t, a). The function
î(t, a) is the solution of the following system:

ît(t, a) + îa(t, a) = −δ(a)̂i(t, a),

î(t, 0) = 0, î(0, a) = i0(a),
(5)

and ĩ(t, a) is the solution of the following system:

ĩt(t, a) + ĩa(t, a) = −δ(a)̃i(t, a),

ĩ(t, 0) = β1xf(vI) +

∞∫
0

k(a)̃i(t, a) da, ĩ(0, a) = 0.
(6)

It is easy to obtain that î(t, a) and ĩ(t, a) are nonnegative. Letw(t) =
∫∞

0
î(t, a) da. Thus,

(5) implies that w′(t) 6 −δminw(t). Therefore, we have limt→∞ Ψ̂(t, χ0) = 0 for every
χ0 ∈ Z0. In order to show that the set {Ψ̃(t, χ0): x0 ∈ Ω} is precompact for that fixed t
and any bounded setΩ in Z0, we only need to verify the set {Ψ̃(t, χ0): χ0 ∈ Z0, fixed t}
is precompact by utilizing Fréchet–Kolmogorov theorem. On the one hand, it holds that
{Ψ̃(t, χ0): χ0 ∈ Z0, fixed t} ⊂ Z0, and {Ψ̃(t, χ0): χ0 ∈ Z0, fixed t} is bounded due to
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that Z0 is bounded. On the other hand, from (6) we have ĩ(t, a) = 0 for a > t. The third
condition of Fréchet–Kolmogorov theorem is satisfied. Furthermore, in order to verify the
second condition, we need to show that the L1-norm of ∂ĩ(t, a)/∂a is bounded. Actually,
from (6) we obtain that

ĩ(t, a) =

{
φ̃(t− a)e−

∫ a
0
δ(τ) dτ , t > a,

0, t < a,
(7)

where φ̃(t) = x(t)(β1f(vI) +
∫ t

0
k(a)φ̃(t − a)e−

∫ a
0
δ(τ) dτ da). Since, φ̃(t) is bounded

for x0 ∈ Z0, and x(t), vI(t) are bounded. Thus, we obtain from (7) that

φ̃(t) 6 ξ1

t∫
0

φ̃(t− a) da+ ξ2,
∣∣φ̃′(t)∣∣ 6 ξ3

t∫
0

∣∣φ̃′(t− a)
∣∣da+ ξ4,

where ξi (i = 1, 2, 3, 4) are constants that depend on the bounds of the parameters as well
as the bounds of the solution.

Making use of Gronwall’s inequality, we have

φ̃(t) 6 ξ2eξ1t, φ̃′(t) 6 ξ4eξ3t. (8)

Equation (7) implies that∣∣∣∣∂ĩ(t, a)

∂a

∣∣∣∣ =

{
|φ̃′(t− a)|e−

∫ a
0
δ(τ) dτ + φ̃(t− a)δ(a)e−

∫ a
0
δ(τ) dτ , t > a,

0, t < a.
(9)

Together with (8) and (9), we have∥∥∥∥∂ĩ(t, a)

∂a

∥∥∥∥ 6 ξ4eξ3t
∞∫

0

e−
∫ a
0
δ(τ) da+ ξ2eξ1t

∞∫
0

δ(a)e−
∫ a
0
δ(τ) dτ da < ξ.

Notice that
∞∫

0

∣∣̃i(t, a+ h)− ĩ(t, a)
∣∣da 6

∥∥∥∥∂ĩ(t, a)

∂a

∥∥∥∥ |h| 6 ξ|h|.

Thus, it is easy to show that the above integral can be made arbitrary small uniformly in
the family of functions. This completes the proof of Lemma 3.

2.2 Existence and uniqueness

Define the basic reproduction number

R0 =
λ(β1f

′(0)
∫∞

0
q(a)e−

∫ a
0
δ(τ) dτ da+ µ

∫∞
0
k(a)e−

∫ a
0
δ(τ) dτ da)

dµ
,

Nonlinear Anal. Model. Control, 24(1):47–72
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which means the average number of secondary infection produced by one infected cell
during its period of infection. From the expression of R0 it is easy to see that the virus-
to-cell infection always exists and the cell-to-cell infection can be prevented by increasing
the dose of PI (protease inhibitor).

System (3) always has a infection free steady state E0 = (x0, i0(a), v0
I ), where x0 =

λ/d, i0(a) = 0, v0
I = 0. Moreover, there may exist a nonnegative steady state E∗ =

(x∗, i∗(a), v∗I ), where x∗, i∗(a), v∗I are nonnegative and satisfy the following equations:

λ− dx∗ − β1x
∗f(v∗I )− x∗

∞∫
0

k(a)i∗(a) da = 0,

di∗(a)

da
= −δ(a)i∗(a),

∞∫
0

q(a)i∗(a) da− µv∗I = 0,

i∗(0) = β1x
∗f(v∗I ) + x∗

∞∫
0

k(a)i∗(a) da.

(10)

From the first equation of (10) we get

x∗ =
λ

d+ β1f(v∗I ) +
∫∞

0
k(a)i∗(a) da

.

Solving the second equation of (10) yields

i∗(a) = i∗(0)e−
∫ a
0
δ(τ) dτ . (11)

From the third equation of (10) we have

i∗(0) =
µv∗I∫∞

0
q(a)e−

∫ a
0
δ(τ) dτ da

.

From the first and the fourth equations of (10) we get

λ− dx∗ − i∗(0) = λ− d∫∞
0
q(a)e−

∫a
0 δ(τ) dτ da

µv∗I
β1f(v∗I ) +

∫∞
0
k(a)e−

∫ a
0
δ(τ) dτ da

− µv∗I∫∞
0
q(a)e−

∫ a
0
δ(τ) dτ da

= λ− µdv∗I
β1f(v∗I )

∫∞
0
q(a)e−

∫ a
0
δ(τ) dτ da+ µv∗I

∫∞
0
k(a)e−

∫ a
0
δ(τ) dτ da

− µv∗I∫∞
0
q(a)e−

∫ a
0
δ(τ) dτ da

= 0.
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Let q =
∫∞

0
q(a)e−

∫ a
0
δ(τ) dτ da, k =

∫∞
0
k(a)e−

∫ a
0
δ(τ) dτ da. Set

g(v) = λ− µdv

qβ1f(v) + µkv
− µv

q
.

Then

g′(v) = −µdqβ1
f(v)− vf ′(v)

(qβ1f(v) + µkv)2
− µ

q
.

According to the Assumption 1, f(v)− vf ′(v) > 0, g′(v) remains negative for nonnega-
tive initial condition

g(0) = lim
v→0

g(v) = λ− dµ

qβ1f ′(0) + µk
> 0 ifR0 > 1.

Therefore, whenR0 > 1, there always exists a nonnegative v∗I satisfying g(v∗I ) = 0.

Theorem 1. System (3) always has a steady state E0(x0, 0, 0); system (3) has a unique
positive steady state E∗(x∗, i∗(a), v∗I ) if and only ifR0 > 1.

3 Stability analysis of steady states

In this section, we study the local and global stability of the infection-free steady state E0

and the infection steady state of system (3). The local stability of the two steady states
is studied by using the method of characteristic equations, while the global dynamics of
system (3) is discussed by constructing Lyapunov functionals.

3.1 Stability of infection-free steady state

Theorem 2. If R0 < 1, then the infection-free steady state E0 of system (3) is locally
asymptotically stable. Otherwise, it is unstable.

Proof. Let x1(t) = x(t) − x0, i1(t, a) = i(t, a), v1(t) = vI(t). Linearizing system (3)
at E0 leads to the following system:

x′1(t) = −dx1(t)− β1x
0f ′(0)v1(t)− x0

∞∫
0

k(a)i1(t, a) da,

∂i1(t, a)

∂t
+
∂i1(t, a)

∂a
= −δ(a)i1(t, a),

v′1(t) =

∞∫
0

q(a)i1(t, a) da− µv1(t),

i1(t, 0) = β1x
0f ′(0)v1(t) + x0

∞∫
0

k(a)i1(t, a) da.

Nonlinear Anal. Model. Control, 24(1):47–72
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To analyze the asymptotic behavior of E0, we set x1(t) = x1eut, i1(t, a) = i1(a)eut and
v1(t) = v1eut. Thus, we get the following equations:

(u+ d)x1 = −β1x
0f ′(0)v1 − x0

∞∫
0

k(a)i1(a) da,

di1(a)

da
= −

(
u+ δ(a)

)
i1(a),

(u+ µ)v1 =

∞∫
0

q(a)i1(a) da,

i1(0) = β1x
0f ′(0)v1 + x0

∞∫
0

k(a)i1(a) da.

(12)

Solving (12) gives

i1(a) = i1(0)e−uae−
∫ a
0
δ(τ) dτ ,

v1 =
i1(0)

u+ µ

∞∫
0

q(a)e−uae−
∫ a
0
δ(τ) dτ da.

(13)

Substituting (13) into the last equation of (12), we can get

1

u+ µ
β1
λ

d
f ′(0)

∞∫
0

q(a)e−uae−
∫ a
0
δ(τ) dτ da

+
λ

d

∞∫
0

k(a)e−uae−
∫ a
0
δ(τ) dτ da = 1. (14)

Define a function G(u) that denotes the left hand of (14). Obviously, G(u) is a continu-
ously differentiable function with limu→∞G(u) = 0. It is easy to see that G(0) = R0,
and by direct computation, it shows that G′(u) < 0, and therefore, G(u) is a decreasing
function. Hence, any real solution of (14) is negative if R0 < 1, and positive if R0 > 1.
Thus, if R0 > 1, the infection-free steady state E0 is unstable. Next, we show that (3.3)
has no complex solutions with nonnegative real part ifR0 < 1. Set

F (a) = β1
λ

d
f ′(0)q(a)e−

∫ a
0
δ(τ) dτ , H(a) =

λ

d
k(a)e−

∫ a
0
δ(τ) dτ .

Thus, we have

G(u) =
1

u+ µ

∞∫
0

e−uaF (a) da+

∞∫
0

e−uaH(a) da.
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ForR0 < 1, let u = ξ + ηi be an arbitrary complex root to (14) with ξ > 0. Then

∣∣G(u)
∣∣ =

∣∣∣∣∣ 1

u+ µ

∞∫
0

e−uaF (a) da+

∞∫
0

e−uaH(a) da

∣∣∣∣∣
6

∣∣∣∣∣ 1

|ξ + ηi + µ|

∞∫
0

e−(ξ+ηi)aF (a) da

∣∣∣∣∣+

∣∣∣∣∣
∞∫

0

e−(ξ+ηi)aH(a) da

∣∣∣∣∣
=

1√
(ξ + µ)2 + η2

∞∫
0

∣∣e−(ξ+ηi)a
∣∣F (a) da+

∞∫
0

∣∣e−(ξ+ηi)a
∣∣H(a) da

6
1

ξ + µ

∞∫
0

e−ξaF (a) da+

∞∫
0

e−ξaH(a) da

=
∣∣G(ξ)

∣∣ 6 G(0) = R0 < 1. (15)

It follows from (15) that (14) has a solution u = ξ + ηi only if ξ < 0. Thus, any solution
of (14) must have a negative real part. Therefore, the infection-free steady state E0 is
locally asymptotically stable ifR0 < 1.

Theorem 3. If R0 6 1, then the infection-free steady state E0 of system (3) is globally
asymptotically stable.

Proof. We consider the following Lyapunov functional V1 = V11 + V12 + V13, where

V11 = x− x0 − x0 ln
x

x0
, V12 =

∞∫
0

Φ(a)i(t, a) da, V13 = β1
x0

µ
f ′(0)vI .

Here the nonnegative kernel function Φ(a) will be determined later. Using (10), differen-
tiating V1 along the solutions of system (3) yields

V ′11 =

(
1− x0

x

)(
dx0 − dx− β1xf(vI)− x

∞∫
0

k(a)i(t, a) da

)

= −d
x

(
x− x0

)2 − β1xf(vI)− x
∞∫

0

k(a)i(t, a) da

+ β1x
0f(vI) + x0

∞∫
0

k(a)i(t, a) da

= −d
x

(
x− x0

)2 − i(t, 0) + β1x
0f(vI) + x0

∞∫
0

k(a)i(t, a) da.
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Using (4), V12 becomes

V12 =

∞∫
0

Φ(a)i(t, a) da

=

t∫
0

Φ(a)i(t− a, 0)e−
∫ a
0
δ(τ) dτ da+

∞∫
t

Φ(a)i0(a− t)e−
∫ a
a−t δ(τ) dτ da

=

t∫
0

Φ(t− r)i(r, 0)e−
∫ t−r
0

δ(τ) dτ dr +

∞∫
0

Φ(t+ r)i0(r)e−
∫ t+r
r

δ(τ) dτ dr.

Differentiating V12 yields

V ′12 = Φ(0)i(t, 0) +

t∫
0

Φ′(t− r)i(r, 0)e−
∫ t−r
0

δ(τ) dτ dr

−
t∫

0

δ(t− r)Φ(t− r)i(r, 0)e−
∫ t−r
0

δ(τ) dτ dr

+

∞∫
0

Φ′(t+ r)i0(r)e−
∫ t+r
r

δ(τ) dτ dr

−
∞∫

0

δ(t+ r)Φ(t+ r)i0(r)e−
∫ t+r
r

δ(τ) dτ dr

= Φ(0)i(t, 0) +

∞∫
0

(Φ′(a)− δ(a)Φ(a))i(t, a) da.

Also, using (10), differentiating V13 along the solutions of system (3) yields

V ′13 = β1
x0

µ
f ′(0)

dvI
dt

= β1
x0

µ
f ′(0)

( ∞∫
0

q(a)i(t, a) da− µvI

)

= β1
x0

µ
f ′(0)

∞∫
0

q(a)i(t, a) da− β1x
0f ′(0)vI .

According to Assumption 1, it is easy to get

V ′13 6 β1
x0

µ
f ′(0)

∞∫
0

q(a)i(t, a) da− β1x
0f(vI).
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Adding V11, V12, V13 together gives

V ′1 = −d
x

(x− x0)2 − i(t, 0) + x0

∞∫
0

k(a)i(t, a) da+ β1x
0f(vI)

+ Φ(0)i(t, 0) +

∞∫
0

(
Φ′(a)− δ(a)Φ(a)

)
i(t, a) da

+ β1
x0

µ
f ′(0)

∞∫
0

q(a)i(t, a) da− β1x
0f ′(0)vI

6 −d
x

(
x− x0

)2 − i(t, 0) + x0

∞∫
0

k(a)i(t, a) da+ Φ(0)i(t, 0)

+

∞∫
0

(
Φ′(a)− δ(a)Φ(a)

)
i(t, a) da+ β1

x0

µ
f ′(0)

∞∫
0

q(a)i(t, a) da

= −d
x

(
x− x0

)2
+
(
Φ(0)− 1

)
i(t, 0)

+

∞∫
0

(
β1
x0

µ
f ′(0)q(a) + x0k(a) + Φ′(a)− δ(a)Φ(a)

)
i(t, a) da.

Now let

Φ(a) =

∞∫
a

(
β1
x0

µ
f ′(0)q(θ) + k(θ)x0

)
e−

∫ θ
a
δ(τ) dτ dθ.

By differentiating the above equation, it can be verified that

Φ′(a) = −β1
x0

µ
f ′(0)q(a)− x0k(a) + δ(a)Φ(a).

Notice that Φ(0) = R0. Hence, it follows that

V ′1 6 −d
x

(
x− x0

)2
+ (R0 − 1)i(t, 0) 6 0 ifR0 6 1.

Therefore, R0 6 1 ensures that V ′1(t) 6 0. It can be verified that the largest invariant
set where V ′1 = 0 is the singleton E0. Thus, all solutions of system (3) converge to
the infection-free steady state E0. Therefore, E0 is globally asymptotically stable when
R0 6 1.

3.2 Local stability of infection steady state

Theorem 4. If R0 > 1, then the infection steady state E∗ of system (3) is locally
asymptotically stable.
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Proof. To show the local stability, we linearize the system (3) around the infection steady
state E∗. In particular, we introduce the perturbation variables x2(t) = x(t) − x∗,
i2(t, a) = i(t, a)− i∗(a), v2(t) = vI(t)− v∗I , which leads to

x′2(t) = −dx2(t)− β1x
∗f ′(v∗I )v2(t)− x∗

∞∫
0

k(a)i2(t, a) da

− β1f(v∗I )x2(t)− x2(t)

∞∫
0

k(a)i∗(a) da,

∂i2(t, a)

∂t
+
∂i2(t, a)

∂a
= −δ(a)i2(t, a),

v′2(t) =

∞∫
0

q(a)i2(t, a) da− µv2(t),

i2(t, 0) = β1x
∗f ′(v∗I )v2(t) + x∗

∞∫
0

k(a)i2(t, a) da

+ β1f(v∗I )x2(t) + x2(t)

∞∫
0

k(a)i∗(a) da.

To analyze the asymptotic behavior of E∗, we look for solutions of the form x2(t) =
x2eut, i2(t, a) = i2(a)eut and v2(t) = v2eut. Thus, we can consider the following
eigenvalue problem:

ux2 = −dx2 − β1x
∗f ′(v∗I )v2 − x∗

∞∫
0

k(a)i2(a) da− β1f(v∗I )x2

− x2

∞∫
0

k(a)i∗(a) da,

di2(a)

da
= −ui2(a)− δ(a)i2(a),

uv2 =

∞∫
0

q(a)i2(a) da− µv2,

i2(0) = β1x
∗f ′(v∗I )v2 + x∗

∞∫
0

k(a)i2(a) da+ β1f(v∗I )x2

+ x2

∞∫
0

k(a)i∗(a) da.

(16)
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Solving (16), we have

i2(a) = i2(0)e−uae−
∫ a
0
δ(τ) dτ ,

x2 = − i2(0)

u+ d
, v2 =

i2(0)

u+ µ

∞∫
0

q(a)e−uae−
∫ a
0
δ(τ) dτ da.

(17)

Substituting (17) into the last equation of (16) yields

−
β1f(v∗I ) +

∫∞
0
k(a)i∗(a) da

u+ d
+
β1x
∗f ′(v∗I )

u+ µ

∞∫
0

q(a)e−uae−
∫ a
0
δ(τ) dτ da

+ x∗
∞∫

0

k(a)e−uae−
∫ a
0
δ(τ) dτ da = 1.

We rewrite the equation in the following form:

β1x
∗f ′(v∗I )

u+ µ

∞∫
0

q(a)e−uae−
∫ a
0
δ(τ) dτ da+ x∗

∞∫
0

k(a)e−uae−
∫ a
0
δ(τ) dτ da

=
u+ d+ β1f(v∗I ) +

∫∞
0
k(a)i∗(a) da

u+ d
. (18)

It is not hard to see that for u with Re u > 0, the right side of the characteristic
equation (18) satisfies the following inequation:∣∣∣∣u+ d+ β1f(v∗I ) +

∫∞
0
k(a)i∗(a) da

u+ d

∣∣∣∣ > 1.

With respect to the left side of (18), for u with Reu > 0, we have∣∣∣∣∣β1x
∗f ′(v∗I )

u+ µ

∞∫
0

q(a)e−uae
−
a∫
0

δ(τ) dτ
da+ x∗

∞∫
0

k(a)e−uae−
∫ a
0
δ(τ) dτ da

∣∣∣∣∣
6
β1x
∗f ′(v∗I )

|u+ µ|

∣∣∣∣∣
∞∫

0

q(a)e−uae−
∫ a
0
δ(τ) dτ da

∣∣∣∣∣+

∣∣∣∣∣x∗
∞∫

0

k(a)e−uae−
∫ a
0
δ(τ) dτ da

∣∣∣∣∣
6
β1x
∗f ′(v∗I )

µ

∞∫
0

q(a)e−
∫ a
0
δ(τ) dτ da+ x∗

∞∫
0

k(a)e−
∫ a
0
δ(τ) dτ da

6
β1x
∗f(v∗I )

µv∗I

∞∫
0

q(a)e−
∫ a
0
δ(τ) dτ da+ x∗

∞∫
0

k(a)e−
∫ a
0
δ(τ) dτ da

= 1.
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Hence, for u with Re u > 0, the right side of (18) is strictly larger than one, while the left
side of (18) is smaller than 1. Therefore, the contradiction implies that the characteristic
equation (18) has no roots with non-negative real part. Thus, we have proved that the
infection steady state E∗ is locally asymptotically stable.

To establish the global stability of the infection steady state E∗, we define the follow-
ing Lyapunov functional:

V2 = V21 + V22 + V23,

where

V21 = G(x, x∗), V22 =

∞∫
0

Φ(a)G
(
i(t, a), i∗(a)

)
da,

V23 =
β1x
∗f(v∗I )

µv∗I

(
v −

v∫
v∗

f(v∗)

f(η)
dη

)
, G(x, y) = x− y − y ln

x

y
,

Φ(a) =

∞∫
a

(
β1x
∗f(v∗I )q(θ)

µv∗I
+ k(θ)x∗

)
e−

∫ θ
a
δ(τ) dτ dθ.

(19)

Before making use of the Lyapunov functional V2 defined above to establish the global
stability of infection steady state, it should be shown that the Lyapunov functional is well
defined. To this end, we first show the uniform persistence of system (3).

3.3 Persistence

In this section, we investigate the uniform persistence of system (3) by using the persis-
tence theory for infinite dimensional dynamical system. Define

ā1 = inf

{
a:

∞∫
a

k(u) du = 0

}
, ā2 = inf

{
a:

∞∫
a

δ(u) du = 0

}
,

ā3 = inf

{
a:

∞∫
a

q(u) du = 0

}
.

Since k(a), δ(a), q(a) ∈ L1
+(0,∞), we have ā1, ā2, ā3 > 0. Furthermore, let

Z̃ = L1
+(0,∞)× R+, ā = max{ā1, ā2, ā3},

Ỹ =

{(
i(t, ·), vI(t)

)T ∈ Z̃:

ā∫
0

i(t, a) da > 0 or vI(t) > 0

}
,
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and
Y = R+ × Ỹ, ∂Y = Z \ Y, ∂Ỹ = Z̃ \ Ỹ.

It is not difficult to verify the following result.

Proposition 1. The subsets Y and ∂Y are both positively invariant under the semi-flow
{Φ(t)}t>0, namely, Φ(t,Y) ⊂ Y and Φ(t, ∂Y) ⊂ ∂Y for t > 0.

Furthermore, the following result is useful for the proof of uniform persistence.

Theorem 5. The disease-free steady state E0 of system (3) is globally asymptotically
stable for the semi-flow {Φ(t)}t>0 restricted to ∂Y .

Proof. Letting (x0, i0(·), vI0(·)) ∈ ∂Y , namely, (i0(·), vI0(·)) ∈ ∂Ỹ , we consider the
following system:

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −δ(a)i(t, a),

i(t, 0) = β1x(t)f
(
vI(t)

)
+ x(t)

∞∫
0

k(a)i(t, a)da,

v′I(t) =

∞∫
0

q(a)i(t, a)da− µvI(t),

i(0, a) = i0(a), vI(0) = vI0.

Since x(t) 6 λ/d as t tends to infinity, by comparison, we have i(t, a) 6 ĩ(t, a), vI(t) 6
ṽI(t), where ĩ(t, a) and ṽI(t) satisfy the following auxiliary system:

∂ĩ(t, a)

∂t
+
∂ĩ(t, a)

∂a
= −δ(a)̃i(t, a),

ĩ(t, 0) = β1
λ

d
f
(
ṽI(t)

)
+
λ

d

∞∫
0

k(a)̃i(t, a)da,

ṽ′I(t) =

∞∫
0

q(a)̃i(t, a)da− µṽI(t),

ĩ(0, a) = i0(a), ṽI(0) = vI0.

(20)

Similar to (4), solving the first equation of (20) yields

ĩ(t, a) =

{
L̃(t− a)e−

∫ a
0
δ(τ)dτ , t > a,

i0(a− t)e−
∫ a
a−t δ(τ)dτ , a > t,

(21)
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where

L̃(t) =
λ

d

(
β1f(ṽI(t)) +

∞∫
0

k(a)̃i(t, a) da

)
. (22)

Substituting (21) into (22) yields

L̃(t) =
λ

d

(
β1f

(
ṽI(t)

)
+

t∫
0

k(a)L̃(t− a)e−
∫ a
0
δ(τ) dτ da

)
+G(t), (23)

where

G(t) =
λ

d

t∫
0

k(a)i0(a− t)e−
∫ a
a−t δ(τ) dτ da.

Since (i0(·), vI0(·)) ∈ ∂Ỹ , we have G(t) ≡ 0 for all t > 0. From (23) we obtain that

L̃(t) =
λ

d

(
β1f(ṽI(t)) +

t∫
0

k(a)L̃(t− a)e−
∫ a
0
δ(τ) dτ da

)
. (24)

It is easy to show that (24) has a unique solution L̃(t) ≡ 0, in which ṽI(t) = 0. From (21)
we have ĩ(t, a) = 0. For a > t, it follows that∥∥ĩ(t, a)

∥∥
L1 =

∥∥e−
∫ a
a−t δ(τ) dτ i0(a− t)

∥∥
L1 6 e−δmint‖i0‖L1 ,

which implies that ĩ(t, a) = 0 as t→∞. Noting that i(t, a) 6 ĩ(t, a), vI(t) 6 ṽI(t), we
have i(t, a)→ 0 and vI(t)→ 0 as t→∞. It follows from the first equation of system (3)
that x(t)→ x0 as t→∞. Thus, E0 is globally asymptotically stable in ∂Y .

Theorem 6. IfR0 > 1, then the semi-flow {Φ(t)}t>0 is uniformly persistent with respect
to (Y, ∂Y), i.e., there exists an ε > 0, which is independent of initial values such that
limt→∞‖Φ(t, z)‖Z > ε for z ∈ Y . Furthermore, there is a compact subset A0 ⊂ Y ,
which is a global attractor for {Φ(t, z)}t>0 in Y .

Proof. It follows from Theorem 5 that E0 is globally asymptotically stable in ∂Y . Apply-
ing Theorem 4.2 in [3], we need only to show that W s(E0) ∩ Y = ∅, where

W s(E0) =
{
z ∈ Y: lim

t→∞
Φ(t, z) = E0

}
.

Otherwise, there exists a solution y ⊂ Y such that Φ(t, y)→ E0 as t→∞. In this case,
there exists a sequence {yn} ⊂ Y such that ‖Φ(t, yn)− E0‖Z < 1/n for t > 0. Denote
Φ(t, yn) = (xn(t), i(t, ·), vIn(t)) and yn = (xn(0), i(0, ·), vIn(0)). Since R0 > 1, we
can choose n sufficiently large satisfying x0 > 1/n and(

λ

d
− 1

n

)
β1f

′(0)
∫∞

0
q(a)e−

∫ a
0
δ(τ) dτ da + µ

∫∞
0

k(a)e−
∫ a
0
δ(τ) dτ da

µ
> 1, (25)
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where x0 = λ/d. For such a n > 0, there exists a T > 0 such that for t > T , x0− 1/n <
xn(t) < x0 + 1/n. Consider the following auxiliary system:

∂î(t, a)

∂t
+
∂î(t, a)

∂a
= −δ(a)̂i(t, a),

î(t, 0) =

(
λ

d
− 1

n

)(
β1f

(
v̂I(t)

)
+

∞∫
0

k(a)̂i(t, a) da

)
,

v̂′I(t) =

∞∫
0

q(a)̂i(t, a) da− µv̂I(t).

(26)

Looking for solutions of system (26) of the form î(t, a) = î(a)eut and v̂I(t) = v̂Ie
ut,

where the function î(a) and the constant v̂I will be determined later, we obtain the
following linear eigenvalue problem:

dî(a)

da
= −

(
u+ δ(a)

)̂
i(a),

î(0) =

(
λ

d
− 1

n

)(
β1
f(v̂I)

eut
+

∞∫
0

k(a)̂i(a) da

)
,

(u+ µ)v̂I =

∞∫
0

q(a)̂i(a) da.

(27)

Solving the first equation of system (27) yields

î(a) = î(0)e−
∫ a
0

(u+δ(s)) ds. (28)

Substitution (28) into the last two equations of (27), we obtain the characteristic equation
of system (3) at the steady state E0 as follows:

f(u) = 1, (29)

where

f(u) =

(
λ

d
− 1

n

)
β1f(v̂I)

∫∞
0
q(a)e−

∫ a
0

(u+δ(s)) ds da

eut(u+ µ)v̂I

+

(
λ

d
− 1

n

) ∞∫
0

k(a)e−
∫ a
0

(u+δ(s)) ds da.

Clearly, we have limu→∞f(u) = 0. From (25) and Assumption 1, there exists a n > 0
and a T > 0 such that

f(0) =

(
λ

d
− 1

n

)
β1f

′(0)
∫∞

0
q(a)e−

∫ a
0
δ(τ) dτ da + µ

∫∞
0

k(a)e−
∫ a
0
δ(τ) dτ da

µ
> 1.
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Hence, if R0 > 1, (29) has at least one positive root. This implies that the solution
(̂i(t, ·), v̂I(t)) of system (26) is unbounded. By comparison, the solution Φ(t, yn) of
system (3) is unbounded, which contradicts to the boundedness of system (3). Therefore,
the semi-flow Φ(t)t>0 generated by system (3) is uniformly persistent. Furthermore, there
is a compact subsetA0 ⊂ Y , which is a global attractor for Φ(t)t>0 in Y . This completes
the proof.

3.4 Global stability of the infection steady state

Now we are ready to establish the global stability of the steady state E∗. The following
theorem summarizes the result.

Theorem 7. If R0 > 1, then the infection steady state E∗ of system (3) is globally
asymptotically stable.

Proof. Using (10), we take the derivative of each part of the Lyapunov functional V2

defined in (19) along the solutions of system (3) separately

V ′21 =

(
1− x∗

x

)(
λ− dx− i(t, 0)

)
=

(
1− x∗

x

)(
dx∗ + i∗(0)− dx− i(t, 0)

)
= −d

x
(x− x∗)2 + i∗(0)− i(t, 0)− i∗(0)

x∗

x
+ i(t, 0)

x∗

x
. (30)

Using (4), it follows that

V22 =

t∫
0

Φ(a)G
(
i(t− a, 0)e−

∫ a
0
δ(τ) dτ , i∗(a)

)
da

+

∞∫
t

Φ(a)G
(
i0(a− t)e−

∫ a
a−t δ(τ) dτ , i∗(a)

)
da

=

t∫
0

Φ(t− r)G
(
i(r, 0)e−

∫ t−r
0

δ(τ) dτ , i∗(t− r)
)

dr

+

∞∫
0

Φ(t+ r)G
(
i0(r)e−

∫ t+r
r

δ(τ) dτ , i∗(t+ r)
)

dr.

From (11) and the fact that xGx(x, y) + yGy(x, y) = G(x, y), differentiating V22 yields

V ′22 = Φ(0)G
(
i(t, 0), i∗(0)

)
+

t∫
0

Φ′(t− r)G
(
i(r, 0)e−

∫ t−r
0

δ(τ) dτ , i∗(t− r)
)

dr
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−
t∫

0

Φ(t− r)δ(t− r)
[
i(r, 0)e−

∫ t−r
0

δ(τ) dτGx
(
i(r, 0)e−

∫ t−r
0

δ(τ) dτ , i∗(t− r)
)

+ i∗(t− r)Gy
(
i(r, 0)e−

∫ t−r
0

δ(τ) dτ , i∗(t− r)
)]

dr

+

∞∫
0

Φ′(t+ r)G
(
i0(r)e−

∫ t+r
r

δ(τ) dτ , i∗(t+ r)
)

dr

−
∞∫

0

Φ(t+ r)δ(t+ r)
[
i0(r)e−

∫ t+r
r

δ(τ) dτGx
(
i0(r)e−

∫ t+r
r

δ(τ) dτ , i∗(t+ r)
)

+ i∗(t+ r)Gy
(
i0(r)e−

∫ t+r
r

δ(τ) dτ , i∗(t+ r)
)]

dr

= Φ(0)G
(
i(t, 0), i∗(0)

)
+

∞∫
0

(
Φ′(a)− δ(a)Φ(a)

)
G
(
i(t, a), i∗(a)

)
da.

Notice that Φ(0) = 1 and

Φ′(a) = −
(
β1x
∗f(v∗I )

µv∗I
q(a) + x∗k(a)

)
+ δ(a)Φ(a).

Then we have

V ′22 =

∞∫
0

(
β1x
∗f(v∗I )

µv∗I
q(a) + x∗k(a)

)(
i∗(a)− i(t, a) + i∗(a) ln

i(t, a)

i∗(a)

)
da

+ i(t, 0)− i∗(0)− i∗(0) ln
i(t, 0)

i∗(0)
. (31)

Similarly, differentiating V23 along the solutions of system (3) yields

V ′23 =
β1x
∗f(v∗I )

µv∗I

(
1− f(v∗I )

f(vI)

)( ∞∫
0

q(a)i(t, a) da− µvI

)

=
β1x
∗f(v∗I )

µv∗I

( ∞∫
0

q(a)i(t, a) da

− f(v∗I )

f(vI)

∞∫
0

q(a)i(t, a) da− µvI + µvI
f(v∗I )

f(vI)

)
. (32)
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Adding (30), (31) and (32) together yields

V ′2 = −d
x

(x− x∗)2 − i∗(0)
x∗

x
+ i(t, 0)

x∗

x
− i∗(0) ln

i(t, 0)

i∗(0)

+

∞∫
0

(
β1x
∗f(v∗I )

µv∗I
q(a) + x∗k(a)

)(
i∗(a)− i(t, a) + i∗(a) ln

i(t, a)

i∗(a)

)
da

+
β1x
∗f(v∗I )

µv∗I

( ∞∫
0

q(a)i(t, a) da− f(v∗I )

f(vI)

∞∫
0

q(a)i(t, a) da− µvI + µvI
f(v∗I )

f(vI)

)
.

Then we can get

V ′2 = −d
x

(x− x∗)2 − i∗(0)
x∗

x
− i∗(0) ln

i(t, 0)

i∗(0)
− β1x

∗f(v∗I )

+

∞∫
0

β1x
∗f(v∗I )

µv∗I
q(a)i∗(a)

(
2 + ln

i(t, a)

i∗(a)
− f(v∗I )

f(vI)

i(t, a)

i∗(a)

)
da

+

∞∫
0

x∗k(a)i∗(a)

(
1 + ln

i(t, a)

i∗(a)

)
da− β1x

∗f(v∗I )vI
v∗I

+
β1x
∗f2(v∗I )vI
v∗If(vI)

= −d
x

(x− x∗)2

+

∞∫
0

β1x
∗f(v∗I )

µv∗I
q(a)i∗(a)

(
2− x∗

x
− ln

i(t, 0)

i∗(0)
+ ln

i(t, a)

i∗(a)
− f(v∗I )

f(vI)

i(t, a)

i∗(a)

)
da

+

∞∫
0

k(a)x∗i∗(a)

(
1− x∗

x
+ ln

i(t, a)

i∗(a)
− ln

i(t, 0)

i∗(0)

)
da

+ β1x
∗f(vI)− β1x

∗f(v∗I )− β1x
∗f(v∗I )vI
v∗I

+
β1x
∗f2(v∗I )vI
v∗If(vI)

.

Notice that

∞∫
0

β1x
∗f(v∗I )

µv∗I
q(a)i∗(a)

(
1− x

x∗
f(vI)

f(v∗I )

i∗(0)

i(t, 0)

)
da

+

∞∫
0

x∗k(a)i∗(a)

(
1− x

x∗
i(t, a)

i∗(a)

i∗(0)

i(t, 0)

)
da
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= β1x
∗f(v∗I ) + x∗

∞∫
0

k(a)i∗(a) da− β1xf(vI)
i∗(0)

i(t, 0)

− i∗(0)

i(t, 0)

∞∫
0

k(a)i(t, a) da = i∗(0)− i(t, 0)
i∗(0)

i(t, 0)

= 0.

Therefore, we have

V ′2 = −d
x

(x− x∗)2 − β1x
∗f(v∗I )

µv∗I

×
∞∫

0

q(a)i∗(a)

[
g

(
x∗

x

)
+ g

(
f(v∗I )i(t, a)

f(vI)i∗(a)

)
+ g

(
xf(vI)i

∗(0)

x∗f(v∗I )i(t, 0)

)]
da

− x∗
∞∫

0

k(a)i∗(a)

[
g

(
x∗

x

)
+ g

(
xi∗(0)i(t, a)

x∗i(t, 0)i∗(a)

)]
da

+ β1x
∗f(vI)− β1x

∗f(v∗I )− β1x
∗f(v∗I )vI
v∗I

+
β1x
∗f2(v∗I )vI
v∗If(vI)

.

Obviously,

β1x
∗f(vI)− β1x

∗f(v∗I )− β1x
∗f(v∗I )vI
v∗I

+
β1x
∗f2(v∗I )vI
v∗If(vI)

= β1x
∗(f(vI)− f(v∗I )

)
+
β1x
∗f(v∗I )vI
v∗If(vI)

(
f(v∗I )− f(vI)

)
=
β1x
∗vI

f(vI)

(
f(vI)− f(v∗I )

)(f(vI)

vI
− f(v∗I )

v∗I

)
6 0.

It is easy to see that g(x) = x − 1 − lnx > 0 for all x > 0 with equality holding if
and only if x = 1. Then it can be verified that the largest invariant set of V ′2 = 0 is the
singleton E∗. It then follows from [11] that the compact global attractorA0 = E∗, which
implies E∗ is globally asymptotically stable.

4 Numerical simulations

In this section, to illustrate the valid of theoretical results of this paper, we present cor-
responding numerical simulations. The backward Euler and linearized finite difference
method will be used to discretize the ODEs and PDE in system (3), and the integral
will be numerically calculated using Simpson’s rule. Furthermore, we focus on the age-
infection model with saturation incidence. Let f(vI) = vI/(1 + αvI). Following [1]
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(a) (b)

Figure 2. The dynamical behavior of free virions vI(t), where α = 0.

(a) (b)

Figure 3. The dynamical behavior of free virions vI(t), where α = 0.9.

and references therein [12, 22], we fix the following coefficients: λ = 10, d = 0.09,
β1 = 0.0025, µ = 2.4.

Furthermore, we set the maximum age for the viral production as â = 10 and δ(a) =
0.4(1 + sin((a− 5)π/10)), p(a) = 300(1 + sin((a− 5)π/10)), 0 6 a 6 10, so that each
of the averages is equal to 0.4 and 300, respectively, which were used in [30]. Then we
observe the dynamical behavior of solutions as follows when α varies.

We obtain that basic reproduction number R0 is approximately calculated as 0.8603
and less than one. From Theorem 2 we know that infection-free steady state is locally
asymptotically stable. In fact, we can observe in Figs. 2(a) and 3(a) that free virion vI(t)
converges to 0.

In another case, through direct calculation, we get the basic reproduction numberR0,
which is near 86.0316 and greater than one. From Theorem 4 we obtain that the positive
steady state is locally asymptotically stable. From Figs. 2(b) and 3(b) we find that free
virion vI(t) converges to the positive steady state. From Figs. 4(a) and 4(b) it is easy to
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(a) α = 0 (b) α = 0.9

Figure 4. The dynamical behavior of infected cells i(t, a).

see that the infected cells i(t, a) converges to the positive steady state whether α = 0 or
α = 0.9, just reaching different peak level.
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