ISSN 1392-5113

A note about the deterministic property of characteristic functions

Saulius Norvidas

Institute of Data Science and Digital Technologies, Vilnius University Akademijos str. 4, Vilnius LT-04812, Lithuania norvidas@gmail.com

Received: May 30, 2018 / Revised: October 15, 2018 / Published online: December 14, 2018

Abstract. We study an extension property for characteristic functions $f : \mathbb{R}^n \to \mathbb{C}$ of probability measures. More precisely, let f be the characteristic function of a probability density φ on \mathbb{R}^n , and let $U_{\sigma} = \{x \in \mathbb{R}^n : \min_k |x_k| > \sigma\}, \sigma > 0$, be a neighborhood of infinity. We say that f has the σ -deterministic property if for any other characteristic function g such that f = g on U_{σ} , it follows that $f \equiv g$. A sufficient condition on f to has the σ -deterministic property is given. We also discuss the question about how precise our sufficient condition is? These results show that the σ -deterministic property of f depends on an arithmetic structure of the support of φ .

Keywords: characteristic function, density function, entire function, probability measure, Bernstein space.

1 Introduction

Let $M(\mathbb{R}^n)$ be the family of finite complex-valued regular Borel measures on \mathbb{R}^n . Given a measure $\mu \in M(\mathbb{R}^n)$, we define its Fourier transform by

$$\widehat{\mu}(x) = \int_{\mathbb{R}^n} e^{-i(x,t)} d\mu(t),$$

 $x \in \mathbb{R}^n$. Here and subsequently, (x, t) denotes the scalar product $\sum_{k=1}^n x_k t_k$ of vectors $x, t \in \mathbb{R}^n$. If the norm in $M(\mathbb{R}^n)$ is given by the total variation of $\mu \in M(\mathbb{R}^n)$, then this allow us to identify the usual Lebesgue Banach space $L^1(\mathbb{R}^n)$ with the closed ideal in $M(\mathbb{R}^n)$ of all measures, which are absolutely continuous with respect to the Lebesgue measure $dt = dt_1 \cdots dt_n$ on \mathbb{R}^n .

Assume that $\mu \in M(\mathbb{R}^n)$ is a positive measure. If, in addition, $\|\mu\| = 1$, then in the language of probability theory, this μ and the function $f(x) := \hat{\mu}(-x), x \in \mathbb{R}^n$, are called a probability measure and its characteristic function, respectively. In particular, if $\mu = \varphi \, dt$ with $\varphi \in L^1(\mathbb{R}^n)$ such that $\|\varphi\|_{L^1(\mathbb{R}^n)} = 1$ and $\varphi \ge 0$ on \mathbb{R}^n , then φ is called the probability density function of μ , or the probability density for short. Let us note that

© Vilnius University, 2019

if φ is a measurable function on \mathbb{R}^n , then we write here and in the sequel $\varphi \ge 0$ on \mathbb{R}^n if $\varphi \ge 0$ dt-almost everywhere on \mathbb{R}^n .

For a characteristic function f and a subset U of \mathbb{R}^n , we study the problem: is it true that there exists a characteristic function g on \mathbb{R}^n such that g = f on U but $g \neq f$? Our interest to this question is initiated by a similar problem posed by N.G. Ushakov in [9, p. 276]: Is it true that for any neighborhoods of infinity $U \subset \mathbb{R}$ with $0 \notin U$, there exists the characteristic function g such that $g \neq e^{-x^2/2}$ but $g(x) = e^{-x^2/2}$ for all $x \in U$? A positive answer to this question was given by Gneiting [1, p. 360]:

Theorem 1. Let $f : \mathbb{R} \to \mathbb{C}$ be the characteristic function of a distribution with a continuous and strictly positive density. Then there exists, for each $\sigma > 0$, a characteristic function g such that f(x) = g(x) if x = 0 or $|x| \ge \sigma$ and $f(x) \ne g(x)$ otherwise.

Moreover, in [1, p. 361], the author also conjectured that the same statement holds for any characteristic function with an absolutely continuous component. This conjecture was disproved in [3]. Indeed, for a > 0,

$$\varphi(t) = \begin{cases} \frac{2(a-2|t|)}{a^2}, & |t| \leq \frac{a}{2}, \\ 0 & \text{otherwise} \end{cases}$$
(1)

is the density of the usual triangular probability distribution. Let $\sigma > 0$ and assume that g is a characteristic function such that $g(x) = \widehat{\varphi}(-x)$ for $|x| > \sigma$. If

$$a\sigma \leqslant \pi,$$
 (2)

then $g(x) = \widehat{\varphi}(-x)$ for all $x \in \mathbb{R}$ (see [3, Ex. 1]).

In this paper, a problem of uniqueness for extensions of characteristic functions of several variables is studied. More precisely, given a characteristic function $f : \mathbb{R}^n \to \mathbb{C}$, we consider characteristic extensions of f in a manner indicated by the above mentioned Ushakov's problem, from a neighborhoods U of infinity to the whole \mathbb{R}^n . In particular, we obtain that estimate (2) can be weakened. Our Theorems 2 and 3 show that the exact estimate in (2) is $a\sigma \leq 2\pi$. Any characteristic function $f : \mathbb{R}^n \to \mathbb{C}$ satisfies $f(-x) = \overline{f(x)}$ for each $x \in \mathbb{R}^n$. Hence, it is enough to study the extensions only from symmetric neighborhoods U. For $\sigma > 0$, set $Q_{\sigma}^n = \{x \in \mathbb{R}^n : |x_k| \leq \sigma, k = 1, ..., n\}$. Then

$$U_{\sigma} = \mathbb{R}^n \setminus Q_{\sigma}^n$$

denotes such a neighborhood. Also, we say that f has the σ -deterministic property if there exists no other characteristic function g such that f(x) = g(x) for all $x \in U_{\sigma}$.

Let $\tau \in \mathbb{R}$, and let A and B be subsets of \mathbb{R}^n . Then A + B and τA denote the sets $\{a + b: a \in A, b \in B\}$ and $\{\tau a: a \in A\}$, respectively. If, in addition, A is measurable, then we denote the Lebesgue measure of A by |A|. Given a measurable function $\varphi : \mathbb{R}^n \to \mathbb{R}$, we denote by S_{φ} the essential support of φ . By definition, a point $x \in \mathbb{R}^n$ belongs to S_{φ} if for any $\delta > 0$, the set

$$(x+Q^n_\delta) \cap \{t \in \mathbb{R}^n \colon |\varphi(t)| > 0\}$$

has positive Lebesgue measure. Note that if φ is continuous on \mathbb{R}^n , then S_{φ} coincides with the usual support of φ . As usual, \mathbb{Z}^n is the *n*-dimensional integer lattice.

The following theorem is the main result of this paper.

Theorem 2. Let $f : \mathbb{R}^n \to \mathbb{C}$ be the characteristic function of a probability density φ . Assume that there exist $a \in \mathbb{R}^n$, $\varrho > 0$ and $\tau > 0$ such that

$$\left|S_{\varphi} \cap \left(a + Q_{\varrho}^{n} + \tau \mathbb{Z}^{n}\right)\right| = 0.$$
(3)

If

$$\sigma\tau \leqslant 2\pi,\tag{4}$$

then f has the σ -deterministic property.

Note that if a pair of positive numbers ρ and τ satisfy (3), then it is necessary that

$$\varrho < \frac{\tau}{2}.\tag{5}$$

Indeed, in the converse case, we have that $Q_{\delta}^{n} + \tau \mathbb{Z}^{n} = \mathbb{R}^{n}$. On the other hand, it is clear that, for any probability density φ , we have $|S_{\varphi}| > 0$. Hence, $|S_{\varphi} \cap (a + Q_{\varrho}^{n} + \tau \mathbb{Z}^{n})| > 0$ contrary to condition (3).

The statement of Theorem 2 is sharp in the sense that the right-hand side of (4) cannot be replaced by $2\pi + \varepsilon$ for any positive ε . This follows from the next theorem.

Theorem 3. For any positive σ and τ such that

$$\sigma\tau > 2\pi,\tag{6}$$

there exist $\rho > 0$ and a probability density φ such that (3) is satisfied but the characteristic function of φ has no the σ -deterministic property.

We conclude this section by presenting our previous paper [4], where a similar extension problem was studied in the case of continuous density functions of one variable. The main result of [4] states that if φ is a continuous probability density on \mathbb{R} such that there exist lattices $\Lambda_j = \tau_j + \alpha_j \mathbb{Z}$, $\tau_j \in \mathbb{R}$, $\alpha_j > 0$, $\alpha_j \sigma \leq 2\pi$, $j = 1, 2, \Lambda_1 \cap \Lambda_2 = \emptyset$, and φ vanishes on $\Lambda_1 \cup \Lambda_2$, then, for any characteristic function $g : \mathbb{R} \to \mathbb{C}$ such that it coincides on U_{σ} with the characteristic function f of φ , we have that $g \equiv f$. It is easy to see that for continuous density φ , this statement is more general than our Theorem 2. On the other hand, the formulation of this statement (as also its proof) uses substantially the property that φ is continuous.

2 Preliminaries and proofs

As usual, we write $S(\mathbb{R}^n)$ for the Schwartz space of test functions on \mathbb{R}^n and $S'(\mathbb{R}^n)$ for the dual space of tempered distributions. We define the inverse Fourier transform

$$\widetilde{\chi}(t) = \frac{1}{(2\pi)^n} \int\limits_{\mathbb{R}^n} e^{i(t,x)} \chi(x) \, \mathrm{d}x$$

https://www.mii.vu.lt/NA

so that the inversion formula $(\widetilde{\chi}) = \chi$ holds for suitable $\chi \in L^1(\mathbb{R}^n)$. Given a closed subset $\Omega \subset \mathbb{R}^n$, a function $\omega : \mathbb{R}^n \to \mathbb{C}$ is called bandlimited to Ω if $\widehat{\omega}$ vanishes outside Ω . Note that here we understand $\widehat{\omega}$ in a distributional sense.

Let $B(\mathbb{R}^n) = {\hat{\mu}: \mu \in M(\mathbb{R}^n)}$ denote the Fourier–Stieltjes algebra with the usual pointwise multiplication. The norm in $B(\mathbb{R}^n)$ is inherited from $M(\mathbb{R}^n)$, in such a way,

$$\|\widehat{\mu}\|_{B(\mathbb{R}^n)} := \|\mu\|_{M(\mathbb{R}^n)}.$$

Note that the Fourier algebra $A(\mathbb{R}^n) = \{\widehat{\varphi}: \varphi \in L^1(\mathbb{R}^n)\}$ is an ideal in $B(\mathbb{R}^n)$.

The closed subspace B_{Ω}^p in $L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$, of all $F \in L^p(\mathbb{R})$ such that F is bandlimited to Ω , is called the Bernstein space. The Banach space B_{Ω}^p is equipped with the norm

$$||F||_p = \left(\int\limits_{\mathbb{R}^n} |F(x)|^p \,\mathrm{d}x\right)^{1/p}, \quad 1 \le p < \infty,$$

and $||F||_{\infty} = \sup_{x \in \mathbb{R}^n} |F(x)|$. By the Paley–Wiener–Schwartz theorem (see [2, p. 181]), if Ω is a compact subset of \mathbb{R}^n , then any $F \in B^p_{\Omega}$ is infinitely differentiable on \mathbb{R}^n and has an extension onto the complex space \mathbb{C}^n to an entire function. For a > 0 and each $F \in B^p_{Q^n_{\sigma}}$, $1 \leq p < \infty$, there exists a positive number M such that the Plancherel–Polya– Nikol'skii-type inequality

$$\sum_{k \in \mathbb{Z}^n} \left| F(x+ak) \right|^p \leqslant M \|F\|_{L^p(\mathbb{R}^n)}^p \tag{7}$$

is satisfied for all $x \in \mathbb{R}^n$ (see [8, p. 19]). If $F \in B^1_{Q^n_{\sigma}}$, then the Poisson summation formula

$$\sum_{\omega \in \mathbb{Z}^n} F(x + \nu\omega) = \frac{1}{\nu^n} \sum_{\theta \in \mathbb{Z}^n} \widehat{F}\left(\frac{2\pi}{\nu}\theta\right) e^{2\pi i (x,\theta)/\nu}$$
(8)

holds for all $x \in \mathbb{R}^n$ and each $\nu > 0$ (see, e.g., [5, p. 166]).

Proof of Theorem 2. We start with the simple observation that we can consider, without loss of generality, condition (3) with a = 0, i.e., the case if S_{φ} , ρ and τ satisfy

$$\left|S_{\varphi} \cap \left(Q_{\varrho}^{n} + \tau \mathbb{Z}^{n}\right)\right| = 0.$$
(9)

Indeed, define $\varphi_a(x) := \varphi(x+a), x \in \mathbb{R}^n$. Then φ_a is a probability density and satisfies (9) if and only if φ satisfies (3). Moreover,

$$\widehat{\varphi_a}(-x) = \mathrm{e}^{-\mathrm{i}(a,x)}\widehat{\varphi}(-x)$$

for $x \in \mathbb{R}^n$. Hence, $\widehat{\varphi_a}$ has the σ -deterministic property if $\widehat{\varphi}$ also has this property.

Assume that g is any characteristic function such that g = f on U_{σ} . It remains to prove that $f \equiv g$. Our proof starts with the observation that this g is also the characteristic function of a probability density. Indeed, let $g(x) = \hat{\mu}(-x)$ for certain probability measure μ . Take any $u \in S(\mathbb{R}^n)$ such that u(x) = 1 for all $x \in Q_{\sigma}^n$. Then

$$\widehat{\mu} - \widehat{\varphi} \equiv u(\widehat{\mu} - \widehat{\varphi}). \tag{10}$$

Since $S(\mathbb{R}^n) \subset A(\mathbb{R}^n)$ and $A(\mathbb{R}^n)$ is an ideal in $B(\mathbb{R}^n)$, we conclude from (10) that $\widehat{\mu} \in A(\mathbb{R}^n)$. Hence, there is a probability density ψ such that $g(x) = \widehat{\psi}(-x)$. Define

$$\xi = \varphi - \psi. \tag{11}$$

Using the fact that $\operatorname{supp}(f - g) \subset Q_{\sigma}^n$, we see that $\xi \in B^1_{Q_{\sigma}^n}$. Moreover, from (11) it follows that

$$\xi \leqslant \varphi \tag{12}$$

almost everywhere on \mathbb{R}^n and

$$\int_{\mathbb{R}^n} \xi(x) \, \mathrm{d}x = 0. \tag{13}$$

Now we claim that (9) implies

$$\int_{Q_{\varrho}^{n}} \xi(x) \, \mathrm{d}x = 0. \tag{14}$$

To that end, we write E_k for the set $Q_{\varrho}^n + \tau k$, $k \in \mathbb{Z}^n$. According to (9) and (12), we have that

$$\int_{E_k} \xi(x) \, \mathrm{d}x \leqslant 0 \tag{15}$$

for all $k \in \mathbb{Z}^n$. Since $\xi \in B^1_{Q^n_{\sigma}}$, the Poisson summation formula (8) holds for $F = \xi$, $\nu = \tau$ and all $x \in \mathbb{R}^n$:

$$\sum_{k \in \mathbb{Z}^n} \xi(x + \tau k) = \frac{1}{\tau^n} \sum_{\theta \in \mathbb{Z}^n} \widehat{\xi} \left(\frac{2\pi}{\tau} \theta \right) e^{2\pi i (x, \theta)/\tau}.$$
 (16)

 $\hat{\xi}$ is continuous on \mathbb{R}^n , and $\operatorname{supp} \hat{\xi} \subset Q_{\sigma}^n$. Hence, condition (4) implies that

$$\widehat{\xi}\left(\frac{2\pi}{\tau}\theta\right) = 0$$

for all $\theta \in \mathbb{Z}^n \setminus \{0\}$. Moreover, from (13) it follows that also $\hat{\xi}(0) = \int_{\mathbb{R}^n} \xi(x) \, dx = 0$. Altogether, (16) reduces to

$$\sum_{k\in\mathbb{Z}^n}\xi(x+\tau k)=0,$$
(17)

 $x \in \mathbb{R}^n$. From (7) it follows that this series converges absolutely on \mathbb{R}^n . Also, if we consider (16) only for $x \in Q_{\tau}^n$, i.e., on Q_{τ}^n , then the left-hand side of (17) converges in the norm of $L^1(Q_{\tau}^n)$ (see [7, p. 251]). According to (5), we see that the left-hand side of (17) converges also in the norm of $L^1(Q_{\rho}^n)$. Then

$$0 = \int_{Q_{\varrho}^{n}} \sum_{k \in \mathbb{Z}^{n}} \xi(x + \tau k) \, \mathrm{d}x = \sum_{k \in \mathbb{Z}^{n}} \int_{Q_{\varrho}^{n}} \xi(x + \tau k) \, \mathrm{d}x = \sum_{k \in \mathbb{Z}^{n}} \int_{E_{k}} \xi(x) \, \mathrm{d}x.$$

https://www.mii.vu.lt/NA

Combining this with (15) gives $\int_{E_k} \xi(x) dx = 0$ for all $k \in \mathbb{Z}^n$. Hence, this proves our claim (14) since $Q_{\varrho}^n = E_0$.

Next, we claim that

$$\xi(x) = 0 \tag{18}$$

for all $x \in Q_{\varrho}^n$. Indeed, set

$$I_{(+)} = \left\{ x \in Q_{\varrho}^{n} \colon \xi(x) > 0 \right\}, \quad I_{(-)} = \left\{ x \in Q_{\varrho}^{n} \colon \xi(x) < 0 \right\}$$

and

$$I_0 = \{ x \in Q_o^n \colon \xi(x) = 0 \}.$$

Take into account (9) and (12), we obtain

$$\int_{I_{(+)}} \xi(x) \, \mathrm{d}x \leqslant \int_{I_{(+)}} \varphi(x) \, \mathrm{d}x \leqslant \int_{Q_{\varrho}^n} \varphi(x) \, \mathrm{d}x = 0.$$

Since ξ is continuous on \mathbb{R}^n , it follows that $I_{(+)}$ is an open subset of \mathbb{R}^n . Hence, $I_{(+)} = \emptyset$. Using the obvious equality $\int_{I_0} \xi(x) \, dx = 0$ and (14), we get $\int_{I_{(-)}} \xi(x) \, dx = 0$. Hence, $I_{(-)} = \emptyset$. This completes the proof of claim (18).

On the other hand, (18) shows that the entire function ξ vanishes on the nonempty and open subset set Q_{ϱ}^n in \mathbb{R}^n . In particular, this implies that the function ξ vanishes at z = 0 together with all its partial derivatives. Thus, by the uniqueness theorem for analytic functions (see, e.g., [6, p. 21]), we have that ξ is the zero function. Hence, $\varphi \equiv \psi$. Thus $f \equiv g$. Theorem 2 is proved.

Proof of Theorem 3. According to (6), we may take a number θ such that

$$\frac{2\pi}{\sigma} < \theta < \tau. \tag{19}$$

Next, let ρ be any positive number, which satisfies

$$\varrho < \frac{\tau - \theta}{2}.\tag{20}$$

Take an arbitrary continuous on \mathbb{R}^n probability density φ with

$$S_{\varphi} = B^n_{\theta\sqrt{n}/2},\tag{21}$$

where B_r^n denotes the ball $\{x \in \mathbb{R}^n \colon \sum_{k=1}^n x_k^2 \leq r^2\}$. Combining (6) with (20) and (21), it is a simple calculation to see that for these θ , ϱ , φ and

$$a = \left(\frac{\tau}{2}, \frac{\tau}{2}, \dots, \frac{\tau}{2}\right) \in \mathbb{R}^n,$$

condition (3) is satisfied.

The next step of our proof consists in the construction of a function $\xi \in B^1_{Q^n_{\sigma}}, \xi \neq 0$, satisfying (12) and (13). Put

$$\omega_1(t) = \left(\frac{\sigma}{2\pi} \cos\frac{\pi t}{\sigma}\right) \cdot \chi_{[-\sigma/2, \sigma/2]}(t) \tag{22}$$

and

$$\omega_2(t) = \left(\frac{i}{2}\sin\frac{\pi t}{\sigma}\right) \cdot \chi_{[-\sigma/2,\,\sigma/2]}(t),\tag{23}$$

where χ_A is the indicator function of the subset $A \subset \mathbb{R}$. It is straightforward to verify that

$$\widehat{\omega_1}(x) = \frac{\cos\frac{\sigma x}{2}}{(\frac{\pi}{\sigma})^2 - x^2} \tag{24}$$

and

$$\widehat{\omega_2}(x) = x \,\widehat{\omega_1}(x). \tag{25}$$

According to our definitions of the Fourier transform and its inverse transform, the following Plancherel formula holds

$$2\pi \|\gamma\|_{L^2(\mathbb{R})}^2 = \|\widehat{\gamma}\|_{L^2(\mathbb{R})}^2$$

for each $\widehat{\gamma} \in L^2(\mathbb{R})$. Hence, using (22) and (23), we get

$$\|\widehat{\omega_1}\|_{L^2(\mathbb{R})}^2 = 2\pi \|\omega_1\|_{L^2(\mathbb{R})}^2 = \frac{\sigma^2}{2\pi} \int_{-\sigma/2}^{\sigma/2} \cos^2 \frac{\pi t}{\sigma} \, \mathrm{d}t = \frac{\sigma^3}{4\pi}$$
(26)

and

$$\|\widehat{\omega_2}\|_{L^2(\mathbb{R})}^2 = \frac{\pi}{2} \int_{-\sigma/2}^{\sigma/2} \sin^2 \frac{\pi t}{\sigma} \, \mathrm{d}t = \frac{\pi \sigma}{4}$$
(27)

since $\omega_k \in L^2(\mathbb{R}), k = 1, 2$. For $x \in \mathbb{R}^n$, let us define

$$\xi_{0}(x) = \frac{\pi^{2}n}{\sigma^{2}} \prod_{k=1}^{n} \widehat{\omega_{1}}^{2}(x_{k}) - \sum_{k=1}^{n} \left[\widehat{\omega_{2}}^{2}(x_{k}) \cdot \prod_{j=1, \ j \neq k}^{n} \widehat{\omega_{1}}^{2}(x_{j}) \right]$$
$$= \prod_{k=1}^{n} \left(\frac{\cos \frac{\sigma x_{k}}{2}}{(\frac{\pi}{\sigma})^{2} - x_{k}^{2}} \right)^{2} \left[\frac{\pi^{2}n}{\sigma^{2}} - \sum_{k=1}^{n} x_{k}^{2} \right].$$
(28)

Obviously, $\xi_0 \in L^1(\mathbb{R}^n)$. On the other hand, from (22), (23), (24) and (25) it follows that $\hat{\xi_0}$ is supported on $[-\sigma, \sigma]^n = Q_{\sigma}^n$. Hence, $\xi_0 \in B^1_{Q_{\sigma}^n}$.

https://www.mii.vu.lt/NA

We claim that there exists $\varepsilon > 0$ such that the function

$$\xi := \varepsilon \cdot \xi_0 \tag{29}$$

satisfies (12) and (13). Indeed, using (26), (27) and (28), we get

$$\int_{\mathbb{R}^n} \xi_0(x) \, \mathrm{d}x$$

$$= \frac{\pi^2 n}{\sigma^2} \prod_{k=1}^n \int_{\mathbb{R}} \widehat{\omega_1}^2(x_k) \, \mathrm{d}x_k - \sum_{k=1}^n \left[\int_{\mathbb{R}} \widehat{\omega_2}^2(x_k) \, \mathrm{d}x_k \cdot \prod_{j=1, \ j \neq k}^n \int_{\mathbb{R}} \widehat{\omega_1}^2(x_j) \, \mathrm{d}x_j \right]$$

$$= \frac{\pi^2 n}{\sigma^2} \left(\frac{\sigma^3}{4\pi} \right)^n - n \frac{\pi \sigma}{4} \left(\frac{\sigma^3}{4\pi} \right)^{n-1} = \left(\frac{\sigma^3}{4\pi} \right)^{n-1} \left[\frac{\pi^2 n}{\sigma^2} \cdot \frac{\sigma^3}{4\pi} - n \frac{\pi \sigma}{4} \right] = 0.$$

Therefore, $\int_{\mathbb{R}^n} \xi(x) \, \mathrm{d}x = 0.$

Next, from (19) it follows that

$$B^n_{\pi\sqrt{n}/\sigma} \subsetneqq B^n_{\theta\sqrt{n}/2}$$

This implies that we can take a continuous probability density φ such that it satisfies (21) and also the following additional condition:

$$\min\left\{\varphi(x): x \in B^n_{\pi\sqrt{n}/\sigma}\right\} > 0.$$

Then, since ξ (see formula (29)) is also continuous on \mathbb{R}^n , we have that there exists $\varepsilon > 0$ in (29) such that (12) is satisfied for this ξ and all $x \in B^n_{\pi\sqrt{n}/\sigma}$. On the other hand, from (28) and (29) it follows that ξ is nonpositive on $\mathbb{R}^n \setminus B^n_{\pi\sqrt{n}/\sigma}$. Therefore, ξ satisfies (12) for all $x \in \mathbb{R}^n$.

Finally, if we set $\psi := \varphi - \xi$, then (12) and (13) show that ψ is a probability density. Moreover, we have that $\hat{\psi} = \hat{\varphi}$ on U_{σ} but $\psi \neq \varphi$. Theorem 3 is proved.

Acknowledgment. The author thanks to referees for pointing out several mistakes and making a few other remarks, which improved the exposition.

References

- 1. T. Gneiting, Curiosities of characteristic functions, Expo. Math., 19(4):359-363, 2001.
- 2. L. Hörmander, *The Analysis of Linear Partial differential Operators. I: Distribution Theory and Fourier Analysis,* 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, 1990.
- 3. S. Norvidas, On extensions of characteristic functions, Lith. Math. J., 57(2):236-243, 2017.
- 4. S. Norvidas, A theorem of uniqueness for characteristic functions, C. R., Math., Acad. Sci. Paris, 355(8):920–924, 2017.
- 5. M. Reiter, J.M. Stegeman, *Classical Harmonic Analysis and Locally Compact Groups*, Lond. Math. Soc. Monogr., New Ser., Vol. 22, Clarendon Press, Oxford, 2000.

- B.V. Shabat, *Introduction to Complex Analysis. Part II: Functions of Several Variables*, Transl. Math. Monogr., Vol. 110, AMS, Providence, RI, 1992.
- 7. E. Stein, G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton Math. Ser. 32, Princeton Univ. Press, Princeton, NJ, 1971.
- 8. H. Triebel, *Theory of Function Spaces*, Mod. Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010.
- 9. N.G. Ushakov, Selected Topics in Characteristic Functions, VSP, Utrecht, 1999.

158