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Abstract. The existence of maximal and minimal positive solutions for singular infinite-point
p-Laplacian fractional differential equation is investigated in this paper. Green’s function is derived,
and some properties of Green’s function are obtained. Based upon these properties of Green’s
function, the existence of maximal and minimal positive solutions is obtained, and iterative schemes
are established for approximating the maximal and minimal positive solutions.
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1 Introduction

In this paper, we consider the following singular infinite-point p-Laplacian fractional
differential equations:

φp
(
Dα

0+u(t)
)

+ f
(
t, u(t), Dµ

0+u(t)
)

= 0, 0 < t < 1,

u(i)(0) = 0, i = 0, 1, 2, . . . , n− 2,

Dp1
0+u(1) =

∞∑
j=1

ηjD
p2
0+u(ξj),

(1)
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where α, µ, p1, p2 ∈ R+ (R+ = [0,+∞)), n − 1 < α 6 n (n > 3, n ∈ N), 0 6 µ 6
n − 2, ηj > 0, 0 < ξ1 < ξ2 < · · · < ξj−1 < ξj < · · · < 1 (j = 1, 2 . . . ),
φp(s) = |s|p−2s, p > 1, (φp)

−1 = φq , 1/p + 1/q = 1, p1, p2 ∈ [2, n − 2], p2 6 p1,
f(t, x, y) may be singular at t = 0, and Dα

0+ , Dµ
0+ , Dp1

0+ , Dp2
0+ are the standard Riemann–

Liouville derivative. The existence of maximal and minimal positive solutions is obtained
by iterative sequence for the boundary value problem (1) under certain conditions.

During the last decades, boundary value problems of nonlinear fractional differential
equations constitutes a new and important branch of differential equation theory and has
attracted great research efforts worldwide, and it is a valuable tool for simulating many
phenomena in various fields such as fluid flows, electrical networks, rheology, biology,
chemical physics, and so on. In order to solve practical problems, the existence of positive
solutions for many types of fractional differential equations is investigated. For more
details, the reader is referred to [1–5, 7, 8, 10–18, 21–30] and the references therein. For
some differential equation in which fractional derivatives are involved in the nonlinear
terms, reader can refer to [2, 7, 8], and when values at infinite points are involved in the
boundary conditions, we refer the reader to [7, 8, 24] and the references therein. Later,
due to the need of practical problems, the p-Laplacian operator is introduced into some
boundary value problems, and about p-Laplacian fractional differential equation we refer
the reader to [5, 17, 18, 25] for some relevant work. In [24], the author considered the
following fractional differential equation:

Dα
0+u(t) + g(t)f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(i)(1) =

∞∑
i=1

αju(ξj),

where α ∈ R+, n − 1 < α 6 n, n > 3, i ∈ [1, n − 2] is a fixed integer, αj > 0, 0 <
ξ1 < ξ2 < · · · < ξj−1 < ξj < · · · < 1 (j = 1, 2, . . . ), f is allowed to have singularities
with respect to both time and space variables. Various theorems were established for the
existence and multiplicity of positive solutions. In [19], the author discussed the existence
and multiplicity of positive solutions of the following problem:

Dα
0+u(t) = a(t)f

(
t, u(t)

)
, t ∈ (0, 1),

u(0) = u′(0) = 0, u(1) =

m∑
i=1

βiu(ξi),

where α ∈ R+, 2 < α 6 3, m > 1 is integer, βi > 0 for 1 6 i 6 m, 0 < ξ1 < ξ2 <
· · · < ξm < 1,

∑m
i=1 βiξ

α−1
i < 1, a(t) ∈ L[0, 1] is nonnegative and not identically zero

on any compact subset of (0, 1), f : [0, 1]× [0,+∞)→ [0,+∞) is continuous and Dα
0+

is the Riemann–Liouville differential fractional derivative of order α. Some results on the
existence and multiplicity of positive solutions were obtained by the fixed point theorem.
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In [18], the authors considered the following fractional differential equation:

φp
(
Dα

0+u(t)
)

+ f
(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,

where α ∈ R+, 2 < α 6 3, φp(s) = |s|p−2s, p > 1, (φp)
−1 = φq , 1/p + 1/q = 1, f :

[0, 1] × [0,+∞) → [0,+∞) is continuous, and Dα
0+ is the standard Riemann–Liouville

derivative.
Motivated by the results above, in this paper, we investigate the existence of positive

solutions for a class of infinite-point singular p-Laplacian fractional differential equations.
p-Laplacian fractional differential equation is a type of equation that is very wide, and the
general equation are special cases of p-Laplacian equation. Compared with [24, 29], the
fractional-order derivatives are involved in the nonlinear term and boundary condition,
and at the same time, iterative solutions are obtained by iterative sequences. Compared
with [19], values at infinite points are involved in the boundary conditions of the boundary
value problem (1), and the nonlinearity is singular, that is, f(t, u, v) is allowed to be
singular at t = 0. Compared with [7], we do not only obtain the existence of positive so-
lutions, but we also establish iterative sequences to approximate the maximal and minimal
positive solutions.

2 Preliminaries and lemmas

Some basic definitions and lemmas, which will be used in the proof of our results and can
also be found in the recent literature such as [9, 20], we omit some here.

Now we list a condition below to be used later in the paper.

(H0) f : (0, 1] × R+ × R+ → R+, and there exists a constant 0 < σ < 1 such that
tσφq(f(t, x0, x1)) is continuous on [0, 1]× R+ × R+.

Lemma 1. (See [9, 20].) Assume that u ∈ Cn[0, 1], then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n,

where n is the least integer greater than or equal to α, Ci ∈ R (i = 1, 2, . . . , n).

Lemma 2. (See [6, Thm. 1.2.7].) Let H ⊂ C1[J,E], then H is a relatively compact set if
and only if

(i) H ′ is equicontinuous, and H ′(t) is a relatively compact set for any t ∈ J on E;
(ii) There exists t0 ∈ J such that H(t0) is a relatively compact set on E.

Lemma 3. Given y ∈ L1[0, 1] ∩ C(0, 1), then the solution of the BVP

φp
(
Dα

0+u(t)
)

+ y(t) = 0, 0 < t < 1,

u(i)(0) = 0, i = 0, 1, 2, . . . , n− 2,

Dp1
0+u(1) =

∞∑
j=1

ηjD
p2
0+u(ξj)

(2)
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can be expressed by

u(t) =

1∫
0

G(t, s)φq
(
y(s)

)
ds, t ∈ [0, 1], (3)

where

G(t, s) =
1

∆Γ(α)


Γ(α)tα−1P (s)(1− s)α−p1−1 −∆(t− s)α−1,

0 6 s 6 t 6 1,

Γ(α)tα−1P (s)(1− s)α−p1−1,
0 6 t 6 s 6 1,

(4)

in which

P (s) =
1

Γ(α− p1)
− 1

Γ(α− p2)

∑
s6ξj

ηj

(
ξj − s
1− s

)α−p2−1
(1− s)p1−p2 ,

∆ =
Γ(α)

Γ(α− p1)
− Γ(α)

Γ(α− p2)

∞∑
j=1

ηjξ
α−p2−1
j ,

and obviously, G(t, s) is continuous on [0, 1]× [0, 1].

Proof. By means of Lemma 1, we reduce (2) to an equivalent integral equation

u(t) = −Iα0+φq
(
y(t)

)
+ C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n

for Ci ∈ R (i = 1, 2, . . . , n). From u(i)(0) = 0 (i = 0, 1, 2, . . . , n − 2) we have Ci = 0
(i = 2, 3, . . . , n). Consequently, we get

u(t) = C1t
α−1 − Iα0+φq

(
y(t)

)
.

By some properties of the fractional integrals and fractional derivatives, we have

Dp1
0+u(t) = C1

Γ(α)

Γ(α− p1)
tα−p1−1 − Iα−p10+ φq

(
y(t)

)
,

Dp2
0+u(t) = C1

Γ(α)

Γ(α− p2)
tα−p2−1 − Iα−p20+ φq

(
y(t)

)
.

(5)

On the other hand, Dp1
0+u(1) =

∑∞
j=1 ηjD

p2
0+u(ξj), and combining with (5), we get

C1 =

1∫
0

(1− s)α−p1−1

Γ(α− p1)∆
φq
(
y(s)

)
ds−

∞∑
j=1

ηj

ξj∫
0

(ξj − s)α−p2−1

Γ(α− p2)∆
φq
(
y(s)

)
ds

=

1∫
0

(1− s)α−p1−1P (s)

∆
φq
(
y(s)

)
ds,
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where

P (s) =
1

Γ(α− p1)
− 1

Γ(α− p2)

∑
s6ξj

ηj

(
ξj − s
1− s

)α−p2−1
(1− s)p1−p2 ,

∆ =
Γ(α)

Γ(α− p1)
− Γ(α)

Γ(α− p2)

∞∑
j=1

ηjξ
α−p2−1
j .

Hence,

u(t) = C1t
α−1 − Iα0+φq

(
y(t)

)
= −

t∫
0

∆(t− s)α−1

Γ(α)∆
φq
(
y(s)

)
ds+

1∫
0

(1− s)α−p1−1tα−1P (s)

∆
φq
(
y(s)

)
ds.

Therefore,

G(t, s) =
1

∆Γ(α)

{
Γ(α)tα−1P (s)(1− s)α−p1−1 −∆(t− s)α−1, 0 6 s 6 t 6 1,

Γ(α)tα−1P (s)(1− s)α−p1−1, 0 6 t 6 s 6 1,

and

Dµ
0+G(t, s) =

1

∆Γ(α− µ)


tα−1−µΓ(α)P (s)(1− s)α−p1−1 −∆(t− s)α−1−µ,

0 6 s 6 t 6 1,

tα−1−µΓ(α)P (s)(1− s)α−p1−1, 0 6 t 6 s 6 1.

(6)

It is easy to check that G(t, s) and Dµ
0+G(t, s) are uniformly continuous on [0, 1] ×

[0, 1].

Lemma 4. Let ∆ > 0, then the Green function (4) has the following properties:

∆tα−1(1− s)α−p1−1
[
1− (1− s)p1

]
6 ∆Γ(α)G(t, s) 6 Γ(α)tα−1P (s)(1− s)α−p1−1, (7)

∆tα−1−µ(1− s)α−p1−1
[
1− (1− s)p1

]
6 ∆Γ(α− µ)Dµ

0+G(t, s) 6 Γ(α− µ)tα−1−µP (s)(1− s)α−p1−1. (8)

Proof. Let

G0(t, s) =
1

Γ(α)

{
tα−1(1− s)α−p1−1 − (t− s)α−1, 0 6 s 6 t 6 1,

tα−1(1− s)α−p1−1, 0 6 t 6 s 6 1.

From [10], for p1 ∈ [2, n− 2], we have

0 6 tα−1(1− s)α−p1−1
[
1− (1− s)p1

]
6 Γ(α)G0(t, s)

6 tα−1(1− s)α−p1−1. (9)

Nonlinear Anal. Model. Control, 23(6):851–865
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By direct calculation, we get P ′(s) > 0, s ∈ [0, 1], and so, P (s) is nondecreasing with
respect to s. For p2 6 p1, p1, p2 ∈ [2, n− 2], s ∈ [0, 1], we get

Γ(α)P (s) =
Γ(α)

Γ(α− p1)
− Γ(α)

Γ(α− p2)

∑
s6ξj

ηj

(
ξj − s
1− s

)α−p2−1
(1− s)p1−p2

> Γ(α)P (0) =
Γ(α)

Γ(α− p1)
− Γ(α)

Γ(α− p2)

∑
ηjξ

α−p2−1
j = ∆, (10)

by (4) and (10), we have

∆Γ(α)G(t, s) >

{
∆tα−1(1− s)α−p1−1 −∆(t− s)α−1, 0 6 s 6 t 6 1,

∆tα−1(1− s)α−p1−1, 0 6 t 6 s 6 1,
(11)

by (9) and (11), we have

∆Γ(α)G(t, s) > ∆Γ(α)G0(t, s)

> ∆tα−1(1− s)α−p1−1
[
1− (1− s)p1

]
. (12)

Clearly,∆Γ(α)G(t, s) 6 Γ(α)tα−1P (s)(1−s)α−p1−1. So, the proof of (7) is completed.
Similarly, (8) also holds.

LetE = {u(t): u(t) ∈ C[0, 1], Dµ
0+u(t) ∈ C[0, 1]} be a Banach space with the norm∥∥u(t)

∥∥ = max
{

max
t∈[0,1]

∣∣u(t)
∣∣, max
t∈[0,1]

Dµ
0+

∣∣u(t)
∣∣},

and E is endowed with an order relation u 6 v if u(t) 6 v(t), Dµ
0+u(t) 6 Dµ

0+v(t).
Moreover, we define a cone of E by

K =
{
u ∈ E: u(t) > 0, Dµ

0+u(t) > 0, t ∈ [0, 1]
}
,

and define an operator

Au(t) =

1∫
0

G(t, s)φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds, u ∈ K.

Problems (1) has a positive solution if and only if u is a fixed point of A in K.

Lemma 5. The operator A : K → E is continuous.

Proof. First, for u ∈ P , by the continuity of G(t, s), sσφq(f(s, u(s), Dµ
0+u(s))), and the

integrability of s−σ ,

Au(t) =

1∫
0

G(t, s)φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds, u ∈ K,
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is well defined on K. Thus, it follows from the uniform continuity of G(t, s) on [0, 1] ×
[0, 1] and

∣∣Au(t2)−Au(t1)
∣∣ 6 1∫

0

∣∣G(t2, s)−G(t1, s)
∣∣s−σsσφq(f(s, u(s), Dµ

0+u(s)
))

ds

that Au ∈ C[0, 1], u ∈ K. Furthermore, by the uniform continuity of Dµ
0+G(t, s), for

t, s ∈ [0, 1], we get

Dµ
0+(Au)(t) =

1∫
0

Dµ
0+G(t, s)φq

(
f
(
s, u(s), Dµ

0+u(s)
))

ds ∈ C[0, 1].

Let un, u ∈ K, un → u in E. Since G(t, s), Dµ
0+G(t, s) is uniformly continuous, there

exists M > 0 such that

max
{
G(t, s), Dµ

0+G(t, s)
}
6M, t, s ∈ [0, 1].

On the other hand, since un → u in C1[0, 1], there exists A > 0 such that ‖un‖ 6 A
(n = 1, 2, . . . ), and then ‖u‖ 6 A. Furthermore, sσφq(f(s, x0, x1)) is continuous on
[0, 1]×R+×R+, so, sσφq(f(s, x0, x1)) is uniformly continuous on [0, 1]×[0, A]×[0, A].
Hence, for any ε > 0, there exists δ > 0 such that for any s1, s2 ∈ [0, 1], x10, x

2
0, x

1
1, x

2
1 ∈

[0, A], |s1 − s2| < δ, |x10 − x20| < δ, |x11 − x21| < δ, we have∣∣sσ1φq(f(s1, x10, x11))− sσ2φq(f(s2, x20, x21))∣∣ < ε. (13)

By ‖un − u‖ → 0, for the above δ > 0, there exists N such that for all n > N , we get∣∣un(t)− u(t)
∣∣, ∣∣Dµ

0+un(s)−Dµ
0+u(s)

∣∣ 6 ‖un − u‖ < δ for any t ∈ [0, 1].

Hence, for any t ∈ [0, 1], n > N , by (13), we derive∣∣tσφq(f(t, un(t), Dµ
0+un(t)

)
− tσφq

(
f
(
t, u(t), Dµ

0+u(t)
))∣∣ < ε. (14)

Thus, for n > N , t ∈ [0, 1], by (14), we have∣∣(Aun)(t)− (Au)(t)
∣∣

=

∣∣∣∣∣
1∫

0

G(t, s)φq
(
f
(
s, un(s), Dµ

0+un(s)
))

ds

−
1∫

0

G(t, s)φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

∣∣∣∣∣
=

∣∣∣∣∣
1∫

0

G(t, s)s−σ
(
sσφq

(
f
(
s, un(s), Dµ

0+un(s)
))

− sσφq
(
f
(
s, u(s), Dµ

0+u(s)
)))

ds

∣∣∣∣∣
Nonlinear Anal. Model. Control, 23(6):851–865
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6M

1∫
0

s−σ
(
sσφq

(
f
(
s, un(s), Dµ

0+un(s)
))

− sσφq
(
f
(
s, u(s), Dµ

0+u(s)
)))

ds

6Mε

1∫
0

s−σ ds

and ∣∣Dµ
0+(Aun)(t)−Dµ

0+(Au)(t)
∣∣

=

∣∣∣∣∣
1∫

0

Dµ
0+G(t, s)φq

(
f
(
s, un(s), Dµ

0+un(s)
))

ds

−
1∫

0

Dµ
0+G(t, s)φq

(
f
(
s, u(s), Dµ

0+u(s)
))

ds

∣∣∣∣∣
=

∣∣∣∣∣
1∫

0

Dµ
0+G(t, s)s−σ

(
sσφq

(
f
(
s, un(s), Dµ

0+un(s)
))

− sσφq
(
f
(
s, u(s), Dµ

0+u(s)
)))

ds

∣∣∣∣∣
6M

1∫
0

s−σ
(
sσφq

(
f
(
s, un(s), Dµ

0+un(s)
))

− sσφq
(
f
(
s, u(s), Dµ

0+u(s)
)))

ds

6Mε

1∫
0

s−σ ds,

and hence, we get ‖Aun − Au‖0 → 0, ‖Dµ
0+(Aun)−Dµ

0+(Au)‖0 → 0 (n→∞). That
is, ‖Aun −Au‖ → 0(n→∞), namely, A is continuous in the space E.

Lemma 6. A : K → K is completely continuous.

Proof. From Lemma 4 we have (Au)(t) > 0, Dµ
0+(Au)(t) > 0, t ∈ [0, 1], hence

A(K) ⊂ K. Now we will prove that AV is relatively compact for bounded V ⊂ K.
Since V is bounded, there exists D > 0 such that for any u ∈ V , ‖u‖ 6 D, and by the
continuity of tσφq(f(t, x0, x1)) on [0, 1] × [0, D] × [0, D], there exists C > 0 such that

https://www.mii.vu.lt/NA
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|sσφq(f(s, u(s), Dµ
0+u(s)))| 6 C for s ∈ [0, 1], u ∈ V . Hence, for t ∈ [0, 1], u ∈ V ,

we have

∣∣Au(t)
∣∣ =

1∫
0

G(t, s)φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

=

1∫
0

G(t, s)s−σsσφq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

6 C

1∫
0

1

∆
P (s)(1− s)α−p1−1s−σ ds

=
CB1

Γ(α− p1)∆
,

where B1 =
∫ 1

0
(1− s)α−p1−1s−σ ds. Similarly, we derive∣∣Dµ

0+(Au)(t)
∣∣ 6 CB1

Γ(α− p1)∆
, t ∈ [0, 1], u ∈ V,

which shows that AV is bounded in E. Next, we will verify that Dµ
0+(AV ) is equicon-

tinuous. Let t1, t2 ∈ [0, 1], t1 < t2, u ∈ V , we get∣∣Dµ
0+(Au)(t2)−Dµ

0+(Au)(t1)
∣∣

=

∣∣∣∣∣tα−1−µ2

1∫
0

P (s)(1− s)α−p1−1

∆
φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

−
t2∫
0

(t2 − s)α−1−µ

Γ(α)
φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

− tα−1−µ1

1∫
0

P (s)(1− s)α−p1−1

∆
φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

+

t1∫
0

(t1 − s)α−1−µ

Γ(α)
φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

∣∣∣∣∣
6
∣∣(tα−1−µ2 − tα−1−µ1 )

∣∣ 1∫
0

P (s)(1− s)α−p1−1

∆
φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

+

∣∣∣∣∣ 1

Γ(α)

t2∫
0

(t2 − s)α−1−µs−σsσφq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

Nonlinear Anal. Model. Control, 23(6):851–865
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− 1

Γ(α)

t1∫
0

(t1 − s)α−1−µs−σsσφq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

∣∣∣∣∣
6

C

Γ(α)

[ t2∫
0

(t2 − s)α−1−µs−σ ds−
t1∫
0

(t1 − s)α−1−µs−σ ds

]
.

Furthermore,

t∫
0

(t− s)α−1−µs−σ ds = tα−µ−σ
∫ 1

0

(1− s)α−1−µs−σ ds.

Thus, we obtain∣∣Dµ
0+(Au)(t2)−Dµ

0+(Au)(t1)
∣∣

6
C

Γ(α− p1)∆

(
tα−µ−12 − tα−µ−11

)
+
CB2

Γ(α)

(
tα−µ−σ2 − tα−µ−σ1

)
∀u ∈ V,

where B2 =
∫ 1

0
(1 − s)α−µ−1s−σ ds. From above, the uniform continuity of tα−µ−σ ,

tα−µ−1, and together with Lemma 2, we can derive that AV is relatively compact in E,
and so, we get that A : K → K is completely continuous.

3 Main results

For convenience, we denote

$ =

( 1∫
0

1

∆
P (s)(1− s)α−p1−1s−σ ds

)−1
. (15)

Theorem 1. Assume that (H0) holds, and

(H2) tσφq(f(t, x0, x1)) is continuous and nondecreasing on x0, x1;
(H3) For any t × x0 × x1 ∈ [0, 1] × R+ × R+, there exists d > 0 such that

tσφq(f(t, x0, x1)) 6 $d holds. Then the boundary value problem (1) has the
maximal and minimal positive solutions u∗ and v∗ on [0, 1], respectively, such
that 0 < ‖u∗‖ 6 d, 0 < ‖v∗‖ 6 d. Moreover, for initial values u0(t) = dtα−1,
v0(t) = 0, t ∈ [0, 1], define the iterative sequences {un} and {vn} by

un = Aun−1 = Anu0, vn = Avn−1 = Anv0,

then

lim
n→∞

un = lim
n→∞

Anu0 = u∗, lim
n→∞

vn = lim
n→∞

Anv0 = v∗.
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Proof. By Lemma 6, we know that A : K → K is completely continuous. Now we show
that A is nondecreasing. For any u1, u2, D

µ
0+u1, D

µ
0+u2 ∈ K and u1 6 u2, Dµ

0+u1 <

Dµ
0+u2, according to the definition of A and (H2), we know that Au1 6 Au2. Let Kd =

{x ∈ K: ‖x‖ 6 d}. Next, we prove that A : Kd → Kd. If u ∈ P d, then ‖u‖ 6 d, i.e.,
‖u‖0 6 d, ‖Dµ

0+u‖0 6 d, by Lemma 4 and (H1), (H2), we have

(Au)(t) =

1∫
0

G(t, s)φq
(
f
(
s, u(s), Dµ

0+u(s)
))

ds

6

1∫
0

1

∆
P (s)(1− s)α−p1−1s−σsσφq

(
f(s, d, d)

)
ds

6 $d

1∫
0

1

∆
P (s)(1− s)α−p1−1s−σ ds = d, t ∈ [0, 1], (16)

Dµ
0+(Au)(t) =

1∫
0

Dµ
0+G(t, s)φq

(
f
(
s, u(s), Dµ

0+u(s)
))

ds

6

1∫
0

1

∆
P (s)(1− s)α−p1−1s−σsσφq

(
f(s, d, d)

)
ds

6 $d

1∫
0

1

∆
P (s)(1− s)α−p1−1s−σ ds = d, t ∈ [0, 1], (17)

then (16), (17) show that ‖Au‖ = max{maxt∈[0,1] |Au(t)|, maxt∈[0,1]D
µ
0+ |Au(t)|}6d,

hence A(Kd) ⊆ Kd.
Let u0(t) = dtα−1, t ∈ [0, 1], then u0(t) ∈ Kd. Let u1 = Au0, u2 = A2u0, then

we have u1, u2 ∈ Kd. We denote un+1 = Aun = Anu0 (n = 0, 1, 2, . . . ). In view
of the fact that A : Kd → Kd, it follows that un ∈ A(Kd) ⊆ Kd (n = 1, 2, . . . ).
Since A is completely continuous, we assert that the sequence {un}∞n=1 has a convergent
subsequence {unk

}∞k=1 such that limk→∞ unk
= u∗ ∈ Kd.

Since u1 = Au0 ∈ Kd, by Lemma 3 and (H3), we get

Au0(t) =

1∫
0

G(t, s)s−σsσf
(
s, u0(s), Dµ

0+u0(s)
)

ds

6 $dtα−1
1∫

0

1

∆
P (s)(1− s)α−p1−1s−σsσ ds

= dtα−1 = u0(t), t ∈ [0, 1], (18)
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which implies u1 6 u0. Hence, by (H1),

u2(t) = Au1(t) =

1∫
0

G(t, s)s−σsσf
(
s, u1(s), Dµ

0+u1(s)
)

ds

6

1∫
0

G(t, s)s−σsσf
(
s, u0(s), Dµ

0+u0(s)
)

ds

= Au0(t) = u1(t), t ∈ [0, 1].

By the induction, we have un+1 6 un (n = 0, 1, 2, . . . ). Therefore, limn→∞ un = u∗.
Using the continuity of A and taking the limit n→∞ in un+1 = Aun yields Au∗ = u∗.

Let v0(t) = 0, t ∈ [0, 1], apparently v0(t) ∈ Kd. Let v1 = Av0, v2 = A2v0, then
we have v1 ∈ Kd, v2 ∈ Kd. Let vn = Avn−1 = Anv0 (n = 0, 1, 2, . . . ), and since
A : Kd → Kd, we have vn ∈ A(Kd) ⊆ Kd (n = 1, 2, 3, . . . ). It follows from the
complete continuity of A that {vn}∞n=1 is a sequentially compact set. Since v1 = Av0 ∈
Kd, we get

v1(t) = Av0(t) = (A0)(t) > 0, 0 6 t < 1.

Hence, we obtain
v2(t) = Av1(t) > (A0)(t) = v1(t), 0 6 t < 1.

By induction, we have vn+1 > vn (n = 0, 1, 2, . . . ), 0 6 t < 1. Hence, there exists
v∗ ∈ Kd such that vn → v∗ as n→∞. Applying the continuity of A and vn+1 = Avn,
we have that Av∗ = v∗.

If f(t, 0) 6≡ 0, 0 6 t 6 1, then the zero function is not the solution of BVP (1).
Hence, v∗ is a positive solution of BVP (1).

Since each fixed point of A in K is a solution of BVP (1), by above proof, we get that
u∗ and v∗ are positive solutions of the BVP (1) on [0, 1].

Remark 1. The iterative sequences in Theorem 1 begins with a simple function, which
is useful for computational purpose.

Remark 2. u∗ and v∗ are the maximal and minimal solutions of the BVP (1), respectively,
but u∗ and v∗ may be coincident, and when u∗ and v∗ are coincident, the boundary value
problem (1) will have a unique solution in Kd.

4 An example

Consider the following infinite-point p-Laplacian fractional differential equations:

φp
(
D

11/2
0+ u(t)

)
+ f

(
t, u(t), D

1/2
0+ u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = u′′′(0) = u(4)(0) = 0,

D
7/2
0+ u(1) =

∞∑
j=1

1

2j2
D

5/2
0+ u

(
1

j4

)
,

(19)
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where α = 11/2, µ = 1/2, p1 = 7/2, p2 = 5/2, p = 3, q = 3/2, ηj = 1/2j2, ξj = 1/j4,
σ = 1/2,

f(t, x, y) =

{
2400
πt (x2 + y2)2, (t, x, y) ∈ (0, 1]× [0, 1]× [0, 1],

2400
πt , (t, x, y) ∈ (0, 1]× [1,∞)× [1,∞).

Clearly,
√
tφq
(
f(t, x, y)

)
=
∣∣f(t, x, y)

∣∣−1/2f(t, x, y) =
√
t
(
f(t, x, y)

)1/2
,

and
√
tφq(f(t, x, y)) =

√
t[2400/(πt)(x2+y2)2]1/2 =

√
2400/π(x2+y2) is continuous

on [0, 1]×R+ ×R+.
By simple calculation, we have

∆ =
Γ(α)

Γ(α− p1)
− Γ(α)

Γ(α− p2)

∞∑
j=1

ηjξ
α−p2−1
j

=
Γ( 11

2 )

Γ( 11
2 −

7
2 )
−

Γ( 11
2 )

Γ( 11
2 −

5
2 )

∞∑
j=1

1

2j2

(
1

j4

)2

≈ 38.18, (20)

P (s) =
1

Γ(α− p1)
− 1

Γ(α− p2)

∑
s6ξj

ηj

(
ξj − s
1− s

)α−p2−1
(1− s)p1−p2

=
1

Γ( 11
2 −

7
2 )
− 1

Γ( 11
2 −

5
2 )

∑
s61/j4

1

2j2

( 1
j4 − s
1− s

)11/2−5/2−1

(1− s)7/2−5/2

= 1− 1

2

∑
s6ξj

( 1
j4 − s
1− s

)
(1− s), (21)

by (20) and (21), we have

$ =

( 1∫
0

1

∆
P (s)(1− s)α−p1−1s−σ ds

)−1

= ∆

( 1∫
0

(
1− 1

2

∑
s61/j4

( 1
j4 − s
1− s

)
(1− s)

)
(1− s)s−1/2 ds

)−1

= ∆

( 1∫
0

(1− s)s−1/2 ds− 1

2

1∫
0

∑
s61/j4

( 1
j4 − s
1− s

)2

(1− s)2s−1/2 ds

)−1

> ∆

(
B

(
1

2
, 2

))−1
=

3

4
∆ ≈ 28.64.
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Taking d=28, then tσφq(f(t, x0, x1)) ≈ 2400/π ≈ 764 6 28.64 × 28 = $d, so, all
condition of Theorem 1 hold, then boundary value problem (19) has the maximal and
minimal positive solutions u∗ and v∗ on [0, 1].

Acknowledgment. The authors would like to thank the referee for his/her valuable
comments and suggestions.
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