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Abstract. The problem of the inverse Lyapunov exponent was formulated and solved, involving to
find such chaotic transformation for which the value of the Lyapunov exponent is given in advance.
The solution procedure was presented by a numerical example. Furthermore, applications of the
discussed model in chaos based cryptography were discussed.
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1 Introduction

Chaotic functions play a very important role in many fields of science and technology. For
example, they are used in cryptography as generators of pseudo-random numbers [1, 18]
for advanced technical models of chemical reactors [5, 6, 20] or description of physical
phenomena such as weather forecasts [24]. They are also applied outside the range of
technical sciences, for example, in economics – for modelling certain processes [12, 15]
or even medicine [28, 30].

One of the basic measures showing if a given function

xk+1 = f(xk) (1)

could generate chaotic solutions is the Lyapunov exponent. For maps in the form of (1),
it may be expressed as

λ = lim
N→∞

1

N

N−1∑
i=0

ln
∣∣f ′(xi)∣∣ (2)

and measures the rate of the propagation of infinitely approximate trajectories of the
system (1). Positive value of (2) is a necessary condition for function (1) to generate
a chaotic solution; otherwise, the solution is stable.

The Lyapunov exponent for discrete dynamical systems may be easily determined in
a numerical manner. Accordingly, for a logistics map expressed as

xk+1 = axk(1− xk), (3)
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Figure 1. Lyapunov exponent λ of Eq. (3) in the
interval [3.57, 4]. Outside this interval the value
of λ is non-positive.

Figure 2. Lyapunov exponent λ given by Eq. (5).

where a ∈ [0, 4] and x ∈ [0, 1], the Lyapunov exponent is presented in the graph in Fig. 1.
As shown in the graph, its structure is fairly complicated and has a fractal character.
Moreover, its maximum value is ln 2 for the parameter value a = 4.

Another example of a transformation for which the Lyapunov exponent may be des-
ignated in an easy manner is the asymmetric (skew) tent map given by the equation

xk+1 =

{
xk

p , 0 < xk 6 p,

1−xk

1−p , p < xk < 1,
(4)

where p ∈ (0, 1). Its Lyapunov exponent λ is expressed as [2]

λ = −p ln p− (1− p) ln(1− p). (5)

For each value of parameter p, the value of (5) is positive and its graph is plotted in Fig. 2.
Likewise, in the case of (3) its maximum is ln 2 for p = 1/2.

Let us now consider another example of piecewise linear map [25]:

xk+1 =



xk

p1
, xk ∈ I1,

xk−p1

p2
, xk ∈ I2,

...
...

xk−
∑n−1

i=1 pi

pn
, xk ∈ In−2,

(6)

where I1 = [0, p1], Ii = [
∑i−1

j=1 pj ,
∑i

j=1 pj ] and
∑n

i=1 pi = 1.
The Lyapunov exponent for (6) is expressed by the following equation [2]:

λ = −
n∑

i=1

pi ln pi.
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Figure 3. Lyapunov exponent for transformation (7) with b = 123 and n = 100.

Similarly to (5), for each set of pi it has a positive value. Its maximum is equal to lnn for
pi=1/n (i=1, 2, . . . , n). Furthermore, its value increases together with the increase of n.

An interesting function for which the Lyapunov exponent also increases indefinitely,
is the so called Weierstrass recurrence given as [7, 17]

xk+1 =

n∑
i=0

ai cos
(
biπxk

)
. (7)

Its Lyapunov exponent is shown in Fig. 3.
As inferred from the examples discussed above, despite the fact that the Lyapunov

exponent may be expressed by means of complicated dependencies, it may also reach
very high values. Nevertheless, while analysing the discussed cases, a question may arise
whether it is possible to construct such chaotic function that would have a pre-determined
value of the Lyapunov exponent. Such formulated problem may be labelled as the inverse
designation of the Lyapunov exponent and will be discussed in the next part of the paper.

Such types of tasks are often analyzed in technical sciences, e.g. the inverse Stefan
problem [13,29], which has wide applications in metals solidification. Moreover, it should
also be emphasised that other inverse problems are considered in the theory of dynamical
systems, for example, the inverse Frobenius–Perron problem [10, 11, 16, 27], involving
the designation of a map with the assumed invariant density.

The posed problem can be used in cryptography based on the theory of chaos. In this
case, the security of the algorithm depends on the used map and, consequently, from its
properties. Mappings with a small and variable value of Lyapunov exponent are not the
best solutions. More on this subject is given in Section 5.

2 Formulation of the problem

Let us assume a given λ value. The task is to find such chaotic function for which the
value of the Lyapunov exponent is exactly equal to λ. Such task may be described as the
inverse Lyapunov exponent problem.
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3 Results

The problem of the inverse Lyapunov exponent will be solved by means of the following
expression:

xk+1 =



nxk, xk ∈ [0, 1
n ),

nxk − 1, xk ∈ [ 1n ,
2
n ),

...
...

nxk − n+ 3, xk ∈ [n−3n , n−2n ),
nxk−n+2

np , xk ∈ [n−2n , n−2n + p),

nxk−n+2−np
2−np , xk ∈ [n−2n + p, 1],

(8)

where n > 3 and p ∈ (0, 2/n). Its exemplary graph for settled values of n = 4 and
p = 0.1 is plotted in Fig. 4

Let us now assume some basic facts concerning Eq. (8).

Theorem 1. The invariant density ρ(x) of (8) is 1.

Proof. The invariant density ρ(x) for mapping (1) may be designated by solving the
Frobenius–Perron equation in the following form [9]:

ρ(x) =

m∑
i=1

ρ(yi)

|f ′(yi)|
, (9)

where yi is the ith inverse image of point x (f(yi) = x, i = 1, 2, . . . ,m). By transcribing
Eq. (9) with (8) the following equation is derived:

ρ(x) =
1

n
ρ

(
x

n

)
+

1

n
ρ

(
x+ 1

n

)
+ · · ·+ 1

n
ρ

(
x+ n− 3

n

)
+ pρ

(
npx+ n− 2

n

)
+

(
2

n
− p
)
ρ

(
x(2− np) + n− 2 + np

n

)
. (10)

By substituting ρ(x) = 1 to (10), the equality is designated.

Theorem 2. The Lyapunov exponent for Eq. (8) is given by the following formula:

λ =
n− 2

n
lnn− p ln p−

(
2

n
− p
)
ln

(
2

n
− p
)
. (11)

Proof. Let us take advantage of dependence [8]

λ =

1∫
0

ρ(x) ln
∣∣f ′(x)∣∣dx,

which bids the Lyapunov exponent with the invariant density.
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Figure 4. Exemplary transformation of (8) with
n = 4 and p = 0.1.

Figure 5. Lyapunov exponent (11) with n = 4.

On the grounds of the fact proven in Theorem 1 that ρ(x) = 1, the following equation
is derived:

λ =

1/n∫
0

lnn dx+

2/n∫
1/n

lnndx+ · · ·+
(n−2)/n∫

(n−3)/n

lnndx

+

(n−2)/n+p∫
(n−2)/n

ln
1

p
dx+

1∫
(n−2)/n+p

ln
1

2
n − p

dx

=
1

n
lnn+

1

n
lnn+ · · ·+ 1

n
lnn− p ln p−

(
2

n
− p
)
ln

(
2

n
− p
)

=
n− 2

n
lnn− p ln p−

(
2

n
− p
)
ln

(
2

n
− p
)
.

Lemma 1. The Lyapunov exponent given by Eq. (11) fulfils the dependence

n− 2

n
lnn− 2

n
ln

2

n
6 λ 6 lnn, n > 2.

Proof. Function (11) reaches its maximum value for p = 1/n, which proves the right
side of the inequality. In turn, the lowest value of function (11) is obtained for p = 0 or
p = 2/n, directly leading to the left side of the inequality.

Furthermore, we shall prove a supporting lemma enabling the solution of the discussed
problem.

Lemma 2. The following inequality holds:

n− 2

n
lnn− 2

n
ln

2

n
6 ln(n− 1), n > 2.
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Proof. We shall prove that

ln(n− 1)− n− 2

n
lnn+

2

n
ln

2

n
> 0. (12)

By multiplying both sides of (12) by n we derive

n ln(n− 1)− (n− 2) lnn+ 2 ln
2

n
> 0.

Next, by performing elementary procedures on the logarithms, we obtain

ln
4(n− 1)n

nn
> 0. (13)

In consequence, inequality (13) leads to

4(n− 1)n

nn
> 1. (14)

Dependence (14) is true for n > 2 as the sequence an = (n− 1)n/nn is incremental
and limn→∞ an = e−1.

Conclusion 1. It is possible to find such representation of (8), for which the Lyapunov
exponent (11) fulfils the following dependence:

ln(n− 1) 6 λ 6 lnn. (15)

Proof. The proof directly follows from Lemmas 1 and 2.

On the grounds of Conclusion 1, it is possible to solve the inverse Lyapunov exponent
by means of the method described below:

Method 1. Let λ denote the assumed value of the Lyapunov exponent. Then:

• If λ 6 ln 2, the searched equation has the form of (4). The value of parameter p is
designated by solving Eq. (5).

• If λ > ln 2, the searched dynamical system has the form of (8). The first step
involves the determination of the value of n in accordance with dependence (15).
The value of parameter p is designated by solving Eq. (11).

4 Example

By applying Method 1 we shall find the chaotic map in the form of (8), for which the
Lyapunov exponent λ = 1.1. n = 4 because

ln 3 < 1.1 < ln 4.

By solving numerically Eq. (11) with λ = 1.1 and n = 4, p ∼ 0.079787 is derived. The
obtained equation is presented in Fig. 6.
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Figure 6. Transformation of the form of (8) with λ = 1.1.

5 Applications

Chaotic maps are used, for example, in chaotic cryptography, enabling, on the grounds
of the values derived from the functions, construction of various algorithms for data
protection. The secret keys for such algorithms are the values of parameters and initial
conditions. Very frequently the logistics map (3) (among others, in [4, 23, 26, 31]) and
the asymmetric tent map (4) (for example, in [14, 21, 22]) are used in such an encryption
process. However, as far as cryptography is concerned, both types of these functions are
often the weakest points of algorithms referred to in publications. This fact results, among
other factors, from:

(i) nonuniform distribution of the iterated variable;
(ii) too narrow range of parameters values within which the chaotic solution is gen-

erated;
(iii) unstable value of the Lyapunov exponent, i.e. its value changes in the range

[0, ln 2] (as in the case of logistic (3) and tent map (4)) and its very fragile,
i.e. a small change in the parameter value eliminates the phenomenon of chaos
(logistic map (3), see Fig. 1).

The above mentioned drawbacks have been noticed by some researchers and attempts
made at determining other functions that could successfully replace logistic map (3) or
skew tent map (4) [3, 19].

The presented map (8) is devoid of the above-mentioned disadvantages. It may be used
as a function suitable for encryption, due to its features such as: uniform distribution of
the iterated variable or the length of intervals of the parameter values where the function
is chaotic. Moreover, Eq. (8) is a representant of the family of functions for which the
Lyapunov exponent λ is designated by expression (11). Other equations that belong to
this family are determined in such a manner that the direction coefficients of the straight
lines in (8) are positive or negative with the same modulus value. Likewise, it is possible to
re-permute the sub-intervals on which particular straight lines are designated. The number
of such functions is determined by the lemma given below.

Nonlinear Anal. Model. Control, 23(6):951–960
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Lemma 3. The number Pn of a piecewie linear chaotic functions in the form of (8), for
which the Lyapunov exponent λ is equal to (11) and the invariant density is ρ(x) = 1, is

Pn = 2nn(n− 1).

Proof. By changing the signs of the direction components of the straight lines in (8) we
derive 2n maps. In turn, by changing the position of the sub-intervals in which parameter
p is contained we obtain n(n−1) new maps. The procedures described above do not alter
the values of the Lyapunov exponent and invariant density.

As it follows from Lemma 3, it is not only possible to hide the value of parameter p,
but also the form of the function, rendering more opportunities for the selection of secret
keys and making it more resistant, for example, to brutal attacks.

6 Conclusions

The problem of the inverse Lyapunov exponent was formulated and solved. The solution
involved finding a chaotic function in the form of (1), for which the value of the Lyapunov
exponent is assumed in advance. The solution was based on the construction of a piece-
wise linear model of (8), for which the Lyapunov exponent was given by dependence (11).
The solution procedure was illustrated by a numerical example. Furthermore, it was
indicated that the discussed model may be used in chaotic cryptography.
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