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Abstract. In this paper, we have considered a dynamical model of Chlamydia disease with
varying total population size, bilinear incidence rate, and pulse vaccination strategy in a random
environment. It has been shown that the Chlamydia epidemic model has global positive solutions
and, under some conditions, it admits a unique positive periodic disease-free solution, which is
globally exponentially stable in mean square. We have defined two positive numbers R1 and R2

(< R1). It is proved that the susceptible population will be persistent in the mean and the disease
will be going to extinct if R1 < 1 and the susceptible population as well as the disease will be
weakly persistent in the mean if R2 > 1. Our analytical findings are explained through numerical
simulation, which show the reliability of our model from the epidemiological point of view.
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1 Introduction

Infectious diseases have tremendous influence on human life, and so the development of
vaccines against infectious disease has been a boon to human being. Infectious diseases
are usually caused by pathogenic microorganisms such as bacteria, viruses, parasites, or
fungi. The diseases can be spread directly or indirectly. Controlling infectious diseases has
been an increasingly complex and significant issue in recent years. Sexually transmitted
infections (STIs) remain a major public health challenge globally and are among the most
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common infections in the United States. Chlamydia, caused by the bacterium Chlamy-
dia trachomatis, is one of the most important sexually-transmitted infections spreading
throughout the world.

Human immune system is an integrated collection of organs, special cells, and sub-
stances that help to protect from infections and some other diseases. Immune system
cells and the substances they make travel through the body to protect it from pathogens
(germs) causing infections. Pathogens are any disease-producing agent, especially a virus,
bacterium, or other microorganism, which are also called foreign armies because they are
not normally found in the body. They try to invade human body to use its resources to
serve their own purposes, and so they can hurt the body in the process. The immune
system is acting as body’s defence force, which helps keep invading germs out or helps
kill them if they do get into the body. It keeps track of all of the substances normally
found in the body and any new substance in the body that the immune system does not
recognize raises an alarm to attack it. Substances that cause an immune system response
are called antigens. The immune response can lead to destruction of anything containing
the antigen such as pathogens. Pathogens (viruses, bacteria, parasites) have substances on
their outer surfaces, such as certain proteins, that are not normally found in the human
body. The immune system recognizes these foreign substances as antigens [12].

Vaccine-induced immunity results after a vaccine is administered. The vaccine acti-
vates immune systems infection-attacking ability and memory without exposure to the
actual disease-producing pathogens. A vaccine consists of a killed or weakened form or
derivative of the infectious germ. When given to a healthy person, the vaccine activates
an immune response and makes the body to think that it is being invaded by a specific
organism. Then the immune system goes to work to kill the invader and prevent it from
infection. If we are exposed to a disease for which we have been vaccinated, the invading
germs are met by antibodies that will destroy them. The immunity developed through
vaccination is similar to the immunity acquired from natural infection. Several doses of
a vaccine may be needed for a full immune response. Some people may be unsuccessful
to achieve full immunity to the first doses of a vaccine but respond to later doses. The
immune response may decrease over time, one may require another dose of a vaccine
(booster shot) to restore or increase immunity [12].

The pulse vaccination strategy (PVS) consists of repeated administration of vaccine
at discrete time having equal interval in a population in contrast to the traditional constant
vaccination [15]. Compared to the proportional vaccination models, the analysis of pulse
vaccination models is in its infancy [15]. At each vaccination time, a constant fraction
of the susceptible population is vaccinated successfully. Since 1993, attempts have been
made to develop mathematical theory to control infectious diseases using pulse vaccina-
tion. Nokes and Swinton [9] analysed the control of childhood viral infections by imple-
menting pulse vaccination strategy. Stone et al. [13] discussed a theoretical investigation
of the pulse vaccination strategy in the SIR epidemic model, and d’Onofrio [3,4] analysed
the use of pulse vaccination policy to eradicate infectious disease for SIR and SEIR
epidemic models. Different types of vaccination policies and strategies combining pulse
vaccination policy, treatment, pre-outbreak vaccination, or isolation have already been
analysed by several researchers. Our real life is full of randomness, and so there has been
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a growing interest in stochastic epidemic models. The introduction of a stochastic pertur-
bation in epidemic models is justified by observation that the real life is full of social and
environmental random variations. The presence of a stochastic noise in an epidemic model
changes the behaviour of solution of correspondent deterministic model and modifies the
thresholds of the system for an epidemic to occur, which can bring to light new insights.

In this work, we have used the Kermack–McKendrick compartmental modelling
framework, which entails subdividing the entire high-risk human population into mutual-
ly-exclusive epidemiological compartments (based on disease status) to gain insights into
the qualitative features of Chlamydia trachomatis in a human population (with the aim of
finding effective ways to control its spread). The main feature of this paper is to introduce
noise and valid pulse vaccination strategy, which greatly enriches biologic background.
We have introduced two threshold values R1 and R2 (< R1) and further obtained that
the susceptible population will be persistent in the mean, and the disease will be going
to extinct if R1 < 1 and the susceptible as well as the disease will be weakly persistent
in the mean if R2 > 1. Here we have analysed whether PVS can also be administered
to contrast Chlamydia diseases in a random environment, which might allow to apply
PVS to fight in a realistic way. The important mathematical findings for the dynamical
behaviour of the Chlamydia disease model are numerically verified using MATLAB, and
also epidemiological implications of our analytical findings are addressed critically in
Section 5. The aim of the analysis of this model is to trace the parameters of interest for
further study with a view to informing and assisting policy-maker in targeting prevention
and treatment resources for maximum effectiveness.

2 Model derivation and preliminaries

In the following, we consider a dynamical model of Chlamydia disease that spread by
Chlamydia trachomatis (a type of bacteria) with pulse vaccination strategy (PVS) in
a random environment. The aim of this work is to study whether PVS can also be ad-
ministered to contrast Chlamydia disease in the random environment. Our Chlamydia
epidemic model is based on the following assumptions:

The underlying high-risk human population is split up into four mutually-exclusive
classes (compartments), namely, susceptible (S), infective (I), naturally recovered (infec-
tious people who have cleared (or recovered from) Chlamydia infection naturally) (R),
and vaccinated individuals (V ). Here it is assumed that the recovered individuals acquire
the permanent immunity but the vaccinated acquire temporary immunity. So, the natural
immunity is permanent but the vaccine-induced immunity is temporary.

The susceptible population increases by the recruitment through new sexually-active
individuals, migration, and the vaccinated individuals return to the susceptible class (due
to immunity waning) and decreases due to direct contact with infected individuals, natural
death, and pulse vaccination strategy.

Standard epidemiological models use a bilinear incidence rate βSI based on the law
of mass action [1], and it is reasonable when the mixing of susceptible with infective is
taken into account to be homogeneous.
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The infected class is increased by infection of susceptible individuals. A fraction of
infectious individuals recovers naturally and moves to the recovered compartment. The
infected class is decreased through natural recovery from infection, by disease-related
death and by natural death.

Thus, a dynamical model of Chlamydia disease that spread by Chlamydia trachomatis
with bilinear incidence and pulse vaccination strategy in a random environment under the
following stochastic perturbation and the pulse vaccination scheme is formulated:

dS(t)

dt
= Λ(t)− β(t)S(t)I(t)− µ(t)S(t) + α(t)V (t)

+
√
α(t)

{
S(t)− V (t)

}dW1

dt
, t 6= nT,

dI(t)

dt
= β(t)S(t)I(t)− r(t)I(t)−

(
µ(t) + d(t)

)
I(t)

+ σ2(t)I(t)
dW2

dt
, t 6= nT,

dV (t)

dt
= −

(
µ(t) + α(t)

)
V (t) + σ3(t)V (t)

dW3

dt
, t 6= nT,

dR(t)

dt
= r(t)I(t)− µ(t)R(t) + σ4(t)R(t)

dW4

dt
, t 6= nT,

S
(
t+
)
= (1− p)S(t), t = nT, n = 1, 2, . . . ,

I
(
t+
)
= I(t), t = nT, n = 1, 2, . . . ,

V
(
t+
)
= V (t) + pS(t), t = nT, n = 1, 2, . . . ,

R
(
t+
)
= R(t), t = nT, n = 1, 2, . . . ,

(1)

where Λ(t), β(t), µ(t), α(t), r(t), d(t), and σi(t) (i = 2, 3, 4) are all positive T -periodic
continuous functions, T is a positive constant; T is the period of pulse vaccination.
Here S(t) denotes the number of susceptible, I(t) denotes the number of infective, R(t)
denotes the number of recovered individuals, and V (t) denotes the number of vaccinated
individuals. The pulse vaccination does not give life-long immunity, there is an immunity
waning for the vaccination with the per capita immunity waning rate α(t), and return to
the susceptible class. The influx of susceptible comes from two sources: a time dependent
recruitment Λ(t) and vaccinated hosts α(t)V (t). The interpretation of the functions β(t),
µ(t), d(t), r(t), and the constant p are as follows:

β(t): The coefficient of transmission (Chlamydia infection) rate from infective to
susceptible humans and the rate of transmission of infection is of the form β(t)S(t)I(t).

µ(t): The coefficient of natural death rate of all epidemiological human classes.
d(t): The coefficient of additional disease-related death rate of infective class.
r(t): The rate at which the infectious individuals eventually recover naturally and

move to the class R.
p (0 < p < 1): The constant fraction of susceptible who are vaccinated successfully

at discrete time t = T, 2T, 3T, . . ., which is called impulsive vaccination rate.
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In system (1), ηi = dWi/dt (i = 1, 2, 3, 4) are independent standard zero mean
Gaussian white noises characterized by〈

ηi(t)
〉
= 0,

〈
ηi(t1)ηi(t2)

〉
= δ(t1 − t2), and

〈
ηi(t1)ηj(t2)

〉
= 0 (i 6= j),

where 〈·〉 represents the average over the ensemble of the stochastic process, and δ(t)
denotes the Dirac delta function.

It is well known that Gaussian white noise, which is a delta-correlated random process,
is very irregular and as such it is to be treated with care. In spite of this, it is an
immensely useful concept to model rapidly fluctuating phenomenon. Of course, true
white noise does not occur in nature. However, as can be seen by studying their spectra,
thermal noise in electrical resistance, the force acting on a Brownian particle and climate
fluctuations, disregarding the periodicities of astronomical origin, etc. are white to a
very good approximation. These examples support the usefulness of the white noise
idealization in applications to natural systems. Furthermore, it can be proved that a
solution of (1) is Markovian if and only if the external noises are white. These results
explain the importance and appeal of the white noise idealization [5, 10].

Let us first consider the following stochastic SIVR Chlamydia epidemic model:

dŜ(t)

dt
= Λ(t)− β(t)Ŝ(t)Î(t)− µ(t)Ŝ(t) + α(t)V̂ (t)

+
√
α(t)

{
Ŝ(t)− V̂ (t)

}dW1

dt
,

dÎ(t)

dt
= β(t)Ŝ(t)Î(t)− µ1(t)Î(t) + σ2(t)Î(t)

dW2

dt
,

dV̂ (t)

dt
= −µ2(t)V̂ (t) + σ3(t)V̂ (t)

dW3

dt
,

dR̂(t)

dt
= r(t)Î(t)− µ(t)R̂(t) + σ4(t)R̂(t)

dW4

dt
,

(2)

where µ1(t) = r(t) + µ(t) + d(t) and µ2(t) = µ(t) +α(t). In general, if the coefficients
of a stochastic differential equation satisfy the linear growth condition and local Lipschitz
condition, then it has a global (i.e. no explosion in a finite time) solution for any given
initial value [7,14]. However, the coefficients of system (2) do not satisfy the linear growth
condition, though they are locally Lipschitz continuous, and so the solution of (2) may
explode at a finite time [7,14]. In this section, we shall show that the solution of system (2)
with positive initial value is positive and global by using the Lyapunov analysis method
(mentioned in [7]).

In the rest of the article, we adopt the following definitions.

Definition 1. If f(t) is an integrable function on [0,∞), then

〈
f(t)

〉
=

1

t

t∫
0

f(s) ds, t > 0.
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Definition 2. If f(t) is a bounded function on [0,∞), then

fu = sup
t∈R+

f(t) and f l = inf
t∈R+

f(t).

Theorem 1. For any initial value (Ŝ(0), Î(0), V̂ (0), R̂(0)) ∈ R4
+, system (2) has a unique

global solution (Ŝ(t), Î(t), V̂ (t), R̂(t)), which remains in R4
+ with probability one for all

t > 0.

Proof. Since the coefficients of the system are locally Lipschitz continuous for any given
initial value (S(0), I(0), V (0), R(0)) ∈ R4

+, there is a unique local solution (Ŝ(t), Î(t),

V̂ (t), R̂(t)) on t ∈ [0, Te), where Te is the explosion time [8]. To show that this solution
is global, we need to show that Te =∞ a.s. Let us first prove that Ŝ(t), Î(t), and V̂ (t) do
not explode to infinity in a finite time. For that purpose set k0 > 0 be sufficiently large
for S(0), I(0), V (0) ∈ [1/k0, k0]. For each integer k > k0, define the stopping time:

Tk = inf

{
t ∈ [0, Te): Ŝ(t) /∈

(
1

k
, k

)
or Î(t) /∈

(
1

k
, k

)
, or V̂ (t) /∈

(
1

k
, k

)}
,

where throughout this article, it is set inf φ = ∞, where φ represents the empty set. It is
evident that Tk is increasing as k → ∞. Set T∞ = limk→∞ Tk, and so T∞ 6 Te a.s.
If T∞ = ∞ a.s. is true, then Te = ∞ a.s. and (Ŝ(t), Î(t), V̂ (t)) ∈ R3

+ for all t > 0
a.s. In other words, to complete the proof it is required to show that T∞ = ∞ a.s. If
this statement is false, then there exist a pair of constants τ > 0 and ε ∈ (0, 1) such that
P{T∞ 6 τ} > ε. Therefore, there exists an integer k1 > k0 such that

P{Tk 6 τ} > ε ∀k > k1. (3)

Define a C3-function G : R3
+ → R+ as follows:

G(Ŝ, Î, V̂ ) =

(
Ŝ − a− a ln Ŝ

a

)
+ (Î − 1− ln Î) + (V̂ − 1− lnV ),

where a is a positive constant to be defined later. The nonnegativity of G follows from
the following inequality:

u− 1− lnu > 0 ∀u > 0.

Let k > k0 and τ > 0 be arbitrary. Applying Itô’s formula, we have

dG(Ŝ, Î, V̂ ) =

{(
1− a

Ŝ

)
(Λ− βŜÎ − µŜ + αV̂ )

}
dt

+

{(
1− 1

Î

)
(βŜÎ − µ1Î)

}
dt

+

{
−
(
1− 1

V̂

)
µ2V̂ + 0.5

(
aα

(Ŝ − V̂ )2

Ŝ2
+ σ2

2 + σ2
3

)}
dt

+
√
α(Ŝ − a)

(
1− V̂

Ŝ

)
dW1 + σ2(Î − 1) dW2 + σ3(V̂ − 1) dW3
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= LG(Ŝ, Î, V̂ ) dt+
√
α(Ŝ − a)

(
1− V̂

Ŝ

)
dW1

+ σ2(Î − 1) dW2 + σ3(V̂ − 1) dW3,

where LG : R3
+ → R+ is given by

LG(Ŝ, Î, V̂ ) =

{
(Λ+ aµ+ µ1 + µ2) + 0.5

(
aα

(Ŝ − V̂ )2

Ŝ2
+ σ2

2 + σ2
3

)}
+
{
aβ − (r + µ+ d)

}
Î − (µ+ β)Ŝ − Λ a

Ŝ
− aαV̂

Ŝ
.

Let us choose a = (rl+µl+dl)/βu, which implies aβ(t)− (r(t)+µ(t)+d(t)) 6 0
for all t > 0. Then

LG(Ŝ, Î, V̂ ) 6 Λu + aµu + µu1 + µu2 + 0.5
{
aαu +

(
σ2
2

)u
+
(
σ2
3

)u}
= K (say).

Hence,

dG(Ŝ, Î, V̂ ) 6 K dt+
√
α(Ŝ − a)

(
1− V̂

Ŝ

)
dW1 + σ2(Î − 1) dW2

+ σ3(V̂ − 1) dW3. (4)

Integrating both sides of (4) from 0 to Tk ∧ τ (where Tk ∧ τ = min{Tk, τ}) and then
taking the expectations, we get

E
{
G
(
Ŝ(Tk ∧ τ), Î(Tk ∧ τ), V̂ (Tk ∧ τ)

)}
6 G

(
S(0), I(0), V (0)

)
+KE(Tk ∧ τ)

=⇒ E
{
G
(
Ŝ(Tk ∧ τ), Î(Tk ∧ τ), V̂ (Tk ∧ τ)

)}
6 G

(
S(0), I(0), V (0)

)
+KT. (5)

Set Ωk = {Tk 6 τ} for all k > k1, and so, by (3), P(Ωk) > ε. It is evident that for
every ω ∈ Ωk, there exists Ŝ(Tk ∧ τ, ω) or Î(Tk ∧ τ, ω), or V̂ (Tk ∧ τ, ω) equals either k
or 1/k, and hence G(Ŝ(Tk ∧ τ), Î(Tk ∧ τ), V̂ (Tk ∧ τ)) is no less than either k− 1− ln k
or 1/k − 1− ln(1/k) = 1/k − 1 + ln k. Consequently,

G
(
Ŝ(Tk ∧ τ), Î(Tk ∧ τ), V̂ (Tk ∧ τ)

)
> (k − 1− ln k) ∧

(
1

k
− 1 + ln k

)
. (6)

It then follows from (5) and (6) that

G
(
S(0), I(0), V (0)

)
> E

{
1Ωk

(ω)G
(
Ŝ(Tk ∧ τ), Î(Tk ∧ τ), V̂ (Tk ∧ τ)

)}
> ε(k − 1− ln k) ∧

(
1

k
− 1 + ln k

)
, (7)

where 1Ωk
is the indicator function of Ωk. Letting k →∞ and using (5)–(7), we get

+∞ > G
(
S(0), I(0), V (0)

)
+KT =∞ (a contradiction)

=⇒ T∞ =∞ a.s. (8)
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Therefore, it implies that Ŝ(t), Î(t), and V̂ (t) will not explode in a finite time with
probability one.

Next, using the fourth equation of (2), we get

R̂(t) =

[
R(0) +

t∫
0

r(s)Î(s) exp

{ s∫
0

(
µ(θ) + 0.5σ2

4(θ)
)
dθ −

s∫
0

σ4(θ) dW4(θ)

}
ds

]

× exp

{
−

s∫
0

(
µ(θ) + 0.5σ2

4(θ)
)
dθ +

s∫
0

σ4(θ) dW4(θ)

}
,

where the integrations are taken in Stratonovich’s sense.
Since Ŝ(t), Î(t), and V̂ (t) have been proved to be global and positive, R̂(t) is also

global and positive. Hence the proof is completed.

Theorem 2. For any initial value X0 = (S(0), I(0), V (0), R(0)) ∈ R4
+, system (1)

has a unique global solution X(t) = (S(t), I(t), V (t), R(t)), which remains in R4
+ with

probability one for all t > 0.

Proof. By Theorem 1, for t ∈ [0, T ] and for any initial conditionX0 ≡ (S(0), I(0), V (0),

R(0)) ∈ R4
+, system (2) has a unique global solution X̂(t; 0, X0) ∈ R4

+ that is defined
and continuous on interval [0, T ]. Hence system (1) also has a unique global solution
X(t; 0, X0) = X̂(t; 0, X0) ∈ R4

+ on interval [0, T ]. At t = T , there is an impulse,
which transfers solution X(T ) = X̂(T ; 0, X0) = (Ŝ(T ), Î(T ), V̂ (T ), R̂(T )) ∈ R4

+ into
X(T+) = ((1 − p)Ŝ(T ), Î(T ), V̂ (T ) + pŜ(T ), R̂(T )) ∈ R4

+, where 0 < p < 1.
Proceeding as in Theorem 1, it can be shown that there is a unique global solution
X(t, T,X(T+)) = X̂(t;T,X(T+)) that is defined on [T+, 2T ], and X(2T+) =

((1 − p)Ŝ(2T ), Î(2T ), V̂ (2T ) + pŜ(2T ), R̂(2T )) ∈ R4
+. It is evident that the above

deduction can go on infinitely. Hence the proof is completed.

3 Disease-free periodic solution

Note that the variable R(t) does not appear in the first three equations of (1), and so, in
the rest of this article, we only consider the following subsystem of (1):

dS(t)

dt
= Λ(t)− β(t)S(t)I(t)− µ(t)S(t) + α(t)V (t)

+
√
α(t)

{
S(t)− V (t)

}dW1

dt
, t 6= nT,

dI(t)

dt
= β(t)S(t)I(t)− µ1(t)I(t) + σ2(t)I(t)

dW2

dt
, t 6= nT,

dV (t)

dt
= −µ2(t)V (t) + σ3(t)V (t)

dW3

dt
, t 6= nT,

(9a)
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S
(
t+
)
= (1− p)S(t), t = nT, n = 1, 2, . . . ,

I
(
t+
)
= I(t), t = nT, n = 1, 2, . . . ,

V
(
t+
)
= V (t) + pS(t), t = nT, n = 1, 2, . . . .

(9b)

In this section, we discuss the existence of the disease-free periodic solution of sys-
tem (9) in which infectious individuals are completely absent, that is, I(t) = 0 for all
t > 0. Under this circumstances, system (9) reduces to the following stochastic impulsive
system:

dS(t)

dt
= Λ(t)− µ(t)S(t) + α(t)V (t)

+
√
α(t)

{
S(t)− V (t)

}dW1

dt
, t 6= nT,

dV (t)

dt
= −µ2(t)V (t) + σ3(t)V (t)

dW3

dt
, t 6= nT,

S
(
t+
)
= (1− p)S(t), t = nT, n = 1, 2, . . . ,

V
(
t+
)
= V (t) + pS(t), t = nT, n = 1, 2, . . . .

(10)

Theorem 3. If 2µl > αu, then system (10) has a unique positive T -periodic solution
(S(t), V (t)), which is globally exponentially stable in mean square.

Proof. Consider a multidimensional stochastic differential:

dX(t, ω) = f(t, ω) dt+G(t, ω) dW(t, ω),

where
X(t, ω) =

[
X1(t, ω), X2(t, ω), . . . , Xn(t, ω)

]T
,

f(t, ω) =
[
f1(t, ω), f2(t, ω), . . . , fn(t, ω)

]T
,

W(t, ω) =
[
W1(t, ω),W2(t, ω), . . . ,Wm(t, ω)

]T
,

and (
G(t, ω)

)
ij
= gij(t, ω), where G(t, ω) is an n×m matrix.

Here W(t) is an m-dimensional Wiener process having independent elements Wi(t) and
Wj(t) for i 6= j. For a smooth function F (t,X) with respect to t and X, Itô’s formula
yields the following stochastic differential for F :

dF (t,X) =

(
∂F

∂t
+

n∑
i=1

∂F

∂xi
fi +

n∑
i=1

n∑
j=1

m∑
k=1

1

2

∂2F

∂xi∂xj
gikgjk

)
dt

+

n∑
i=1

m∑
j=1

∂F

∂xi
gij dWj(t).
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Let (S(t, ζ), V (t, ζ ′)) be an arbitrary solution of the system of equations (10) and
define S(T, ζ) = ξ and V (T, ζ ′) = ξ′. Then (S(t, ξ), V (t, ξ′)) is also a solution of the
system of equations (10). Define Ĝ(t) = [S(t, ζ)− S(t, ξ)]2 and Ĝ(0) = (ζ − ξ)2. Now,
Ĝ(t) is continuous and positive on t > 0. Applying Itô’s formula, we have

dĜ(t) =
[
−2µ(t)

(
S(t, ζ)− S(t, ξ)

)2
+ 2α(t)

(
S(t, ζ)− S(t, ξ)

)(
V (t, ζ ′)− V (t, ξ′)

)
+ α(t)

(
S(t, ζ)− S(t, ξ)

)2
+ α(t)

(
V (t, ζ ′)− V (t, ξ′)

)2
− 2α(t)

(
S(t, ζ)− S(t, ξ)

)(
V (t, ζ ′)− V (t, ξ′)

)]
dt

+ 2
(
S(t, ζ)− S(t, ξ)

)√
α(t)

(
S(t, ζ)− V (t, ζ ′)

)
dW1

− 2
(
S(t, ζ)− S(t, ξ)

)√
α(t)

(
S(t, ξ)− V (t, ξ′)

)
dW1.

Therefore,

dĜ(t) =
{
α(t)− 2µ2(t)

}
Ĝ(t) dt+ α(t)

(
V (t, ζ ′)− V (t, ξ′)

)2
dt

+ 2
(
S(t, ζ)− S(t, ξ)

)√
α(t)

{(
S(t, ζ)− S(t, ξ)

)
−
(
V (t, ζ ′)− V (t, ξ′)

)}
dW1. (11)

Integrating (11) from 0 to t (t > 0),

Ĝ(t) = Ĝ(0) +

t∫
0

{
α(s)− 2µ(s)

}
Ĝ(s) ds+

t∫
0

α(s)
(
V (s, ζ ′)− V (s, ξ′)

)2
ds

+ 2

t∫
0

√
α(s)

{
Ĝ(s)−

(
S(s, ζ)− S(s, ξ)

)(
V (s, ζ ′)− V (s, ξ′)

)}
dW1(s)

=⇒ EĜ(t) = EĜ(0) +

t∫
0

{
α(s)− 2µ(s)

}
EĜ(s) ds

+

t∫
0

α(s)E
(
V (s, ζ ′)− V (s, ξ′)

)2
ds

=⇒ dEĜ(t)

dt
=
{
α(t)− 2µ(t)

}
EĜ(t) + α(t)E

(
V (t, ζ ′)− V (t, ξ′)

)2
6
{
αu − 2µl

}
EĜ(t), t 6= nT. (12)

When t = nT , EĜ(nT+) = (1 − p)2EĜ(nT ) holds good. By (12) and using
[6, Lemma 2.1] and [2, Thm. 3.1], we get

EĜ(t) 6 γEĜ(0)e−ρt for t > 0, (13)

where ρ = 2µl − αu − 2ln(1− p)/T > 0 and γ > 1 are two positive constants.
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Using (13) and the integral property of measurable functions, we have(
S(t, ζ)− S(t, ξ)

)2
6 γ|ζ − ξ|2e−ρt a.e. for t > 0. (14)

Then from (14) it follows that, for any given t > 0,

∞∑
m=1

{
S(t+mT, ζ)− S

(
t+ (m− 1)T, ζ

)}
= lim
k→∞

k∑
m=1

{
S(t+mT, ζ)− S

(
t+ (m− 1)T, ζ

)}
6
√
γ|ζ − ξ| lim

k→∞

k∑
m=1

e−ρ(t+(m−1)T )/2

6
√
γ|ζ − ξ|e−ρt/2

∞∑
m=1

e−ρ(m−1)T/2 <∞

=⇒ lim
k→∞

S(t+ kT, ζ) exists a.e.

Set S∗p(t, η) = limk→∞ S(t + kT, ζ), then it is evident that S∗p(t, η) is a periodic
solution (with period T ) of S(t) for system (10). If possible, let us assume that there is
another periodic solution Ŝp(t, η∗) (with period T ) of S(t) for system (10). Then it can
be easily obtained that for k ∈ Z+ and t > 0,(

S?p(t, η)− Ŝp(t, η∗)
)2

=
(
S∗p(t+ kT, η)− Ŝp(t+ kT, η∗)

)2
6 γ|ζ − ξ|2e−ρ(t+kT ) a.e.

It is evident that for t > 0, S∗p(t, η) = Ŝp(t, η
∗) as k → ∞ a.e. It follows that for

system (10), S(t) has a unique positive T -periodic solution S∗p(t, η), and all solutions
converge exponentially to it as t→∞. This completes the proof.

Remark 1. If 2µl > αu, then from the second and fourth equations of system (10), it
is evident that V (t) has a unique positive T -periodic solution V ∗p (t), which is globally
exponentially stable in mean square.

4 Extinction and persistent of the disease

In this section, we wish to discuss the extinction and permanence of the disease of sys-
tem (1). The word persistent means the long-term survival (i.e., will not extinct as time
goes) of the infectious population (I(t)) of system (1). It demonstrates how the disease
will be permanent (i.e., will not vanish as time goes) under some conditions. Here we
always assume that 2µl > αu, and so system (10) admits the unique positive periodic
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solution S∗p(t) for S(t). Let us define the following two positive numbers:

R1 =
βu(S∗p)

u

µl1 + 0.5(σ2
2)
l
, R2 =

βl(S∗p)
l

µu1 + 0.5(σ2
2)
u
,

obviously,
R2 < R1. (15)

Theorem 4. If 2µl > αu and R1 < 1, then the susceptible population S(t) is persistent
in the mean, and the endemic population I(t) is going to extinct as t→∞.

Proof. Let (S(t), I(t), V (t)) be the solution of system (9) with initial values S(0) > 0,
I(0) > 0, V (0) > 0, and S(t) = S(t, S(0)) be the solution of S(t) for system (10) with
initial value S(0). Using comparison theorem for SDEs, we have [14]

S(t) 6 S(t) =⇒ lim sup
t→∞

〈
S(t)

〉
6 lim sup

t→∞

〈
S(t)

〉
6
(
S∗p
)u
. (16)

Also,
R1 < 1 =⇒ βu(S∗p)

u − µl1 − 0.5
(
σ2
2

)l
< 0. (17)

Using Itô’s formula to ln(I(t)), we have

1

t
ln
I(t)

I(0)
=
〈
β(t)S(t)

〉
−
〈
µ1(t) + 0.5σ2

2(t)
〉
+

1

t

t∫
0

σ2(s) dW2(s)

6 βu
〈
S(t)

〉
− µl1 − 0.5

(
σ2
2

)l
+

1

t

t∫
0

σ2(s) dW2(s). (18)

Now, M(t) = (1/t)
∫ t
0
σ2(s)dW2(s) is a local martingale with quadratic variation

〈M(t)M(t)〉 =
∫ t
0
σ2
2(s) ds 6 (σ2

2)
ut. Applying the strong law of large numbers for

local martingales, we get

lim
t→∞

M(t)

t
= lim
t→∞

1

t

t∫
0

σ2(s)dW2(s) = 0 a.s. (19)

From (16)–(19) it follows that

lim sup
t→∞

1

t
ln
I(t)

I(0)
6 βu(S∗p)

u − µl1 − 0.5
(
σ2
2

)l
< 0

=⇒ lim
t→∞

I(t) = 0 a.s.

Hence, given ε > 0, no matter however small, there exists t0 > 0 and a set Ωε such
that P(Ωε) > 1 − ε and I(t) 6 ε for all t > t0 and ω ∈ Ωε. Therefore, from the first
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equation of system (9) we get, for t > t0 and ω ∈ Ωε,

dS(t)

dt
> Λ(t)−

{
µ(t) + εβ(t)

}
S(t) + α(t)V (t)

+
√
α(t)

{
S(t)− V (t)

}dW1

dt
, t 6= nT,

S
(
t+
)
= (1− p)S(t), t = nT, n = 1, 2, . . . .

(20)

Now, 2µl > αu =⇒ 2(µl+ εβl) > αu for a sufficiently small ε > 0. By Theorem 3,
the system

dS(t)

dt
= Λ(t)−

{
µ(t) + εβ(t)

}
S(t) + α(t)V (t)

+
√
α(t)

{
S(t)− V (t)

}dW1

dt
, t 6= nT,

S
(
t+
)
= (1− p)S(t), t = nT, n = 1, 2, . . . ,

(21)

has a unique positive T -periodic solution Ŝε(t) for S(t), which is globally exponentially
stable in mean square. From (20) and (21) and by the comparison theorem for stochastic
differential equations we get lim inft→∞〈S(t)〉 > Ŝlε. This completes the proof.

Remark 2. In a deterministic environment the following result holds [11]: If R0 < 1,
then the disease-free periodic solution (S̃e(t), 0, Ṽe(t), 0) of system (1) is globally asymp-
totically stable, where

R0 =
βΛ

µ2
+

β

µT

{(
S∗ − Λ

µ

)
1

µ+ α

(
1− e−(µ+α)T

)}
,

S̃e(t) =
Λ

µ
+

(
S∗ − Λ

µ

)
e−(µ+α)(t−nT ), nT < t 6 (n+ 1)T,

Ṽe(t) =
Λ

µ
− S̃e(t), and S∗ =

Λ(1− p)(1− e−(µ+α)T )

µ{1− (1− p)e−(µ+α)T }
.

Theorem 5. If 2µl > αu and R2 > 1, then the susceptible population S(t) and the
endemic population I(t) is weakly persistent in the mean.

Proof. Here we need to show that there exists a constant κ > 0 such that for any solution
(S(t), I(t), V (t)) of system (9) with initial values S(0) > 0, I(0) > 0, V (0) > 0, we
have lim supt→∞〈I(t)〉 > κ a.s. Otherwise, given ε > 0, no matter however small, there
exists a solution (Ŝ(t), Î(t), V̂ (t)) with positive initial values (Ŝ(0), Î(0), V̂ (0)) such
that P{lim supt→∞〈Î(t)〉 < ε} > 0. Let S(t) = S(t, Ŝ(0)) be the solution of S(t) for
system (10) with initial value Ŝ(0). Using comparison theorem for stochastic differential
equations, we have [14]

Ŝ(t) 6 S(t) =⇒ lim sup
t→∞

〈
Ŝ(t)

〉
6 lim sup

t→∞

〈
S(t)

〉
6 (S∗p)

u = h1 (say).
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Also,

R2 > 1 =⇒ h2 − µu1 − 0.5
(
σ2
2

)u − h21β
u
(
βu + 1

)
ε

Λl + αl(V ∗p )
l
> 0, (22)

where h2 = βl(S∗p)
l.

Applying Itô’s formula to ln(Î(t)), we have

1

t
ln
Î(t)

Î(0)
=
〈
β(t)Ŝ(t)

〉
−
〈
µ1(t) + 0.5σ2

2(t)
〉
+

1

t

t∫
0

σ2(s) dW2(s)

> βl
〈
S∗p(t)

〉
− µu1 − 0.5

(
σ2
2

)u− βu〈|S∗p(t)− Ŝ(t)|〉+ 1

t

t∫
0

σ2(s) dW2(s)

> h2 − µu1 − 0.5
(
σ2
2

)u − βu〈∣∣S∗p(t)− Ŝ(t)∣∣〉+ 1

t

t∫
0

σ2(s) dW2(s). (23)

Next, let us take G1(t) = | lnS∗p(t)− ln Ŝ(t)| as a Lyapunov function. It is noted that
at t = nT, G1(t

+) = | lnS∗p(t+) − ln Ŝ(t+)| = | lnS∗p(t) − ln Ŝ(t)| = G1(t) holds
good. A direct calculation of the right differential d+G1(t) yields the following result:

d+G1(t) 6

[
−
{
Λ(t) + αl(V ∗p )

l
} |S∗p(t)− Ŝ(t)|

S∗p(t)Ŝ(t)
+ β(t)Î(t)

]
dt

6

[
−
{
Λ(t) + αl(V ∗p )

l
} |S∗p(t)− Ŝ(t)|

S∗p(t)Ŝ(t)
+ εβu

]
dt

=⇒
(
Λl + αl(V ∗p )

l
)〈 |S∗p(t)− Ŝ(t)|

S∗p(t)Ŝ(t)

〉
6 εβu +

G1(0)

t

=⇒
〈 |S∗p(t)− Ŝ(t)|

S∗p(t)Ŝ(t)

〉
6

ε(βu + 1)

Λl + αl(V ∗p )
l

for a sufficiently large t

=⇒
〈∣∣S∗p(t)− Ŝ(t)∣∣〉 6 h21(β

u + 1)ε

Λl + αl(V ∗p )
l
. (24)

From (22)–(24) it follows that

lim sup
t→∞

1

t
ln
Î(t)

Î(0)
> h2 − µu1 − 0.5

(
σ2
2

)u − h21β
u(βu + 1)ε

Λl + αl(V ∗p )
l
> 0

=⇒ P

{
lim sup
t→∞

ln Î(t)

t
> 0

}
> 0, a contradiction.

This completes the proof.
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5 Numerical simulation

Beside analytical findings, numerical simulations are also important; because simulation
can be used to validate the analytical findings. For various choices of the parameters of
the model, we have performed the simulations using MATLAB. It is observed that they
are in good agreement with our analytical findings.

Now we will study the illustrative examples by means of some constant values of the
parameters to demonstrate the effectiveness of our results. First we takeΛ = 0.2, β = 0.5,
µ = 0.08, α = 0.5, µ1 = r + µ + d = 0.5, σ2 = 0.8, µ2 = µ + α = 0.58, σ3 = 0.8,
r = 0.2, σ4 = 0.3 in model (1). Then by the Theorem 2 we may obtain a unique positive
periodic solution Xt, which is asymptotically stable in mean square for some given initial
value X0(S(0) = 0.4, I(0) = 0.5, V (0) = 0.4, R(0) = 0.8). In Fig. 1(a), the orbit of
X(t) has been depicted for the impulsive vaccination rate p = 0.4.

By Theorem 3 and Remark 1 we obtain that if 2µl > αu, then for system (10), S(t)
and V (t) have unique positive T -periodic solution, which is globally exponentially stable.
If we consider Λ = 0.2, β = 0.5, µl = µ = 0.3, αu = α = 0.5, µ1 = 0.5, σ2 = 0.8,
µ2 = 0.8, σ3 = 0.8, r = 0.2, σ4 = 0.3 satisfying the condition of Theorem 3, we may
obtain a globally exponentially stable solution for S(t) and V (t). For p = 0.6 and three
different choice of initial values, we get a unique stable T -periodic orbit in finite time
(Fig. 1(b)).

In Section 4, the criteria for extinction and permanence of the disease of system (1)
has been discussed by Theorems 4 and 5. If 2µl > αu and R1 < 1, then the susceptible
population S(t) will be persistent in the mean, and the endemic population I(t) will be
going to extinct as time goes. On the other hand, ifR2 > 1 along with 2µl > αu, then both
these population will be weakly persistent in the mean. For Λ = 0.2, β = 0.5, µ = 0.3,
α = 0.5, µ1 = 0.5, σ2 = 0.8, µ2 = µ + α = 0.8, σ3 = 0.8, r = 0.2, σ4 = 0.3, the
computed value ofR1 is 0.4968 < 1. Hence, all the conditions of Theorem 4 are satisfied,
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Figure 1. Stable time series.
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Figure 2. T -periodic stable orbits.

and we obtain the T -periodic stable orbits with S(0) = 0.4, I(0) = 0.5, V (0) = 0.4 for
three different choice of impulsive vaccination rate: p = 0.3, p = 0.6, and p = 0.9. It is
observed that the infected population I(t) extinct in finite time (Fig. 2(a)) irrespective of
the values of p.

Changing the parameters a little bit as Λ = 0.8, β = 0.9, µ = 0.8, α = 0.002,
µ1 = 0.6, σ2 = 0.03, µ2 = µ + α = 0.802, σ3 = 0.8, r = 0.05, σ4 = 0.3 we obtain
R2 = 1.006 > 1. In Fig. 2(b), we obtain T -periodic stable orbits showing that the infected
population persists for different choice of impulsive vaccination rate (p = 0.3, 0.6, 0.9).
This result is in good agreement with Theorem 5.

We also consider the case when R1 = 1.0543 > 1 and R2 = 0.8961 < 1 with
Λ = 0.8, β = 0.9, µ = 0.8, α = 0.1, µ1 = 0.9, σ2 = 0.03, µ2 = µ + α = 0.9,
σ3 = 0.4, r = 0.05, σ4 = 0.3 for p = 0.3, 0.6, and 0.9. Using these parameter values,
the movement paths of S(t), I(t), and V (t) are presented in Fig. 2(c). This figure shows
that the disease dies out.
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For R1 = 1.1136 > 1 and R2 = 0.9513 < 1 with Λ = 0.8, β = 0.9, µ = 0.8,
α = 0.2, µ1 = 0.6, σ2 = 0.03, µ2 = µ + α = 1, σ3 = 0.8, r = 0.05, σ4 = 0.3 for
p = 0.3, 0.6, and 0.9. Using these parameter values, the movement paths of S(t), I(t),
and V (t) are presented in Fig. 2(d). This figure shows that the disease is still permanent.

Remark 3. From (15) it is noticed that R2 < R1. When R2 6 1 and R1 > 1, the
dynamical behaviour of the epidemic model (1) has not been clear (see also Figs. 2(c),
2(d).

6 Conclusions

In this paper, we have considered a dynamical model of Chlamydia diseases with bilinear
incidence rate under stochastic perturbation and the pulse vaccination scheme. Noise and
pulse are introduced into Chlamydia epidemic model, which greatly enriches biologic
background. It is justified by observation that the real life is full of social and environ-
mental random variations. The entire high-risk human population is split up into four
mutually-exclusive epidemiological compartments (based on disease status), namely, sus-
ceptible (S), infective class (I), naturally recovered individuals from Chlamydia infection
(R), and vaccinated individuals (V ). It is assumed that the recovered individuals acquire
the permanent immunity but the vaccinated acquire temporary immunity. So, the natural
immunity is permanent but the vaccine-induced immunity is temporary. The susceptible
population increases by the recruitment through new sexually-active individuals, migra-
tion, and vaccinated hosts and decreases due to direct contact with infected individuals,
natural death, and pulse vaccination strategy. The infected class is increased by infection
of susceptible. A fraction of the infectious individuals recovers naturally. The infected
class is decreased through natural recovery from infection, by disease-related death and by
natural death. The most basic and important questions to ask for the systems in the theory
of mathematical epidemiology are the persistence, extinctions, the existence of periodic
solutions, global stability, etc. It is seen that our epidemic model has global positive
solutions, and under some conditions, it admits a unique positive periodic disease-free
solution, which is globally exponentially stable in mean square. Here we have established
some sufficient conditions on the persistent and extinction of the disease by introducing
two threshold values R1 and R2 (< R1), and further we obtained that the disease will be
going to extinct when R1 < 1 and the susceptible as well as the disease will be weakly
persistent in the mean when R2 > 1. It can be shown that if impulsive vaccination rate
p is larger than some critical value p0 such that R1 < 1, then it is possible to prevent
the Chlamydia disease from generating endemic. Thus, the Chlamydia disease can be
eradicated from the entire population in the random environment in a stable way by
PVS. The important mathematical findings for the dynamical behaviour of the Chlamydia
disease model are also numerically verified using MATLAB. It is observed that when
R2 6 1 and R1 > 1, the dynamical behaviour is not clear.
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