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Abstract. Accurate methods of rapid medical diagnostics would obtain recognition among
clinicians. In this paper, we present a ROC (receiver operating characteristic) analysis based
approach to investigate intrinsic fluorescence spectra of medical samples. The approach provides
researchers with capabilities for both spectroscopic feature selection and classification tasks.
The method is illustrated using data obtained from samples of uterine cervix’s tissues (normal,
inflammatory, and precancerous conditions), but it is applicable for data from other types of medical
specimens too. The results indicate the possibility to identify spectral ranges at which differences
between various medical conditions are most evident as well as potential to apply the method for
inflammation (cervicitis) vs. other medical conditions’ diagnostics.

Keywords: receiver operating characteristic, classification, fluorescence spectroscopy, cervical
smear, cervical cancer, medical data.

1 Introduction

In medicine, data come from various sources, including magnetic resonance imaging,
thermovision, radiological, tomographic, ultrasound examination [2, 12]. Various data
analysis methods and software tools find application in mining these data [14, 15]. Spec-
troscopic techniques may also be a convenient tool for medical diagnostics as they are
non-invasive and can be used for many diagnostic purposes [19]. The measurements of
different optical properties (mostly parameters of tissue fluorescence, Raman scattering,
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Figure 1. Spectroscopic measurements (A) and a fluorescence spectrum (B). (Online version in color.)

and light absorption) provide a possibility to analyze a contribution of key native tissue
molecules to spectroscopic signals and to reveal differences between various pathologies.

Fluorescence is a type of physical phenomenon when light excites electrons in mol-
ecules or crystals, and they emit radiation that is different from the excitation due to
intrinsic properties of the molecule or the crystal. This paper focuses on the type of
fluorescence called autofluorescence that is native fluorescence of tissues (without any
additional chemical substrates, medicines or fluorescent labels added to enhance the phe-
nomenon) [4]. Fluorescence spectroscopy requires rather simple equipment: a light source
for the excitation of molecules and rather low-resolution miniature spectrometers to reg-
ister the fluorescence of the tissue directly or via the optical fibers.

Figure 1 demonstrates a measurement of fluorescence from one point of specimen and
a fluorescence spectrum. Figure 1(A) shows a tip of a light guide of a fiber-based optical
system, a light guide holder, and a sample holder. The light fiber is used to direct the laser
beam to a sample. The sample is excited and begins to emit radiation called fluorescence,
which is collected through a fiber and registered with a spectrometer. The solid violet
arrow indicates the direction of a laser beam, while blue dashed line shows the direction
of collected fluorescence. The bright spot near the center of Fig. 1(A) is a sample, which
fluoresces. Figure 1(B) shows a fluorescence spectrum. The x-axis indicates wavelengths
in nanometers (i.e., “colors” of radiation), and the y-axis indicates the intensity of each
wavelength in arbitrary units.

In contrast to point monitoring (spectra registered from one point), there also exist
other ways of fluorescence spectroscopy for the pathology diagnostics [4, 7] (e.g., hyper-
spectral imaging), but the implementation involves rather complicated and expensive
equipment.

Fluorescence spectroscopy is thought to be a sensitive tool for tissue properties char-
acterization [4, 16].

However, the fluorescent contribution of different native molecules and their com-
plexes usually overlaps significantly. Therefore, difficulties arise either to analyze metab-
olism in tissues or to find diagnostically relevant information concerning certain medical
conditions. The design of fluorescence-related diagnostic methods is based on clinical
trials and statistical analyses that aim to reveal differences in properties related to patho-
logical conditions. However, before it is possible to use these spectroscopic techniques in
medical diagnostics, there is a challenge to develop an appropriate computational model
that allows extracting relevant biomedical information about particular types of medical
conditions from spectroscopic data.
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Thus, the aim of this study was to implement an easy-to-interpret classification method,
which allows extracting diagnostically relevant information from fluorescence spectra
and revealing spectral ranges that are most useful for medical diagnostics. The scope
of this paper was: (i) to develop procedures for spectroscopic data pre-processing and
to search for classification rules that lead to the highest degree of agreement between
spectroscopic classification (i.e., the results of spectroscopic data analysis) and the ref-
erence classification (e.g., the results of more conventional types of biomedical tests); as
well as (ii) to disclose possibilities to apply the techniques to analyze spectroscopic data
(autofluorescence) obtained from different types of medical specimens and illustrate our
ideas with a case analysis of a particular type of specimens: liquid smears of uterine cervix
tissues in various medical conditions [20]. The proposed method is based on techniques
of signal pre-processing [11] and well-known receiver operating characteristic (ROC)
analysis [6], but its novelty and strength lie in the multidisciplinarity of the research and
the area of application.

2 Methods to process fluorescence spectra

2.1 The main steps of data analysis

The application of data analysis in biomedicine has two aims: (i) to reveal the parameters
that allow recognizing pathological groups and (ii) to search for a decision rule that allows
determining the correspondence of a spectrum to a pre-defined group of pathology/non-
pathology.

Data analysis may be divided into two main phases: the research phase and the ap-
plication phase (Fig. 2). The research phase includes steps in which appropriate methods
to clean and pre-process data as well as to create and to select classification rules are
developed. The result of this phase is a set of rules, which indicate how to arrive at
a decision based on spectroscopic data. The performance of those rules is evaluated.

Figure 2. The main steps of the analysis.
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In the application phase, those rules are exploited to make a decision based on a new
fluorescence spectrum. Smaller steps of these two phases are summarized in Fig. 2 and
are described in the next subsections.

2.2 Classifiers’ development

In this section, procedures, which are summarized in Fig. 2(A), are described in more
detail.

2.2.1 Initial data set

An initial dataset (see Fig. 2(A) and Fig. 3) is a set of features related to patients’ anam-
nesis (patient case history), their medical conditions (including results of medical and
biochemical tests) as well as fluorescence spectra of medical specimens of those patients.
The purpose of our analysis is to use this dataset to develop classification rules, which
are based on spectroscopic and anamnestic information (such as patient’s age), in or-
der to predict results of medical, biochemical and another type of tests. In contrast to
spectroscopy-based examination, these tests are usually more expensive and require more
time (from several days to several weeks) before a patient hears a diagnosis.

2.2.2 Pre-processing of spectroscopic and non-spectroscopic data

Before classification rules can be created, the dataset must be prepared for the classifica-
tory analysis. On the one hand, measurements of fluorescence spectra meet a difficulty
in registering an absolute value of fluorescence intensity correctly. The main factors
that lead to this difficulty are inhomogeneity in samples’ composition, variability in the
excited area of the specimen and in the angle at which light is collected. It is complicated
(nearly impossible) to maintain all of these conditions constant. Also, effects related to

Figure 3. Scheme of data pre-processing.

https://www.mii.vu.lt/NA



The ROC-based analysis of spectroscopic signals from medical specimens 289

Figure 4. Fluorescence spectrum before (Original) and after (Filtered) noise reduction. Intensity is in relative
units.

equipment, such as noise and detector sensitivity’s dependence on wavelength, have to
be accounted for. On the other hand, at least a few fluorophores’ emission contribute to
entire fluorescence spectrum of a biomedical tissue, and a relative change in neighboring
components’ contribution changes a shape of the spectrum, and these changes may be
related to different medical conditions. Thus, several data pre-processing methods must
be applied to eliminate or reduce shortcomings of fluorescence spectra measurement
procedures and to highlight relevant differences between groups of spectra. Data pre-
processing (Fig. 3) is one of the essential parts of the data analysis (e.g., Fig. 2(A)).

As there are three main sorts of distortions in signals of spectroscopic systems (noise,
optical-system-related deformation of signal’s shape and offset of signal’s baseline), pre-
processing begins with corrections of these distortions. Next follows procedures of sig-
nal intensity normalization as well as procedures that create new spectroscopic, non-
spectroscopic and mixed features. The result of this stage is a pre-processed dataset
augmented with new features.
◦ Noise reduction in spectroscopic signals. An example of a spectrum before and after
filter application is presented in Fig. 4. There are two dashed lines in the figure that indi-
cate zero intensity. On the upper dashed line, there are two spectra: an original spectrum
before pre-processing without noise reduction (“Original”, light-grey line) and the same
spectrum after the noise reduction (“Filtered”, black line). The difference between these
two spectra was called a noise spectrum. It is plotted on the lower dashed line as a dark
grey line and in the legend is denoted as “Noise”. Noise can be defined as a part of
a measured signal that is not related to samples. Thermodynamic/thermoelectric effects
are the most frequent cause of this noise, and the noise is equally common in all channels
of the detector. Running medians filter can be applied to cut sudden relatively high-
amplitude peaks that occasionally appear in signals of single channels, and Savitzky–
Golay filter can reduce noise by minimally distorting the trend-line of the signal (the
“real” signal). The parameters for signal filters were selected such that the noise was
reduced significantly, but there were no visible trends in the noise spectrum for any of
fluorescence spectra.

Nonlinear Anal. Model. Control, 23(3):285–302
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Next, the binning of several (e.g., ten) adjacent points on wavelength axis can smooth
spectra even more as well as reduce the amount of data without losing too much informa-
tion as adjacent points in the original signal are highly correlated.

◦ Correction of equipment-related signal shape deformations. Equipment-related signal
shape deformations arise because the sensitivity of different detector channels varies. It
means that the same quantity of each different color (i.e., wavelength) is registered as
a signal of different intensity, and the shape of the spectroscopic signal may be different
if it is registered with another type of spectrometer. At this point, we have two options,
which may be suitable for practical application.

Option I. As deformations for all signals produced by the same spectrometer are
constant, it is possible to develop an analytic method, which is suitable to analyze signals
of a concrete spectrometer and to avoid an additional step in which equipment-related
signal shape deformations are corrected. This option allows researchers (or assistants
that perform the diagnostic procedure) to prevent additional measurements and makes the
procedure cheaper as an additional piece of equipment (calibrated lamp) is not necessary.
It diminishes the risk to distort information in certain spectral regions in which the shape
corrections may amplify the noise. On the other hand, in order to analyze the nature of
spectra differences related to only biological phenomena in samples, adjustments of the
shape of each spectrum by excluding the contribution of device function are required.

Option II. Usually, the correction of the signal shape is necessary to eliminate equip-
ment-related distortions. This procedure results in a signal that allows doing not only
classificatory analysis, but also delving into physical and biological nature of the signal
as well as making the analysis more applicable for signals produced with devices that
have various detector sensitivity functions. It also prevents from situations when the same
set of equipment goes out of calibration.

◦ Correction of signal intensity baseline’s offset. An offset is a shift in signal intensity’s
baseline away from zero level. Usually, this distortion is corrected automatically before
measurements of the fluorescence spectra by the software of a spectrometer (detector).
The procedure is called nulling (reference signal is registered before the measurements
and subtracted from the registered signal of an object), and the spectra in the initial dataset
are usually offset-corrected. If this nulling was not carried out correctly, the correction of
offset could be conducted after the noise, and equipment-related signal shape distortions
are removed. In this case, it is needed to find a region in which level of the signal should
be around zero and subtract this level from each channel of the measured spectrum.

◦ Normalization of spectra intensity. Due to the nature of the investigated object (exact
composition and concentration of fluorophores are unknown) and scheme of signal acqui-
sition (the position of the probe is not fixed), it is unreasonable to compare the absolute
intensities of spectra. Thus, the next step is to normalize each spectrum.

Traditionally, there are at least several ways to normalize spectroscopic signals such
as to normalize to a maximum of spectra, to normalize to a particular wavelength, to
normalize to mean intensity, to normalize to the area under the spectroscopic curve. This
choice depends on peculiarities of data.
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The way of normalization, which gives the best performance in the classificatory
analysis, should be selected.

◦ Making additional spectroscopic features. Spectroscopic features for classificatory
analysis can be provided in several forms. The most straightforward way is to analyze
spectra in the form of signal intensities at each wavelength. Still, spectra can be processed
even further.

For instance, first-order gap-segment derivatives [10] (∂I/∂λ), where I is intensity
and λ is wavelength) of spectroscopic signal intensities can be calculated for each spec-
trum. The contributions of different fluorophores highly overlap, thus, if relative intensity
of adjacent fluorophore signals changes, this change may be more obviously reflected in
the first-order derivative of a spectroscopic signal than in spectroscopic signal itself.

Moreover, various weighting functions may be applied to enhance the influence of
some spectral ranges and to suppress the influence of others and in this way to reveal
certain peculiarities of the spectra. Ratios between intensities at specific wavelengths can
be calculated as an additional spectroscopic feature as well. Selection of these wave-
lengths can be based on prior knowledge about spectroscopic properties of a system of
investigation or based on the exploratory analysis (e.g., various summary plots of spectra
divided or not divided into classes according to other non-spectroscopic features).

◦ Create new non-spectroscopic and mixed features. As the primary purpose of the
analysis is to find subsets of features that lead to the best agreement between spectroscopic
and medical information, relevant spectroscopic features, as well as relevant features
of other kind, are needed to fulfilling this purpose. E.g., a new variable with derived
class “pathology” that contains several certain pathologies may show a higher degree of
association with spectroscopic data than a variable with only original medical classes.
Thus, in parallel to pre-processing of spectroscopic data, the pre-processing of other
non-spectroscopic features also takes place. The result of this pre-processing is either
(i) modified versions of current features (example 1A: several pathologies of the same
feature can be merged into one new class; example 1B: values of numeric variable such as
“age” can be grouped to form a factor variable “age groups”) or (ii) new mixed features
that combine values of several spectroscopic and non-spectroscopic features (example 2A:
a new feature that combines results of several medical tests to form classes “no pathology
diagnosed” vs. “at least one pathology found”; example 2B: a new feature that combines
values of age groups, results of medical tests and spectroscopic features such as ratio
between particular intensities).

The investigator is the one who decides about the necessity of these features depend-
ing on the problem that should be solved and on the obtained performance of classifica-
tion. If possible, less complicated and more easily interpreted features are preferred.

◦ Features in the pre-processed dataset. To sum up, the pre-processed dataset will con-
tain several types of features: medical, patient-related and specimen-related features and
features derived from these non-spectroscopic data, spectroscopic features and features
derived from spectroscopic data as well as mixed spectroscopic and non-spectroscopic
features.

Nonlinear Anal. Model. Control, 23(3):285–302
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2.2.3 Classification rules

In this chapter, box A2 in Fig. 2 will be explained in more detail.

◦ ROC analysis and suitable classification performance measures. In this study, we
decided to carry out a classificatory analysis at each wavelength separately. To make
a prediction, we need to select a threshold value. We can choose any value of fluorescence
intensity as a threshold value, but we need an optimal one. Hence, to do the optimization,
we chose a simple algorithm which results can be easily interpreted. The algorithm is
called a receiver operating characteristic (ROC) [9].

In ROC analysis, a separate 2 × 2 classification table (confusion matrix) can be
calculated for each threshold value. Based on this table, various performance measures
may be calculated, including sensitivity (true positive rate, recall, Se), specificity (true
negative rate, Sp), positive predictive value (precision, PPV), negative predictive value
(NPV), Youden’s index (J), F1 score, accuracy, balanced accuracy [1, 6], Cohen’s kappa
(κ) [13]. Thus, each threshold may be associated with several performance measures.
A performance measure that is convenient for optimization should summarize all infor-
mation that is in the classification table and take into account the issue of class size imbal-
ances. Therefore, indexes κ, J and some other measures would fulfill these obligations.
Nevertheless, we chose to use a balanced accuracy (BA), which can be defined as an
average of diagnostic sensitivity and specificity [3, 6]:

BA =
sensitivity + specificity

2
. (1)

In classical version of ROC analysis, performance measure called area under the ROC
curve (AUC) may also be calculated. One can claim, that AUC evaluates the overlap
of numeric values of two classes. Classification tables at all possible threshold values
are needed to calculate the AUC. Unfortunately, due to the nature of this calculation,
AUC cannot be used to determine the optimal threshold. Thus, it was not included in our
analysis as a suitable performance measure.

◦ The algorithm to create classification rules. The algorithm that produces classification
rules (box A2 in Fig. 2) is drawn in Fig. 5. Certain aspects of the algorithm will be
described in this and several following sections.

The input for the algorithm of the classificatory analysis is the pre-processed dataset
augmented with new features. Firstly, the algorithm takes a subset of data. It can involve
only a particular age group, specific pathologies or certain values of derived features as
well as the whole dataset with only missing values removed. The spectroscopic data in the
subset can contain either spectra or derivatives of those spectra. Secondly, the algorithm
selects one categorical feature and classes in this feature are treated as a reference for
spectroscopic evaluation. This categorical variable can contain either (i) the results of
the medical test, or (ii) derived non-spectroscopic classes or (iii) mixed classes based on
both spectroscopic and non-spectroscopic features. The purpose of this procedure is to
find non-spectroscopic and mixed features (and their values) that have the best agree-
ment with spectroscopic information. Note: each pair of classes is investigated separately.
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Figure 5. The algorithm to create classification rules.

Thirdly, the algorithm does the ROC analysis for intensities of spectroscopic signals at
each wavelength separately. This procedure aims to aid finding wavelength ranges in
spectroscopic data, which contain diagnostically most relevant information. Fourthly, the
algorithm applies procedures of repeated k-fold cross-validation to split data into training
and test sets and to create and evaluate classification rules based on these sets. As a visual
aid, for each set of wavelengths, the result can be plotted as a performance spectrum, and
the example is in Fig. 6(C).

◦ ROC analysis based procedures to create a classification rule and to assess its perfor-
mance. Let us describe the procedure how a classification rule is created and evaluated.
The first step of the ROC analysis is applied on the training set. A threshold value (also
known as a cut-off point), which maximizes BA criterion (mean of sensitivity and speci-
ficity), is calculated. This value separates values of spectra intensities into two classes:
observations, which have values above the threshold, are classified as a class one and
those, which have values below the threshold, are classified as the other class. These new
classes are given the same labels as factor variable with reference classes has. A 10%
trimmed means of each class are used for class name matching: if a reference class has
label “A” and mean above the threshold, while the other reference class has label “B”
and mean below the threshold, then all the cases with values above the threshold will
be classified as “A” and all the remaining – as class “B”. Our classification rule is this
determined threshold value and associated reference classes. It is passed to the next step.

The second step of the ROC analysis is to apply the rule on the test set with the
purpose to evaluate the performance of classification rule out of sample. Thus, calculated
threshold value is applied to classify the test data into classes, the classes created in the
ROC analysis are compared to the reference classes, and degree of agreement is evaluated
as a value of performance measure (BA). This BA value is stored for further calculations.

Nonlinear Anal. Model. Control, 23(3):285–302
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Figure 6. Statistically summarized spectra in Cervicitis and precancerous CIN3+ classes of feature HistGr1 in
the subset of whitish samples. “I, units” – intensity in relative units. (Online version in color.)

Additional performance measures can be calculated too and treated accordingly, but for
the sake of simplicity, we will describe only BA in the following text. The procedures of
ROC analysis are repeated in the subsequent repetitions of cross-validation, and a vector
of BA values is collected.

◦ Cross-validation, stratification, blocking and confidence intervals. To validate the
results, in our calculations, we used m times repeated k-fold cross validation (CV) with
stratification and blocking. In each repetition for each fold of test data, a separate estimate
of BA value was calculated as described previously. The average of thesem×k BA values
was used as the main measure to evaluate the performance of the classification rule. The
2.5% and 97.5% percentiles of BA values, as well as difference of these two values (it was
called a 95% width of BA values), were calculated to evaluate the spread of BA values.

To make us clear about terminology: in this paper, the term “stratification” means that
proportions of some specimens in learning and test subsets were as similar as possible.
The term “blocking” means that spectra of the same sample were treated as one block and
all spectra of this block were assigned either only to training or only to test subset.

It should be mentioned, that if the dataset is very small, procedures of repeated k-fold
cross-validation may be impossible. In these situations, leave-one-out cross-validation
[18] may be a more appropriate method. On the one hand, if cross-validation is not applied
at all, the results are more optimistic than they should be in reality and they have limited
value in medical diagnostics due to lack of reliability. On the other hand, they may be
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used as a part of the exploratory (not predictive) analysis and help to define ideas and
to allow raising questions that could be answered in future investigations with a larger
amount of specimens.

2.3 Methodology to select the most appropriate classification rules

In this phase of analysis (box A3 in Fig. 2), there is a list of all created classification rules
(Fig. 7). The number of rules is excessive. Furthermore, some of the rules are useful,
but others are worthless. These rules are evaluated with BA values. Thus, the first step
in selecting relevant rules is determining if 2.5% percentile of BA value is lower than
or equal to 0.5 and if the mean of BA values is lower than 0.75. If at least one answer
is “yes”, the rule is eliminated. Next, the most appropriate rule per set of wavelengths
(i.e., per subset of data, per selected reference classification, per pair of compared classes
and per type of spectroscopic feature – spectrum, derivative, set principal components or
ratios, etc.) is the rule associated with the highest mean BA value. As an additional part
of the analysis, an expert investigates the plot of BA values (the performance spectrum,
e.g., Fig. 6(C)) and determines the most appropriate wavelength ranges visually, i.e., finds
the ranges around the best rules in which 2.5% percentile of BA values is above 0.5. The
ranges with narrowest 95% widths should also be investigated more carefully as the results
in these ranges are most reliable.

Figure 7. The algorithm to select the most appropriate classification rules. BA – balanced accuracy.

2.4 Prediction making

In the phase of prediction making (Fig. 2(B)), the rules of classification are already
prepared and selected. When a new fluorescence spectrum is present and a particular rule
is applicable to the situation, at first, the spectrum is pre-processed. Then an appropriate
wavelength is selected and compared to the threshold value, and the spectrum (as well as
the point of the specimen this spectrum is registered from) is assigned to a particular class
in the same manner as described in the section about the ROC analysis and procedures
how the rules are created.

It should be stressed that pieces of non-spectroscopic information, such as the age of
a patient, may also be required in addition to fluorescence spectra to make a more precise
prediction.

Nonlinear Anal. Model. Control, 23(3):285–302
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3 Case study: uterine cervix smears’ autofluorescence spectra
analysis

3.1 Software

From the analytical point of view, spectroscopic signals are multidimensional highly
correlated data. Data analysis can be implemented in a freely available software called R
[17], which is a programming language and an environment specialized for data analysis,
visualization and statistical modeling. Functions from R packages (“hyperSpec” – for
spectroscopic data management, “signal” – for signal-type data processing, “dplyr” –
for data frame like data management, and other), as well as the code developed by our
research group, took the key role in the analysis.

3.2 Samples and data acquisition

Lithuanian Bioethical Committee approved this investigation, and the investigation is in
accordance with bioethical requirements.

The objects of this investigation are medical liquid-based smears of the uterine cervix
(UC) in various medical conditions. The biological material of the research was collected
in Vilnius University Hospital Santaros Klinikos (Vilnius, Lithuania). Further investiga-
tion of specimens, including spectroscopic measurements and data analysis, took place
in Institute of Photonics and Nanotechnology (previously called Institute of Applied Re-
search), Vilnius University (Vilnius, Lithuania).

The physical phenomenon we were measuring was autofluorescence: a type of fluo-
rescence caused by only internal properties of materials with neither auxiliary substances
nor labels added. The methods of spectroscopic measurements are similar to those de-
scribed in [21] and [8]. Sediments of smears were deposited on a single-crystal silicon
wafer (tray) and dried. This material of the tray was selected as it is not transparent in
ultraviolet-visible range and does not fluoresce. Spectroscopic measurements were carried
out through a fiber-based optical system. Ultraviolet 355 nm radiation (laser STA-01-TH,
Standa Ltd., Vilnius, Lithuania) was used to excite intrinsic fluorescence of samples, and
spectrometer OceanOptics USB2000 (Ocean Optics, Inc., Dunedin, FL 34698, USA) was
used as a detector to register spectroscopic signals. At least five spectra from different
parts of the same specimen’s surface were registered. To avoid additional procedures in
signal pre-processing phase, spectra were nulled during the process of spectra registration.
In addition to spectra of samples, a spectrum of calibrated Bentham light source with
current-stabilized power supply Bentham 607 (Bentham Instruments, Ltd., Berkshire,
United Kingdom) was registered to be used for spectra intensity corrections.

3.3 The dataset

The dataset, which we demonstrate the application of the method on, consisted of the fol-
lowing variables. Spectra – a numeric vector of spectroscopic signal intensities. Deriva-
tives – first-order gap-segmented derivatives of spectroscopic signal intensities. Color
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The ROC-based analysis of spectroscopic signals from medical specimens 297

Table 1. Distribution of samples and spectra in the subset of whitish specimens.

Classification Classes Number Percentage
Samples Spectra Samples Spectra

HistGr1 Normal∗ 1 3 2.4% 1.5%
Cervicitis 6 32 14.6% 15.7%
CIN1∗ 2 12 4.9% 5.9%
CIN2∗ 3 13 7.3% 6.4%
CIN3+ 23 115 56.1% 56.4%
(Missing) 6 29 14.6% 14.2%

Hybrid-cervicitis Cervicitis 6 32 14.6% 15.7%
Other 35 172 85.4% 84.3%

Hybrid-cervicitis (< 45 y.o.) Cervicitis 4 22 14.3% 15.8%
Other 24 117 85.7% 84.2%

∗Sample sizes of these classes were too small and the classes were not included in the further
analysis (see Table 2). < 45 y.o. – patients under 45 years old only.

– a color of a specimen evaluated by an investigator as either whitish or non-whitish
(e.g., yellowish, reddish, brownish). Age – the age of a patient on January 1st of the
year when the cervical smear was taken. HistGr1 – a medical feature defined by results
of the histological examination. It is a factor variable with classes: Normal, Cervicitis
(inflammation), pre-cancerous conditions CIN1, CIN2, CIN3+ (cervical intraepithelial
neoplasia of grade 1, grade 2 as well as a mixture of CIN3 and carcinoma in-situ).

As we aim to search for a combination of features (medical, spectroscopic, mixed
or other) that optimizes BA, additional features may lead to fulfilling this purpose. For
example, if a result cytological test is negative, i.e., no pathology found, the histological
test is not performed due to associated medical risks. Thus, some cases in HistGr1 have
missing values (see Table 1). Hybrid-cervicitis is a derived medical feature based on
histological classification with the missing values filled according to the results of the
cytological analysis. This feature is designed to compare spectra of cervicitis with all
other conditions and consist of the following classes: Cervicitis and Other.

In this paper, we present only the results in the subset of samples that did not have
expressed absorption of materials such as hemoglobin (i.e., their color was recognized as
whitish) as this subset did not require any additional steps of pre-processing that have
to take the influence of the absorption into account. For feature Hybrid-cervicitis, in
addition to the set of all age groups, a subset of younger patients (under 45 years old)
was investigated. There were insufficient patients to form a subset of older (above 45
years old) patients.

3.4 Pre-processing of the dataset

Running medians filter (width of the window is 11) and Savitsky–Golay filter (order of the
polynomial is 9, the width of the window is 35) were applied, and ten adjacent points were
binned (averaged) to reduce noise and dimensionality of data. We did not have the purpose
of optimizing window width and other parameters of filters. However, values were chosen
seeking to reduce noise without distorting the trends (see Fig. 4). Usually, five spectra per
specimen were collected, but due to low intensity, some spectra were not suitable for
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further analysis, and they were excluded (see Table 1). Therefore, in some cases, there
left less than five spectra per sample. The criterion for the exclusion: the maximum of the
signal between 380–800 nm was below 2.5% of maximum in spectrometer’s scale.

Next, the spectrum of calibrated light source “Bentham” was used as a benchmark
to remove equipment-related signal shape deformations. Mean intensities between 410–
700 nm of each spectrum were calculated and used to normalize spectra. As an additional
spectroscopic feature, first-order gap segmented derivatives (gap size is 3 points, the
segment size is 3 points) were calculated. Spectroscopic ranges above 380 nm, where
the signal is uninformative due to equipment, and below 600 nm, where the signal is
uninformative due to low intensity, were removed from further analysis. Both intensities
and the derivatives of those intensities are numeric vectors of spectroscopic data. The pre-
processing lowered the number of different wavelengths from 2048 per spectrum before
pre-processing to 60–70 after pre-processing.

Finally, several new non-spectroscopic features (including Hybrid-cervicitis) were
created. These features are described in the previous section.

3.5 Analysis of the dataset

In the phase of data analysis, a subset of only whitish specimens was selected. The number
of samples n = 41. These specimens did not have visually clearly expressed absorption
band in the visible part of the spectrum, and it was easier to relate spectroscopic features
of this subset of samples to the fluorophores in the tissue. Agreement between classes
in features HistGr1 and Hybrid-cervicitis and spectroscopic information was investigated
during ROC analysis at each wavelength. The distribution of samples and spectra in the
examined subset of whitish specimens are presented in Table 1. The classes with only
three or less unique medical specimens (Normal, CIN1, CIN2) as well as cases with
no diagnosis (missing) were excluded from the analysis, therefore, Cervicitis vs. CIN3+
(in HistGr1) and Cervicitis vs. Other (in Hybrid-cervicitis) were used as the reference
classifications. Both the mean-normalized spectra and their derivatives were analyzed.
A 10-time repeated 3-fold cross-validation (with blocking and stratification) was applied.
To ensure that the same spectra were included in the same folds throughout the whole
analysis, seed for random number generator was reset to the same number before using
each pair of compared classes. The criterion for the best agreement is maximum BA value.

4 Results

Classification rules performance measures are presented in Table 2. In the table, the values
of wavelengths are rounded to whole numbers, the values of performance measures –
to 2 decimal places, threshold – to 2 decimal places. The values with ± symbol indi-
cate the mean value (in bold) and the standard deviation per cross-validation resamples.
The threshold is optimized for the BA value, other performance measures (Cohen’s κ,
Youden’s index J, sensitivity, specificity, positive and negative predictive values – PPV
and NPV) are just calculated. Table shows at most one wavelength (per set of com-
pared classes per type of spectrum) at which mean BA value is the highest. “BA2.5%”
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Table 2. Examples of decision rule performance for mean-intensity-normalized spectra in the
“whitish” specimens.

Compared classes Feature Derivative λ, nm
1 Cervicitis vs. CIN3+ HistGr1 No 410
2 Cervicitis vs. CIN3+ HistGr1 Yes 435
3 Cervicitis vs. Other Hybrid-cervicitis Yes 435
4 Cervicitis vs. Other (< 45 y.o.) Hybrid-cervicitis Yes 435

Cohen’s κ BA BA2.5% BA97.5% BA95%
width Youden’s J

1 0.46± 0.23 0.82± 0.11 0.61 0.96 0.35 0.63± 0.21
2 0.54± 0.18 0.85± 0.06 0.76 0.97 0.21 0.71± 0.13
3 0.34± 0.13 0.80± 0.08 0.65 0.90 0.24 0.59± 0.16
4 0.38± 0.16 0.82± 0.07 0.72 0.93 0.21 0.64± 0.13

Sensitivity Specificity PPV NPV Threshold
1 0.66± 0.15 0.97± 0.18 0.99± 0.05 0.47± 0.18 3.49± 0.11
2 0.71± 0.13 1.00± 0.00 1.00± 0.00 0.52± 0.15 (−8.36± 0.08) · 10−2

3 0.62± 0.11 0.97± 0.15 0.99± 0.03 0.33± 0.08 (−8.45± 0.49) · 10−2

4 0.64± 0.13 1.00± 0.00 1.00± 0.00 0.36± 0.14 (−8.36± 0.09) · 10−2

Legend: class name in bold is treated as positive < 45 y.o. – a subset of patients under 45 years
old; numeric values are written as mean ± standard deviation; BA – balanced accuracy; BA2.5%,
BA97.5% – a 2.5% and a 97.5% percentiles of BA; BA95%

width – difference between 97.5% and 2.5%
percentiles; PPV and NPV – positive and negative predictive values respectively; λ – wavelength.

and “BA97.5%” represent 2.5% and 97.5% percentiles of BA values obtained during the
process of repeated cross-validation. Whereas column “BA95%

width” shows the difference be-
tween the percentiles, this difference indicates uncertainty of BA value. The interpretation
of BA values and the difference should be as follows: the higher value in “BA” column
is, the more accurate classification is. The lower value in “BA95%

width” column is, the more
reliable BA value is. Class name, which is in bold, is treated as the positive case. This
means that both specificity and NPV in this table is always related to the class “Cervicitis”.

The results of row 1 in Table 2 are expanded and drawn in Fig. 6. Here the examples of
wavelength-wise statistically summarized spectra of Cervicitis vs. precancerous CIN3+
classes (feature HistGr1) in the subset of whitish samples are presented. Figures 6(A)
and (B) demonstrate a median (dashed line), first and third quartiles (solid lines) of pre-
processed spectra. These sub-plots give the same information as a box in a box-and-
whisker plot would provide for univariate data. The areas between the first and the third
quartiles are shaded. The less overlapped ranges of classes Cervicitis and CIN3+ are,
the better classification performance can be expected. Highly overlapping areas indicate
that they are not suitable for discrimination of classes. The difference between Fig. 6(A)
and (B) is that values in B are transformed by mean-centering and scaling intensities
at each wavelength. Additionally, threshold values obtained in ROC analysis are added.
Figure 6(C) shows mean (solid line in the middle of shaded area), 2.5% and 97.5%
percentiles of balanced accuracy values obtained in ROC analysis. The area between the
percentiles is shaded.

Table 2 indicates that the highest result was obtained comparing Cervicitis vs. CIN3+
(in HistGr1) using spectroscopic derivatives at 435 nm (BA = 0.85±0.06). The mean BA
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value obtained using non-derivatives is a bit lower but comparable (BA = 0.82±0.11), but
the wavelength is different (410 nm). The further graphical analysis provides us with more
insights. The spectroscopic features in spectral ranges, where the lower percentile is above
the dashed line at BA = 0.5 (Fig. 6), are acceptable for classification. In the plot, there are
two areas potentially suitable for Cervicitis vs. precancerous CIN3+ class discrimination.
The range around 410 nm is the same as in Table 2, but there is another around 470 nm.
Thus, besides the numerical analysis, plots are also useful. Moreover, spectral ranges
around 410, 435 and 470 nm are noteworthy to finding out possible biological reasons for
differences in spectra.

5 Discussion

In this research, the attention was focused on a fluorescence spectroscopy-based method
due to the simplicity of devices for the signal registration and the potential to use these
devices at a point of medical care. The data processing scheme was proposed to account
for the peculiarities of fluorescence signal acquisition and creating a dataset using the
pathology indications obtained by conventional medical tests. The possibility to apply the
principles of data processing and diagnostic decision making for spectroscopic signals of
medical objects (sometimes called “optical biopsy”) is pointed out.

In particular, we presented the approach to investigate intrinsic fluorescence spectra
of medical samples, and the strength and novelty of the presented methods lie in the mul-
tidisciplinary area of application. The approach involves steps of data pre-processing and
the ROC analysis based method to create classification rules as well as to evaluate their
performance. The proposed method is flexible, and it is possible to extend it by using other
performance measures, which were not calculated in this investigation. Employment of
mixture of features, which vary in nature, is one of the novelty points in this research too.

The presented method creates classification rules at each available wavelength of the
spectroscopic signal. The most appropriate rules are selected automatically. Moreover, the
performance can be plotted as a function of wavelength. These two approaches (automatic
and graphical selection) serve as a tool to reveal ranges of spectroscopic signal that are
most relevant for medical diagnostics. The higher the performance (e.g., BA value) is,
the more diagnostically useful the range is. Therefore, the method can be used either to
create rules that serve directly for univariate binary classification tasks or as a way to high-
light the most significant spectroscopic features and in this way facilitate biological and
medical interpretation of signals’ origin and usefulness. Comparing to our previous pilot
study [20], the presented method is more in alignment with the requirements of practical
application due to more automatic calculations. Moreover, spectroscopic features chosen
as the most relevant ones can be passed to more sophisticated classification algorithms
that solve more complicated multivariate multi-class classification problems. The latter
statement is out of the scope of this paper and gives the basis for future investigations.

In the case study, the analysis of cervical samples’ dataset is presented. The BA values
above 0.75 for discrimination of both cervicitis vs. CIN3+ and cervicitis vs. other patholo-
gies were achieved. Analysis of both spectra intensities and their derivatives showed
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relevance for medical diagnostics. In the present research, the object of the investigation
was liquid cervical smears in medically approved conservation liquid and not tissues in-
vivo, this is also one of the novelty points. As we used samples in-vitro and the results
show high predictive value for non-cervicitis group (this result is in agreement with [20]),
it suggests method’s perspectives both in cytological laboratories when it is needed to
confirm a non-cervicitis diagnosis and for cervical screening.

The spectral ranges, which are identified as relevant, are also biologically sensible
as, e.g., at 410 nm biological materials such as elastin and collagen fluoresce. More
information on possible fluorophores may be found in [5].

It should be noted that the research is an exploratory study, where data sample sizes
were limited due to specifics of medical nature of the data, bioethical as well as patients’
data protection requirements. However, positive results of this research allow possibili-
ties for larger scale data collection. Furthermore, uterine cervix dataset was used as an
illustration only. The method can be easily adapted for other types of specimens such
as intervertebral disc degeneration related samples, endometrial washing samples from
women’s womb and other. More on the applications of the method in the field of medical
diagnostics will be presented elsewhere shortly.

6 Conclusions

1. The procedures of ROC-based spectroscopic signals’ analysis were implemented, and
they are eligible to identify ranges of fluorescence spectra that are most relevant for
diagnostic decision making.

2. The fluorescence spectra based method could be applied for cervicitis vs. other medical
conditions’ (e.g., CIN3+) diagnostics in whitish specimens, and the data analysis
method has the capability to be applied to identify a broader range of medical con-
ditions.
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References

1. A. K. Akobeng, Understanding diagnostic tests 3: Receiver operating characteristic curves,
Acta Paediatr., 96(5):644–647, 2007.

2. M.J. Bilinskas, G. Dzemyda, M. Trakymas, Feature-based registration of thorax CT scan slices,
Informatica, 28(3):439–452, 2017.

3. K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The balanced accuracy and its
posterior distribution, in 20th International Conference on Pattern Recognition, Istanbul,
Turkey, 23–26 August, 2010, IEEE, 2010, pp. 3121–3124.

4. A.C. Croce, G Bottiroli, Autofluorescence spectroscopy and imaging: A tool for biomedical
research and diagnosis, Eur. J. Histochem., 58(4):2461, 2014.

Nonlinear Anal. Model. Control, 23(3):285–302
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