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Abstract. In this paper, we discuss the controllability of fractional Langevin delay dynamical
systems represented by the fractional delay differential equations of order 0 < α, β 6 1. Necessary
and sufficient conditions for the controllability of linear fractional Langevin delay dynamical system
are obtained by using the Grammian matrix. Sufficient conditions for the controllability of the
nonlinear delay dynamical systems are established by using the Schauders fixed-point theorem.
The problem of controllability of linear and nonlinear fractional Langevin delay dynamical systems
with multiple delays and distributed delays in control are studied by using the same technique.
Examples are provided to illustrate the theory.
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1 Introduction

The concept of controllability plays a major role in both finite and infinite dimensional
spaces for systems represented by ordinary differential equations and partial differential
equations. So it is natural to study this concept for dynamical systems represented by
fractional differential equations and fractional delay differential equations. The control-
lability of delay differential systems is studied by Wiess [33]. Chyung [10] studied the
controllability of linear time-varying systems with delay. The controllability of nonlinear
delay systems is discussed by Dauer and Gahl [12]. Balachandran and Somasundaram [6]
studied the controllability of a class of nonlinear systems with distributed delay in control.
The constrained controllability of semilinear delay systems was studied by Klamka [17].
Yi et al. [34] discussed the controllability and observability of systems of linear delay
differential equations via the matrix Lambert W function. A sliding mode control for
linear fractional systems with input and state delays is investigated by Si-Ammour et al.
[27]. The controllability of differential equations with delayed and advanced arguments
is investigated by Manzanilla et al. [22]. Bhalekar and Gejji [8] studied the fractional
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ordered Liu system with time delay. An application of delay differential equations in life
sciences is discussed by Smith [29]. Pinning-controllability analysis of complex networks
and M -matrix approach is discussed by Song et al. [30]. Balachandran et al. [3–5, 7]
studied the relative controllability of fractional dynamical systems with multiple delay
and distributed delay in control. A numerical method for delayed fractional-order differ-
ential equations is studied by Wang [32]. Zhang et al. [36] discussed the controllability
criteria for linear fractional differential systems delay in state and impulse. Analysis
and numerical methods for fractional differential equations with delay were analyzed by
Morgado et al. [23]. Shu [26] studied the explicit representations of solutions of linear
delay systems. Lu et al. [19, 20] studied the pinning controllability of Boolean control
networks. Controllability of fractional damped dynamical systems with delay in control
is investigated by He et al. [16]. Nirmala and Balachandran [24] investigated the control-
lability of nonlinear fractional delay dynamical systems. The control problems involving
the delay in state variable are challenging and are not much developed. Controllability
of impulsive neutral evolution integro-differential equations with state-dependent delay
in Banach spaces is studied by Chalishajar et al. [9]. Sikora and Klamka [28] studied the
constrained controllability of fractional linear systems with delays in control. Govindaraj
and George [14] studied the controllability of fractional dynamical systems of functional
analytic approach.

The theory of Brownian motion is perhaps the simplest approximate approach to
treat the dynamics of nonequilibruim systems. The fundamental equation is called the
Langevin equation; it contains both frictional forces and random forces. It is used to
describe the evolution of physical phenomena in fluctuating environments. However, for
the systems in complex media, an integer-order Langevin equation does not provide the
correct description of the dynamics. One of the possible generalizations of a Langevin
equation is to replace the integer-order derivative by a fractional-order derivative in it.
This gives rise to a fractional Langevin equation [31]. The fractional Langevin equation
with Brownian motion is revisited by Mainardi and Pironi [21]. Fa [13] investigated the
fractional Langevin equation and Riemann–Liouville fractional derivative. Lim et al. [18]
and Baghani [2] studied the Langevin equation with two fractional orders. Nonlinear
Langevin equation involving two fractional orders in different intervals are discussed
by Ahmad et al. [1]. Guo et al. [15] addressed the numerics for the fractional Langevin
equation driven by the fractional Brownian motion. Yu et al. [35] discussed the existence
and uniqueness of solutions of initial value problems for nonlinear Langevin equations
involving two fractional orders. This motivates us to study the fractional Langevin delay
differential equations.

The aim of this paper is to study the controllability of fractional Langevin delay dy-
namical systems. The necessary and sufficient conditions for the controllability for linear
systems are derived using controllability Grammian matrix, which is defined by means of
Mittag–Leffler matrix function. Sufficient conditions for the controllability of nonlinear
fractional Langevin delay dynamical systems are established by using the Schauders
fixed-point theorem. Controllability of linear and nonlinear fractional Langevin delay
dynamical systems with multiple delays in control and distributed delays are studied by
using the same technique.
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2 Preliminaries

In this section, we introduce the definitions and preliminary results from fractional calcu-
lus, which are used throughout this paper.

Definition 1. The Riemann–Liouville fractional integral operator of order α > 0 is
defined by

Iαf(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s) ds,

where Γ(·) is the Euler gamma function.

Definition 2. The Caputo fractional derivative of order α ∈ C with n − 1 < α 6 n,
n ∈ N, for a suitable function f is defined as

(
CDα

0+f
)
(t) =

1

Γ(n− α)

t∫
0

(t− s)n−α−1f (n)(s) ds,

where f (n)(s) = dnf/dsn. In particular, if 0 < α 6 1, then

(
CDα

0+f
)
(t) =

1

Γ(1− α)

t∫
0

(t− s)−αf ′(s) ds,

and, if 1 < α 6 2, then(
CDα

0+f
)
(t) =

1

Γ(2− α)

t∫
0

(t− s)1−αf ′′(s) ds.

For brevity, the Caputo fractional derivative CDα
0+ is written as CDα.

Definition 3. The Mittag–Leffler functions of various types are defined by

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
,

and

Eγα,β(z) =

∞∑
k=0

(γ)kz
k

k!Γ(αk + β)
, α, β > 0, z ∈ C,

where (γ)n is a Pochhamer symbol, which is defined as γ(γ + 1) · · · (γ + n − 1), and
(γ)n = Γ(γ + n)/Γ(γ). For an n× n matrix A,

Eα,β(A) =

∞∑
k=0

Ak

Γ(αk + β)
, α, β > 0,

Eα,1(A) = Eα(A) with β = 1.
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Definition 4. (See [25].) The formal definition of the Laplace transform of a function
f(t) of a real variable t ∈ R+ = (0,∞) is given by

L
{
f(t)

}
=

∞∫
0

e−stf(t) dt, L
{
Iαf(t)

}
= s−αF (s), s ∈ C.

The convolution operator of two functions f(t) and g(t) given on R+ is defined for
x ∈ R+ by the integral

(f ∗ g)(t) =

t∫
0

f(t− s)g(s) ds.

The Laplace transform of a convolution is given by

L
{
f(t) ∗ g(t)

}
= L

{
f(t)

}
L
{
g(t)

}
.

Let L{f(t)} = F (s) and L{g(t)} = G(s). The inverse Laplace transform of product of
two functions F (s) and G(s) is defined by

L−1
{
F (s)G(s)

}
= L−1

{
F (s)

}
∗ L−1

{
G(s)

}
.

The Laplace transforms of Mittag–Leffler functions are defined as

L
[
Eα,1

(
± λtα

)]
(s) =

sα−1

sα ∓ λ
, Re(α) > 0,

L
[
tβ−1Eα,β

(
± λtα

)]
(s) =

sα−β

sα ∓ λ
, Re(α),Re(β) > 0,

L
[
tβ−1Eγα,β

(
± λtα

)]
(s) =

sαγ−β

(sα ∓ λ)γ
, Re(α),Re(β) > 0,

∣∣λs−α < 1
∣∣.

If F (s) = L[f(t)](s) for Re(s) > 0, then

F (s− a) = L
[
eatf(t)

]
(s)

and
L
[
ua(t)f(t− a)

]
(s) = e−asF (s), a > 0,

and also we have
L−1

[
e−asF (s)

]
(t) = ua(t)f(t− a).

3 Linear delay systems

Consider the linear fractional Langevin delay dynamical system of the form

CDβ
(
CDα +A

)
x(t) = Bx(t− h) + Cu(t), 0 < α, β 6 1, t ∈ J,

x(t) = φ(t), −h < t 6 0, CDαx(t)
∣∣
t=0

= q0,
(1)
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where α+β > 1, x ∈ Rn, u ∈ Rm, A,B are n×n real matrices, and C is an n×m real
matrix with n > m; φ(t) is the initial function on [−h, 0]. By taking Laplace and inverse
Laplace transform on both sides of (1) and, by simple calculations using convolution of
Laplace transform, we have

x(t) = L−1
[
sα−1

(
sαI +A−Bs−βe−hs

)−1]
(t)φ(0)

+AL−1
[
s−αsα−1

(
sαI +A−Bs−βe−hs

)−1]
(t)φ(0)

+ L−1
[
s−αsα−1

(
sαI +A−Bs−βe−hs

)−1]
(t)q0

+BL−1
[

sα−1

sαI +A−Bs−βe−hs
s1−α−β

]
(t) ∗ L−1

[
e−hs

0∫
−h

e−sτφ(τ) dτ

]
(t)

+ CL−1
[
U(s)

]
(t) ∗ L−1

[
sα−1

sαI +A−Bs−βe−hs
s1−α−β

]
(t).

For simplicity of notation, let us take

Xα(t) = L−1
[
sα−1

(
sαI +A−Bs−βe−hs

)−1]
(t),

Xα,1+α(t) = L−1
[
s−αsα−1

(
sαI +A−Bs−βe−hs

)−1]
(t),

Xα,α+β(t) = L−1
[
sα−1s1−α−β

(
sαI +A−Bs−βe−hs

)−1]
(t).

The function φ(t) is extended to (−h,∞) by defining φ(t) = φ(0) for t > 0; then the
solution of (1) is given as [24]

x(t) = x(t;φ, q0) +

t∫
0

(t− s)α+β−1Xα, α+β(t− s)Cu(s) ds, (2)

where

x(t;φ, q0) = Xα(t)φ(0) + tαAXα,1+α(t)φ(0) + tαXα,1+α(t)q0

+B

0∫
−h

(t− s− h)α+β−1Xα,α+β(t− s− h)φ(s) ds.

Definition 5. System (1) is said to be completely controllable on J if, for every initial
function φ(t) and q0, x1 ∈ Rn, there exists a continuous control function u such that the
solutions of (1) satisfy x(T ) = x1.

Define the controllability Grammian matrix by

W =

T∫
0

(T − s)2(α+β−1)
[
Xα,α+β(T − s)C

][
Xα,α+β(T − s)C

]T
ds, (3)

where the T denotes the matrix transpose.
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Theorem 1. The linear system (1) is completely controllable on [0, T ] if and only if the
controllability Grammian matrix W is positive definite.

Proof. Assume that W is positive definite. Let φ(t) be continuous on [−h, 0], and there-
fore its inverse is well defined. Define the control function as

u(t) = (T − t)α+β−1
(
Xα,α+β(T − t)C

)T
W−1

[
x1 − x(T ;φ, q0)

]
. (4)

Substituting t = T in the solution (1) and inserting (4), we have

x(T ) = x(T ;φ, q0) +

T∫
0

(T − s)2α+2β−2Xα,α+β(t− s)CC TXα,α+β(t− s) ds

×W−1
[
x1 − x(T ;φ, q0)

]
,

x(T ) = x1.

Thus, (1) is controllable. Now assume that W is not positive definite and there exists
a vector y 6= 0 such that yTWy = 0. It follows that

yT

T∫
0

(T − s)2(α+β−1)
(
Xα,α+β(T − s)C

)(
CXα,α+β(T − s)

)T
y ds = 0,

that is,
yT(T − s)α+β−1

(
Xα,α+β(T − s)C

)
= 0 on [0, T ].

Consider the zero initial function φ, q0 = 0 and the final point x1 = y. Since the system
is controllable, there exists a control u(t) on J that steers the response to x1 = y at t = T ,
that is,

y =

T∫
0

(T − s)α+β−1Xα,α+β(T − s)Cu(s) ds.

It follows that

yTy =

T∫
0

(T − s)α+β−1yTXα,α+β(T − s)Cu(s) ds,

and leading to the conclusion that yTy = 0. This is a contradiction to y 6= 0. Thus, W is
positive definite. Hence, the proof is complete.

4 Nonlinear delay systems

Consider the nonlinear fractional Langevin delay dynamical systems of the form
CDβ

(
CDα +A

)
x(t) = Bx(t− h) + Cu(t) + f

(
t, x(t), x(t− h), u(t)

)
,

0 < α, β 6 1, t ∈ J,
x(t) = φ(t), −h < t 6 0, CDαx(t)

∣∣
t=0

= q0,

(5)
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where α+β > 1, the state vector x ∈ Rn, the control vector u ∈ Rm, andA, B are n×n
real matrices, C is an n×m real matrix with n > m, and f : J ×Rn ×Rn ×Rm → Rn
is continuous. The solution of (5) is given by

x(t) = x(t;φ, q0) +

t∫
0

(t− s)α+β−1Xα,α+β(t− s)Cu(s) ds

+

t∫
0

(t− s)α+β−1Xα,α+β(t− s)f
(
s, x(s), x(s− h), u(s)

)
ds (6)

for t ∈ J and y(t) = φ(t), t ∈ [−h, 0]. For simplicity, let us take

a1 = sup
∥∥Xα,α+β(T − t)C

∥∥, a2 =
∣∣W−1∣∣, a3 = sup

{
x(t;φ, q0) + |x1|

}
,

a4 = sup
∣∣Xα,α+β(T − t)

∣∣, b = max
{
a1T

α+β(α+ β)−1, 1
}
,

c1 = 6ba1a2a4T
α+β(α+ β)−1, c2 = 6a4T

α+β(α+ β)−1,

d1 = 6ba1a2a3, d2 = 6a3, c = max{c1, c2}, d = max{d1, d2}.

Now we prove the main result of the paper.

Theorem 2. Let the continuous function f satisfies the condition

lim
|p|→∞

|f(t, p)|
|p|

= 0 (7)

uniformly in t ∈ J . Suppose that the linear system (1) is completely controllable on J .
Then the nonlinear system (5) is completely controllable on J .

Proof. Let φ(t) be continuous on [−h, 0]. Let Q be the Banach space of all continuous
functions of

(x, u) : [−h, T ]× [0, T ]→ Rn × Rn

with the norm ∥∥(x, u)
∥∥ = ‖x‖+ ‖u‖,

where ‖x‖ = sup{|x(t)| for t ∈ [−h, T ]} and ‖u‖ = sup{|u(t)| for t ∈ [0, T ]}.
Define the operator P : Q→ Q by P (x, u) = (z, v), where

v(t) = (T − t)α+β−1C TXα,α+β(T − t)W−1
[
x1 − x(T ;φ, q0)

−
T∫

0

(T − s)α+β−1Xα,α+β(T − s)f
(
s, x(s), x(s− h), u(s)

)
ds

]
,
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z(t) = x(t;φ, q0) +

t∫
0

(t− s)α+β−1Xα,α+β(t− s)Cu(s) ds

+

t∫
0

(t− s)α+β−1Xα,α+β(t− s)f
(
s, x(s), x(s− h), u(s)

)
ds.

For t ∈ J and z(t) = φ(t), t ∈ [−h, 0], we have∣∣v(t)
∣∣ 6 a1a2

(
a3 + a4T

α+β(α+ β)−1

+ sup
s∈J

∣∣f(s, x(s), x(s− h), u(s)
)∣∣)

6

[
d1
6b

+
c1
6b

sup
s∈J

∣∣f(s, x(s), x(s− h), u(s)
)∣∣]

6
1

6b

[
d+ c sup

s∈J

∣∣f(s, x(s), x(s− h), u(s)
)∣∣]

and ∣∣z(t)∣∣ 6 a3 +
a1T

α+β‖v‖
α+ β

+
a4T

α+β

α+ β
sup
s∈J

∣∣f(s, x(s), x(s− h), u(s)
)∣∣

6
d

6
+ b‖v‖+

c

6
sup
s∈J

∣∣f(s, x(s), x(s− h), u(s)
)∣∣.

By hypothesis, the function f satisfies the following conditions in [11]. For each pair of
positive constants c and d, there is a positive constant r such that, if |(x, u)| 6 r, then

c
∣∣f(t, p)

∣∣+ d 6 r for all t ∈ J. (8)

Also, for given c and d, if r is a constant such that inequality (8) is satisfied, then any r1
such that r < r1 will also satisfy (8). Now take c and d as given above, and let r be chosen
so that the aforementioned inequality is satisfied and

sup
−16t60

∣∣φ(t)
∣∣ 6 r

3
.

Therefore, if ‖x‖ 6 r/3, then ‖u‖ 6 r/3 for s ∈ J . It follows that d+ c sup |f(s, x(s),
x(s − h), u(s)) 6 r for s ∈ J . Therefore, |v(t)| 6 r/(6b) for all t ∈ J and hence
‖v(t)‖ 6 r/(6b), which gives ‖z(t)‖ 6 r/3. Thus, we have proved that, if Q(r) =
{(x, u) ∈ Q: ‖x‖ 6 r/3 and ‖u‖ 6 r/3}, then P maps Q(r) into itself. It is easy
to see that P is completely continuous. Since Q(r) is closed, bounded and convex, the
Schauders fixed-point theorem implies that P has a fixed-point (x, u) ∈ Q(r) such that
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(z, v) = P (x, u) = (x, u). It follows that

x(t) = x(t;φ, q0) +

t∫
0

(t− s)α+β−1Xα,α+β(t− s)Cu(s) ds

+

t∫
0

(t− s)α+β−1Xα,α+β(t− s)f
(
s, x(s), x(s− h), u(s)

)
ds (9)

for t ∈ J , and x(t) = φ(t) for t ∈ [−h, 0]. Hence, x(t) is a solution of system (5), and
x(T ) = x1. So system (5) is completely controllable on J .

5 Systems with multiple delays

Consider the linear fractional Langevin delay dynamical systems with multiple delays in
control of the form

CDβ
(
CDα +A

)
x(t) = Bx(t− h) +

M∑
i=0

Ciu
(
σi(t)

)
, 0 < α, β 6 1, t ∈ J,

x(t) = φ(t), −h < t 6 0, CDαx(t)
∣∣
t=0

= q0,

(10)

where α + β > 1, x ∈ Rn, u ∈ Rm, A,B are n × n real matrices, and Ci are n ×m
matrices for i = 0, 1, 2, 3 . . . ,M , φ(t) is initial function on [−h, 0]. The solution of (10) is

x(t) = x(t;φ, q0) +

t∫
0

(t− s)α+β−1Xα,α+β(t− s)
M∑
i=0

Ciu
(
σi(s)

)
ds. (11)

Assume the following conditions as in [5]:

(H1) The functions σi : J → R, i = 0, 1, 2, . . . ,M , are twice continuously differen-
tiable and strictly increasing in J . Moreover,

σi(t) 6 t for i = 0, 1, 2, . . . ,M, for all t ∈ J. (12)

(H2) Introduce the time lead functions ri(t) : [σi(0), σi(T )] → [0, T ], i = 0, 1, 2,
. . . ,M , such that ri(σi(t)) = t for t ∈ J . Further, let also σ0(T ) = T . Then
the following inequality holds:

σM (T ) 6 σM1
(T ) 6 · · · 6 σm+1(T ) 6 0 = σm(T )

< σm−1(T ) = · · · = σ1(T ) = σ0(T ) = T. (13)

The following definitions of complete state of system (10) at time t and relative
controllability are assumed.

Nonlinear Anal. Model. Control, 23(3):321–340
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Definition 6. The set y(t) = {x(t), u0(t, s)}, where u0(t, s) = u(s) for s ∈ min[σi(t), t)
is said to be the complete state of system (10) at time t.

Definition 7. System (10) is said to be relatively controllable on [0, T ] if, for every
complete state y(t) and every x1 ∈ Rn, there exists a control u(t) defined on [0, T ]
such that the solution of system (10) satisfies x(T ) = x1.

The solution of system (10) can be written as

x(t) = x(t;φ, q0) +

t∫
0

(t− s)α+β−1Xα,α+β(t− s)
M∑
i=0

Ciu
(
σi(s)

)
ds. (14)

Using the time lead functions ri(t), we have

x(t) = x(t;φ, q0) +

M∑
i=0

σi(t)∫
σi(0)

(
t− ri(s)

)α+β−1
Xα,α+β

(
t− ri(s)

)
Ciṙi(s)u(s) ds.

By using inequality (14), we get

x(t) = x(t;φ, q0) +

m∑
i=0

0∫
σi(0)

(
t− ri(s)

)α+β−1
Xα,α+β

(
t− ri(s)

)
Ciṙi(s)u0(s) ds

+

m∑
i=0

t∫
0

(t− ri(s))α+β−1Xα,α+β

(
t− ri(s)

)
Ciṙi(s)u(s) ds

+

M∑
i=m+1

σi(t)∫
σi(0)

(
t− ri(s)

)α+β−1
Xα,α+β

(
t− ri(s)

)
Ciṙi(s)u0(s) ds.

For simplicity, let us write the solution as

x(t) = x(t;φ, q0) +G(t)

+

M∑
i=0

t∫
0

(
t− ri(s)

)α+β−1
Xα,α+β

(
t− ri(s)

)
Ciṙi(s)u(s) ds,

where

G(t) =

m∑
i=0

0∫
σi(0)

(
t− ri(s)

)α+β−1
Xα,α+β

(
t− ri(s)

)
Ciṙi(s)u0(s) ds

+

M∑
i=m+1

σi(t)∫
σi(0)

(
t− ri(s)

)α+β−1
Xα,α+β

(
t− ri(s)

)
Ciṙi(s)u0(s) ds.
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Now let us define the controllability Grammian matrix as

W =

m∑
i=0

T∫
0

(
T − ri(s)

)2(α+β−1)(
Xα,α+β

(
T − ri(s)

)
Ciṙi(s)

)
×
(
Xα,α+β

(
T − ri(s)

)
Ciṙi(s)

)T
ds.

Theorem 3. The linear system (10) is relatively controllable on [0, T ] if and only if the
controllability Grammian matrix W is positive definite for some T > 0.

Proof. The proof is similar to that of Theorem 1. Hence, it is omitted.

Consider the nonlinear fractional Langevin delay dynamical systems with multiple
delays in control of the form

CDβ
(
CDα +A

)
x(t)

= Bx(t− h) +

M∑
i=0

Ciu
(
hi(t)

)
+ f

(
t, x(t), x(t− h), u(t)

)
, t ∈ J,

x(t) = φ(t), −h < t 6 0, CDαx(t)
∣∣
t=0

= q0,

(15)

where 0 < α, β 6 1 and assume α+β > 1, x ∈ Rn is a state vector, u ∈ Rm is a control
vector, A, B are n × n real matrices, Ci for i = 0, 1, 2, . . . ,M, are n ×m real matrices
and f : J × Rn × Rn × Rm → Rn is a continuous function. The solution of nonlinear
system (15) using the time lead function ri(t) is given by

x(t) = x(t;φ, q0) +G(t)

+

m∑
i=0

t∫
0

(
t− ri(s)

)α+β−1
Xα,α+β

(
t− ri(s)

)
Ciṙi(s)u(s) ds

+

t∫
0

(t− s)α+β−1Xα,α+β(t− s)f
(
s, x(s), x(s− h), u(s)

)
ds. (16)

Theorem 4. Let the continuous function f satisfies the condition

lim
|p|→∞

|f(t, p)|
|p|

= 0, (17)

uniformly in t ∈ J and suppose that system (10) is relatively controllable on J . Then
system (15) is relatively controllable on J .

Proof. The proof is similar to that of Theorem 2. Hence, it is omitted.
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6 Systems with distributed delays

Consider the linear fractional Langevin delay dynamical system with distributed delays
in control represented by the fractional differential equation of the form

CDβ
(
CDα +A

)
x(t) = Bx(t− h) +

0∫
−h

dτC(t, τ)u(t+ τ),

0 < α, β 6 1, t ∈ J,

x(t) = φ(t), −h < t 6 0, CDαx(t)
∣∣
t=0

= q0,

(18)

where α + β > 1, x ∈ Rn, and the second integral term is in the Lebesgue–Stieltjes
sense with respect to τ . Let h > 0 be given. For function u : [−h, τ ] → Rm and t ∈ J ,
we use the symbol ut to denote the function on [−h, 0] defined by ut(s) = u(t + s) for
s ∈ [−h, 0). A and B are n× n real matrices, C(t, τ) is an n×m matrix continuous in t
for fixed τ and of bounded variation in τ on [−h, 0] for each t ∈ J and continuous from
left in τ on the interval (−h, 0).

Definition 8. The set y(t) = {x(t), ut} is the complete state of system (18) at time t.

Definition 9. System (18) is said to be relatively controllable on J if, for every complete
state y(0) and every vector x1 ∈ Rn, there exists a control u(t) defined on J such that the
corresponding trajectory of system (18) satisfies x(T ) = x1.

The solution of system (18) can be expressed as

x(t) = x(t;φ, q0)

+

t∫
0

(t− s)α+β−1Xα,α+β(t− s)

[ 0∫
−h

dτC(s, τ)u(s+ τ)

]
ds. (19)

Now using the well-known unsymmetric Fubini theorem and changing the order of inte-
gration of the last term, we have

x(t) = x(t;φ, q0)

+

0∫
−h

dCτ

[ t∫
0

(t− s)α+β−1Xα,α+β(t− s)C(s, τ)u(s+ τ) ds

]
= x(t;φ, q0)

+

0∫
−h

dCτ

[ 0∫
τ

(
t− (s− τ)

)α+β−1
Xα,α+β

(
t− (s− τ)

)
C(s− τ, τ)u0(s) ds

]

+

t∫
0

[ 0∫
−h

(
t− (s− τ)

)α+β−1
Xα,α+β(t− s)CτCt(s− τ, τ)

]
u(s) ds, (20)
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where

Ct(s, τ) =

{
C(s, τ), s 6 t,

0, s > t,
(21)

dCτ denotes the Lebesgue–Stieltjes integration with respect to τ in the function C(t, τ).
For convenience, let us introduce the notation

G(t, s) =

0∫
−h

(
t− (s− τ)

)α+β−1
Xα,α+β(t− s)dτCt(s− τ, τ). (22)

Define the controllability Grammian matrix by

W =

T∫
0

G(T, s)GT(T, s) ds. (23)

Theorem 5. The linear fractional Langevin delay dynamical systems (18) with distributed
delays in control are controllable on J if and only if the controllability Grammian matrix

W =

T∫
0

G(T, s)GT(T, s) ds (24)

is positive definite, for some T > 0.

Proof. The proof is similar to that of Theorem 2. Hence, it is omitted.

Consider the nonlinear fractional Langevin delay dynamical systems with distributed
delays in control of the form

CDβ
(
CDα +A

)
x(t)

= Bx(t− h) +

0∫
−h

dτC(t, τ)u(t+ τ) + f
(
t, x(t), x(t− h), u(t)

)
,

x(t) = φ(t), −h < t 6 0, CDαx(t)
∣∣
t=0

= q0,

(25)

where 0 < α, β 6 1, and assume α + β > 1, x ∈ Rn, A, B and C are as above and
f : J × Rn × Rn × Rm → Rn is a continuous function. Now the solution of nonlinear
system (25) can be expressed in the following form:

x(t) = x(t;φ, q0)

+

t∫
0

(t− s)α+β−1Xα,α+β(t− s)

[ 0∫
−h

dτC(s, τ)u(s+ τ)

]
ds

+

t∫
0

(t− s)α+β−1Xα,α+β(t− s)f
(
s, x(s), x(s− h), u(s)

)
ds. (26)
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It follows from the unsymmetric Fubini theorem that

x(t) = x(t;φ, q0)

+

0∫
−h

dCτ

[ 0∫
τ

(
t− (s− τ)

)α+β−1
Xα,α+β(t− s)C(s− τ, τ)ψ(s) ds

]

+

t∫
0

[ 0∫
−h

(
t− (s− τ)

)α+β−1
Xα,α+β(t− s)CτCt(s− τ, τ)

]
u(s) ds

+

t∫
0

(t− s)α+β−1Xα,α+β(t− s)f
(
s, x(s), x(s− h), u(s)

)
ds,

where

Ct(s, τ) =

{
C(s, τ), s 6 t,

0, s > t,

and dτCt denotes the Lebesgue–Stieltjes integration with respect to the variable τ in the
function Ct(s− τ, τ). For brevity, let us introduce the notation

η
(
y(0), x1; z, v

)
= x1 − x(T ;φ, q0)

−
T∫

0

(T − s)α+β−1Xα,α+β(T − s)f
(
s, x(s), x(s− h), u(s)

)
ds

−
0∫
−h

dCτ

[ 0∫
τ

(T − (s− τ))α+β−1Xα,α+β(T − s)C(s− τ, τ)u0(s) ds

]
.

Define the control function by

u(t) = GT(T, t)W−1η
(
y(0), x1;x, u

)
, (27)

where the complete state y(0) and the vector x1 ∈ Rn are chosen arbitrary and T denotes
the matrix transpose.

Theorem 6. Let the continuous function f satisfies the condition

lim
|p|→∞

|f(t, p)|
|p|

= 0 (28)

uniformly in t ∈ J , and suppose that the linear fractional system (18) is relatively
controllable on J . Then system (25) is relatively controllable on J .

Proof. The proof is similar to that of Theorem 2. Hence, it is omitted.
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7 Examples

Example 1. Consider the linear fractional Langevin delay dynamical system

CDβ
(
CDα +A

)
x(t) = Bx(t− h) + Cu(t), t ∈ J,

x(t) = φ(t), −h < t 6 0, CDαx(t)
∣∣
t=0

= q0,
(29)

where α = 1/2, β = 2/3, h = 1,

A =

(
0 −1
1 0

)
, B =

(
1 1
−1 0

)
,

C = (1, 0)T, x(t) = φ(t) ∈ R2 and x(t) = (x1(t), x2(t))T, with initial conditions
x(0) = (0, 1)T, q0 = (0, 0)T and final condition x(1) = (1, 0)T. Here x(t) is the state
variable, and u(t) is the control variable. In this example, the solution takes the form as
in [24]:

x(t) = E1/2

(
−At1/2

)
φ(0) + t1/2AE1/2,3/2

(
−At1/2

)
φ(0)

+ t1/2E1/2,3/2(−At1/2)q0

+B

0∫
−1

(t− s− 1)1/6E1/2,7/6

(
−A(t− s− 1)1/2

)
φ(s) ds

+

t∫
0

(t− s)1/6E1/2,7/6

(
−A(t− s)1/2

)
Cu(s) ds. (30)

By simple matrix calculation, we have the controllability Grammian matrix as

W =

(
0.2739 −0.2901
−0.2901 0.5259

)
> 0,

which is positive definite. Hence, system (29) is completely controllable on [0, 1]. Next,
we give the numerical simulation of the state and control variables for system (29) and
the control

u(t) = (1− t)1/6
(
E1/2,7/6

(
−A(1− t)1/2

)
C
)T

×W−1
(
x1 − E1/2(−A)x(0)−AE1/2,3/2(−A)x(0)

−BE1/2,13/6(−A)x(0)
)
,

which steers x(0) = (0, 1)T to x(1) = (1, 0)T. Figure 1(a) represents the trajectory
of equation (29) without control starting from the initial point x(0) = (0, 1)T and not
reaching the final point x(1) = (1, 0)T in [0, 1]. Figure 1(b) represents the trajectory of
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Figure 1

equation (29) with control starting from the initial vector x(0) = (0, 1)T and reaching the
final vector x(1) = (1, 0)T in [0, 1] and Figure 1(c) represents the steering control.

Example 2. Consider the nonlinear fractional Langevin delay dynamical system

CDβ
(
CDα +A

)
x(t)

= Bx(t− h) + Cu(t) + f
(
t, x(t), x(t− h), u(t)

)
, t ∈ J,

x(t) = φ(t), −h < t 6 0, CDαx(t)
∣∣
t=0

= q0,

(31)

where α = 2/3, β = 1/2, h = 1,

A =

(
0 −1
1 0

)
, B =

(
1 1
−1 0

)
,

C = (1, 0)T, x(t) =φ(t)∈ R2 and x(t) = (x1(t), x2(t))T, with initial conditions x(0) =
(0, 2)T, q0 = (0, 0)T and final condition x(1) = (2, 0)T and f(t, x(t), x(t− h), u(t)) =
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(0, (x1(t) + x2(t))/(1 + x2(t− 1) + u(t)))T. Here x(t) is the state variable, and u(t) is
the control variable. The solution of the nonlinear system (31) is

x(t) = E2/3(−At2/3)φ(0) + t2/3AE2/3,5/3

(
−At2/3

)
φ(0)

+ t2/3E2/3,5/3

(
−At2/3

)
q0

+B

0∫
−1

(t− s− 1)1/6E2/3,7/6

(
−A(t− s− 1)2/3

)
φ(s) ds

+

t∫
0

(t− s)1/6E2/3,7/6

(
−A(t− s)2/3

)
Cu(s) ds

+

t∫
0

(t− s)1/6E2/3,7/6

(
−A(t− s)2/3

)
f
(
s, x(s), x(s− h), u(s)

)
ds. (32)

By simple matrix calculation, we have the controllability Grammian matrix as

W =

(
0.4047 −0.3330
−0.3330 0.4238

)
> 0,

which is positive definite. Hence, the linear system of (31) is completely controllable
on [0, 1]. The nonlinear function f(t, x(t), x(t − h), u(t)) satisfies the hypothesis of
Theorem 2. Thus, the nonlinear system (31) is completely controllable on [0, 1]. Next,
we give the numerical simulation of the state and control variables for system (31) on
[0, 1] with the initial points x(0) = (0, 2)T, q0 = (0, 0)T and final point x(1) = (2, 0)T

approximated by the following algorithm:

un(t) = (1− t)1/6
(
E2/3,7/6

(
−A(1− t)2/3

)
C
)T
W−1

(
x1 − E2/3(−A)φ(0)

−AE2/3,5/3(−A)φ(0)− E2/3,5/3(−A)q0 −BE2/3,13/6(−A)φ(0)

−
1∫

0

(1− t)1/6E2/3,7/6

(
−A(1− t)2/3

)
f
(
t, xn(t), xn(t− h), un(t)

)
dt
)
,

xn+1(t) = E2/3

(
−At2/3

)
φ(0) + t2/3AE2/3,5/3

(
−At2/3

)
φ(0)

+ t2/3E2/3,5/3

(
−At2/3)q0 + t7/6BE2/3,13/6

(
−At2/3

)
φ(0)

+

t∫
0

(t− s)1/6E2/3,7/6

(
−A(t− s)2/3

)
Cun(s) ds

+

t∫
0

(t− s)1/6E2/3,7/6

(
−A(t− s)2/3

)
f
(
s, xn(s), xn(s− h), un(s)

)
ds
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Figure 2

with x0(t) = x0, where n = 0, 1, 2, . . . . Using MATLAB, the controlled trajectories and
steering control u(t) are computed. Figure 2(a) represents the trajectory of equation (31)
without control starting from the initial point x(0) = (0, 2)T and not reaching the final
point x(1) = (2, 0)T in [0, 1]. Figure 2(b) represents the trajectory of equation (31) with
control starting from the initial vector x(0) = (0, 2)T and reaching the final vector x(1) =
(2, 0)T in [0, 1], and Fig. 2(c) represents the steering control.
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