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Abstract. In this paper, the Schaefer’s fixed-point theorem is used to investigate the existence of
solutions to nonlocal initial value problems for implicit differential equations with Hilfer–Hadamard
fractional derivative. Then the Ulam stability result is obtained by using Banach contraction
principle. An example is given to illustrate the applications of the main result.
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1 Introduction

Fractional differential equations (FDEs) have been applied in many fields such as physics,
mechanics, chemistry, engineering etc. There has been a significant development in ordi-
nary differential equations involving fractional-order derivatives, one can see the mono-
graphs of Hilfer [19], Kilbas [16] and Podlubny [18] and the references therein. Moreover,
Hilfer [19] studied applications of a generalized fractional operator having the Riemann–
Liouville and the Caputo derivatives as specific cases. Hilfer fractional derivative has been
receiving more and more attention in recent times; see, for example, [8–11, 14, 21, 24].
Benchohra et al. [4, 5] studied implicit differential equations(IDEs) of fractional order in
various aspects. Recently, some mathematicians have considered FDEs depending on the
Hadamard fractional derivative [2, 6, 7].
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In this paper, we consider the Hilfer–Hadamard-type IDE with nonlocal condition of
the form

HD
α,β
1+ x(t) = f

(
t, x(t),HD

α,β
1+ x(t)

)
, 0 < α < 1, 0 6 β 6 1,

t ∈ J := [1, b],

HI
1−γ
1+ x(1) =

m∑
i=1

cix(τi), α 6 γ = α+ β − αβ < 1, τi ∈ [1, b],

(1)

where HD
α,β
1+ is the Hilfer–Hadamard fractional derivative of order α and type β. Let

X be a Banach space, f : J ×X ×X → X is a given continuous function and HI
1−γ
1+ is

the left-sided mixed Hadamard integral of order 1− γ.
In passing, we remark that the application of nonlocal condition HI

1−γ
1+ x(1) =∑m

i=1 cix(τi) in physical problems yields better effect than the initial condition
HI

1−γ
1+ x(1) = x0.
For sake of brevity, let us take

HD
α,β
1+ x(t) := Kx(t) = f

(
t, x(t),Kx(t)

)
.

A new and important equivalent mixed-type integral equation for our system (1)
can be established. We adopt some ideas in [24] to establish an equivalent mixed-type
integral equation

x(t) =
Z(log t)γ−1

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s

+
1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kx(s)

ds

s
, (2)

where

Z :=
1

Γ(γ)−
∑m
i=1 ci(log τi)γ−1

if Γ(γ) 6=
m∑
i=1

ci(log τi)
γ−1.

In the theory of functional equations, there is some special kind of data dependence
[3, 13, 17, 20]. For the advanced contribution on Ulam stability for FDEs, we refer the
reader to [12, 23, 25, 26]. In this paper, we study different types of Ulam stability: Ulam–
Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and gen-
eralized Ulam–Hyers–Rassias stability for the IDEs with Hilfer–Hadamard fractional
derivative. Moreover, the Ulam–Hyers stability for FDEs with Hilfer fractional derivative
was investigated in [1, 22].

The paper is organized as follows. A brief review of the fractional calculus theory is
given in Section 2. In Section 3, we will prove the existence and uniqueness of solutions
for problem (1). In Section 4, we discuss the Ulam–Hyers stability results. Finally, an
example is given in Section 5 to illustrate the usefulness of our main results.

https://www.mii.vu.lt/NA



Nonlocal initial value problems for implicit differential equations 343

2 Fundamental concepts

In this section, we introduce some definitions and preliminary facts, which are used in
this paper.

Let C[J,X] be the Banach space of all continuous functions from J into X with the
norm

‖x‖C = max
{∣∣x(t)

∣∣: t ∈ [1, b]
}
.

For 0 6 γ < 1, we denote the space Cγ,log[J,X] as

Cγ,log[J,X] :=
{
f(t) : [1, b]→ X

∣∣ (log t)γf(t) ∈ C[J,X]
}
,

where Cγ,log[J,X] is the weighted space of the continuous functions f on the finite
interval [1, b].

Obviously, Cγ,log[J,X] is the Banach space with the norm

‖f‖Cγ,log =
∥∥(log t)γf(t)

∥∥
C
.

Meanwhile, Cnγ,log[J,X] := {f ∈ Cn−1[J,X]: f (n) ∈ Cγ,log[J,X]} is the Banach
space with the norm

‖f‖Cnγ,log =

n−1∑
i=0

∥∥f (k)∥∥
C

+
∥∥f (n)∥∥

Cγ,log
, n ∈ N.

Moreover, C0
γ,log[J,X] := Cγ,log[J,X].

Definition 1. (See [26].) The Hadamard fractional integral of order α for a continuous
function f is defined as

HI
α
1+f(t) =

1

Γ(α)

t∫
1

(
log

t

s

)α−1
f(s)

ds

s
, α > 0,

provided the integral exists.

Definition 2. (See [26].) The Hadamard derivative of fractional order α for a continuous
function f : [1,∞)→ X is defined as

HD
α
1+f(t) =

1

Γ(n− α)

(
t

d

dt

)n t∫
1

(
log

t

s

)n−α−1
f(s)

ds

s
, n− 1 < α < n,

where n = dαe+ 1, dαe denotes the integer part of real number α, and log(·) = loge(·).

We review some basic properties of Hilfer–Hadamard fractional derivative, which are
used for this work. For details, see [8, 9, 11, 19, 24] and references therein.
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Definition 3. (See [15].) The Hilfer–Hadamard fractional derivative of order 0 < α < 1
and 0 6 β 6 1 of function f(t) is defined by

HD
α,β
1+ f(t) =

(
HI

β(1−α)
1+ D

(
HI

(1−β)(1−α)
1+ f

))
(t),

where D := d/dt.

Remark 1. Clearly,

(i) The operator HD
α,β
1+ also can be rewritten as

HD
α,β
1+ = HI

β(1−α)
1+ DHI

(1−β)(1−α)
1+ = HI

β(1−α)
1+ HD

γ
1+ , γ = α+ β − αβ.

(ii) Let β = 0, the Hadamard-type Riemann–Liouville fractional derivative can be
presented as HDα

1+ := HD
α,0
1+ .

(iii) Let β = 1, the Hadamard-type Caputo fractional derivative can be presented as
c
HD

α
1+ := HI

1−α
1+ D.

Lemma 1. (See [15].) If α, β > 0 and 1 < b <∞, then[
HI

α
1+(log s)β−1

]
(t) =

Γ(β)

Γ(β + α)
(log t)β+α−1

and [
HD

α
1+(log s)α−1

]
(t) =

Γ(β)

Γ(β − α)
(log t)β−α−1.

In particular, if β = 1 and α > 0, then the Hadamard fractional derivative of a constant
is not equal to zero:(

HD
α
1+1
)
(t) =

1

Γ(1− α)
(log t)−α, 0 < α < 1.

Lemma 2. If α, β > 0 and f ∈ L1(J) for t ∈ [1, T ] there exist the following properties:(
HI

α
1+ HI

β
1+f

)
(t) =

(
HI

α+β
1+ f

)
(t)

and (
HD

α
1+ HI

α
1+f

)
(t) = f(t).

In particular, if f ∈ Cγ,log[J,X] or f ∈ C[J,X], then these equalities hold at t ∈ (1, b]
or t ∈ [1, b], respectively.

Lemma 3. Let 0 < α < 1, 0 6 γ < 1. If f ∈ Cγ,log[J,X] and HI
1−α
1+ f ∈ C1

γ,log[J,X],
then

HI
α
1+ HD

α
1+f(t) = f(t)−

(HI
1−α
1+ f)(1)

Γ(α)
(log t)α−1 ∀t ∈ (1, b].

Lemma 4. If 0 6 γ < 1 and f ∈ Cγ,log[J,X], then(
HI

α
1+f

)
(1) := lim

t→1+
HI

α
1+f(t) = 0, 0 6 γ < α.
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Lemma 5. Let α, β > 0 and γ = α+ β − αβ. If f ∈ Cγ1−γ,log[J,X], then

HI
γ
1+ HD

γ
1+h = HI

α
1+ HD

α,β
1+ f, HD

γ
1+ HI

α
1+f = HD

β(1−α)
1+ f(t).

Lemma 6. Let f ∈ L1(J) and HD
β(1−α)
1+ f ∈ L1(J) exist, then

HD
α,β
1+ HI

α
1+f = HI

β(1−α)
1+ HD

β(1−α)
1+ f.

3 Existence results

In this section, we introduce spaces that helps us to solve and reduce system (1) to an
equivalent integral equation (2):

Cα,β1−γ,log =
{
f ∈ C1−γ,log[J,X], HD

α,β
1+ f ∈ C1−γ,log[J,X]

}
and

Cγ1−γ,log =
{
f ∈ C1−γ,log[J,X], HD

γ
1+f ∈ C1−γ,log[J,X]

}
.

It is obvious that
Cγ1−γ,log[J,X] ⊂ Cα,β1−γ,log[J,X].

Lemma 7. Let f : J × X × X → X be a function such that f(·, x(·),HDα,β
1+ x(·)) ∈

C1−γ,log[J,X] for any x ∈ C1−γ,log[J,X]. A function x ∈ Cγ1−γ,log[J,X] is a solution
of Hilfer-type fractional IDE:

HD
α,β
1+ x(t) = f

(
t, x(t),HD

α,β
1+ x(t)

)
, 0 < α < 1, 0 6 β 6 1, t ∈ J,

HI
1−γ
1+ x(1) = x0, γ = α+ β − αβ,

if and only if x satisfies the following Volterra integral equation:

x(t) =
x0(log t)γ−1

Γ(γ)
+

1

Γ(α)

t∫
1

(
log

t

s

)α−1
f
(
s, x(s),HD

α,β
1+ x(s)

)ds

s
.

Further details can be found in [15]. From Lemma 7 we have the following result.

Lemma 8. Let f : J × X × X → X be a function such that f(·, x(·),HDα,β
1+ x(·)) ∈

C1−γ,log[J,X] for any x ∈ C1−γ,log[J,X]. A function x ∈ Cγ1−γ,log[J,X] is a solution
of system (1) if and only if x satisfies the mixed-type integral (2).

Proof. According to Lemma 7, a solution of system (1) can be expressed by

x(t) =
HI

1−γ
1+ x(1)

Γ(γ)
(log t)γ−1 +

1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kx(s)

ds

s
. (3)
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Next, we substitute t = τi into the above equation:

x(τi) =
HI

1−γ
1+ x(1)

Γ(γ)
(log τi)

γ−1 +
1

Γ(α)

t∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
, (4)

multiplying both sides of (4) by ci, we can write

cix(τi) =
HI

1−γ
1+ x(1)

Γ(γ)
ci(log τi)

γ−1 +
1

Γ(α)
ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
.

Thus, we have

HI
1−γ
1+ x(1) =

m∑
i=1

cix(τi)

=
HI

1−γ
1+ x(1)

Γ(γ)

m∑
i=1

ci(log τi)
γ−1 +

1

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
,

which implies

HI
1−γ
1+ x(1) =

Γ(γ)

Γ(α)
Z

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
. (5)

Submitting (5) to (3), we derive that (2). It is probative that x is also a solution of the
integral equation (2) when x is a solution of (1).

The necessity has been already proved. Next, we are ready to prove its sufficiency.
Applying HI

1−γ
1+ to both sides of (2), we have

HI
1−γ
1+ x(t) = HI

1−γ
1+ (log t)γ−1

Z

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s

+ HI
1−γ
1+ HI

α
1+Kx(t),

using Lemmas 1 and 2,

HI
1−γ
1+ x(t) =

Γ(γ)

Γ(α)
Z

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
+ I

1−β(1−α)
1+ Kx(t).

Since 1− γ < 1− β(1− α), Lemma 4 can be used when taking the limit as t→ 1:

HI
1−γ
1+ x(1) =

Γ(γ)

Γ(α)
Z

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
. (6)
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Substituting t = τi into (2), we have

x(τi) =
Z

Γ(α)
(log τi)

γ−1
m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s

+
1

Γ(α)

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
.

Then we derive
m∑
i=1

cix(τi) =
Z

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s

m∑
i=1

ci(log τi)
γ−1

+
1

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s

=
1

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s

(
1 + Z

m∑
i=1

ci(log τi)
γ−1

)

=
Γ(γ)

Γ(α)
Z

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
,

that is,
m∑
i=1

cix(τi) =
Γ(γ)

Γ(α)
Z

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
. (7)

It follows (6) and (7) that

HI
1−γ
1+ x(1) =

m∑
i=1

cix(τi).

Now by applying HD
γ
1+ to both sides of (2), it follows from Lemmas 1 and 5 that

HD
γ
1+x(t) = HD

β(1−α)
1+ Kx(t) = HD

β(1−α)
1+ f(t, x(t),HD

α,β
1+ x(t)). (8)

Since x ∈ Cγ1−γ,log[J,X] and by the definition of Cγ1−γ,log[J,X], we have that

HD
γ
1+x ∈ C1−γ,log[J,X], then HD

β(1−α)
1+ f = DHI

1−β(1−α)
1+ f ∈ C1−γ,log[J,X]. For

f ∈ C1−γ,log[J,X], it is obvious that HI
1−β(1−α)
1+ f ∈ C1−γ,log[J,X], then

HI
1−β(1−α)
1+ f ∈ C1

1−γ,log[J,X]. Thus, f and HI
1−β(1−α)
1+ f satisfy the conditions of

Lemma 3.
Next, by applying HI

β(1−α)
1+ to both sides of (8) and using Lemma 3, we can obtain

HD
α,β
1+ x(t) = Kx(t)−

(HI
1−β(1−α)
1+ Kx)(1)

Γ(β(1− α))
(log t)β(1−α)−1,

where (I
β(1−α)
1+ Kx)(1) = 0 is implied by Lemma 4.

Nonlinear Anal. Model. Control, 23(3):341–360
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Hence, it reduces to HD
α,β
1+ x(t) = Kx(t) = f(t, x(t),HD

α,β
1+ x(t)). The results are

proved completely.

First, we list the following hypotheses to study the existence and uniqueness results:

(H1) The function f : J ×X ×X → X is continuous.
(H2) There exist l, p, q ∈ C1−γ,log[J,X] with l∗ = supt∈J l(t) < 1 such that∣∣f(t, u, v)

∣∣ 6 l(t) + p(t)|u|+ q(t)|v|, t ∈ J, u, v ∈ X.

(H3) There exist positive constants K,L > 0 such that∣∣f(t, u, v)− f(t, u, v)
∣∣ 6 K|u− u|+ L|v − v|, u, v, u, v ∈ X, t ∈ J.

The existence result for problem (1) will be proved by using the Schaefer’s fixed-point
theorem.

Theorem 1. Assume that (H1) and (H2) are satisfied. Then system (1) has at least one
solution in Cγ1−γ,log[J,X] ⊂ Cα,β1−γ,log[J,X].

Proof. For sake of clarity, we split the proof into a sequence of steps.
Consider the operator N : C1−γ,log[J,X]→ C1−γ,log[J,X].

Nx)(t) =
Z(log t)γ−1

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s

+
1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kx(s)

ds

s
.

It is obvious that the operator N is well defined.
Step 1. N is continuous.
Let xn be a sequence such that xn → x in C1−γ,log[J,X]. Then for each t ∈ J ,∣∣(log t)1−γ

(
(Nxn)(t)− (Nx)(t)

)∣∣
6
|Z|

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1∣∣Kxn(s)−Kx(s)
∣∣ds
s

+
(log t)1−γ

Γ(α)

t∫
1

(
log

t

s

)α−1∣∣Kxn(s)−Kx(s)
∣∣ds
s

6
|Z|B(γ, α)

∑m
i=1 ci(log τi)

α+γ−1

Γ(α)

∥∥Kxn(·)−Kxn(·)
∥∥
C1−γ,log

+
(log b)αB(γ, α)

Γ(α)

∥∥Kxn(·)−Kx(·)
∥∥
C1−γ,log

6
B(γ, α)

Γ(α)

(
|Z|

m∑
i=1

ci(log τi)
α+γ−1 + (log b)α

)∥∥Kxn(·)−Kx(·)
∥∥
C1−γ,log

,
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where we use the formula
t∫
a

(
log

t

s

)α−1∣∣x(s)
∣∣ds
s

6

( t∫
a

(
log

t

s

)α−1(
log

s

a

)γ−1
ds

s

)
‖x‖C1−γ

=

(
log

t

a

)α+γ−1
B(γ, α)‖x‖C1−γ,log .

Since Kx is continuous (i.e., f is continuous), then we have

‖Nxn −Nx‖C1−γ,log → 0 as n→∞.

Step 2. N maps bounded sets into bounded sets in C1−γ,log[J,X].
Indeed, it is enough to show that η > 0, there exists a positive constant l such that

x ∈ Bη = {x ∈ C1−γ,log[J,X]: ‖x‖ 6 η}, we have ‖Nx‖C1−γ,log 6 l.

∣∣(Nx)(t)(log t)1−γ
∣∣ 6 |Z|

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1∣∣Kx(s)
∣∣ d
ds

+
(log t)1−γ

Γ(α)

t∫
1

(
log

t

s

)α−1∣∣Kx(s)
∣∣ d
ds

:= A1 +A2. (9)

For computational work, we set

A1 =
|Z|

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1∣∣Kx(s)
∣∣ d

ds
,

A2 =
(log t)1−γ

Γ(α)

t∫
1

(
log

t

s

)α−1∣∣Kx(s)
∣∣ d

ds
,

and by (H2),∣∣Kx(t)
∣∣ =

∣∣f(t, x(t),Kx(t)
)∣∣ 6 l(t) + p(t)

∣∣x(t)
∣∣+ q(t)

∣∣Kx(t)
∣∣

6 l∗ + p∗
∣∣x(t)

∣∣+ q∗
∣∣Kx(t)

∣∣ 6 l∗ + p∗
∣∣x(t)

∣∣
1− q∗

. (10)

We estimate A1, A2 terms separately. By (10) we have

A1 6
|Z|

1− q∗
m∑
i=1

ci

(
l∗(log τi)

α

Γ(α+ 1)
+ p∗

(log τi)
α+γ−1

Γ(α)
B(γ, α)‖x‖C1−γ,log

)
, (11)

A2 6
1

1− q∗

(
l∗(log b)α−γ+1

Γ(α+ 1)
+ p∗

(log b)α

Γ(α)
B(γ, α)‖x‖C1−γ,log

)
. (12)
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Bringing inequalities (11) and (12) into (9), we have∣∣(Nx)(t)(log t)1−γ
∣∣

6
l∗

(1− q∗)Γ(α+ 1)

(
|Z|

m∑
i=1

ci(log τi)
α + (log b)α+γ−1

)

+
p∗

(1− q∗)Γ(α)

(
|Z|

m∑
i=1

ci(log τi)
α+γ−1 + (log b)α

)
B(γ, α)‖x‖C1−γ

:= l.

Step 3. N maps bounded sets into equicontinuous set of C1−γ,log[J,X].
Let t1, t2 ∈ J , t2 6 t1 and x ∈ Bη . Using the fact f is bounded on the compact set

J ×Bη (thus sup(t,x)∈J×Bη ‖Kx(t)‖ := C0 <∞), we will get∣∣(Nx)(t1)− (Nx)(t2)
∣∣

6
C0|Z|B(γ, α)

∑m
i=1 ci(log τi)

α+γ−1

Γ(α)

∣∣(log t1)γ−1 − (log t2)γ−1
∣∣

+
C0B(γ, α)

Γ(α)

∣∣(log t1)α+γ−1 − (log t2)α+γ−1
∣∣

As t1 → t2, the right-hand side of the above inequality tends to zero. As a con-
sequence of Steps 1–3 together with Arzela–Ascoli theorem, we can conclude that N :
C1−γ,log[J,X]→ C1−γ,log[J,X] is continuous and completely continuous.

Step 4. A priori bounds.
Now it remains to show that the set

ω =
{
x ∈ C1−γ,log[J,X]: x = δ(Nx), 0 < δ < 1

}
is bounded set.

Let x ∈ ω, x = δ(Nx) for some 0 < δ < 1. Thus, for each t ∈ J , we have

x(t) = δ

[
|Z|

Γ(α)
(log t)γ−1

m∑
i=1

ci

τi∫
1

(
log

τi
s

)
Kx(s)

ds

s

+
1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kx(s)

ds

s

]
.

This implies by (H2) that for each t ∈ J , we have∣∣x(t)(log t)1−γ
∣∣ 6 ∣∣(Nx)(t)(log t)1−γ

∣∣
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6
l∗

(1− q∗)Γ(α+ 1)

(
|Z|

m∑
i=1

ci(log τi)
α + (log b)α+γ−1

)

+
p∗

(1− q∗)Γ(α)

(
|Z|

m∑
i=1

ci(log τi)
α+γ−1 + (log b)α

)
B(γ, α)‖x‖C1−γ

:= R.

This shows that the set ω is bounded. As a consequence of Schaefer’s fixed-point
theorem, we deduce that N has a fixed point, which is a solution of system (1). The proof
is completed.

Our second theorem is based on the Banach contraction principle.

Theorem 2. Assume that (H1) and (H3) are satisfied. If

K

(1− L)Γ(α)
B(γ, α)

(
|Z|

m∑
i=1

ci(log τi)
α+γ−1 + (log b)α

)
< 1, (13)

then system (1) has a unique solution.

Proof. Let the operator N : C1−γ,log[J,X]→ C1−γ,log[J,X].

(Nx)(t) =
Z

Γ(α)
(log t)γ−1

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s

+
1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kx(s)

ds

s
.

By Lemma 8 it is clear that the fixed points of N are solutions of system (1).
Let x1, x2 ∈ C1−γ,log[J,X] and t ∈ J , then we have∣∣((Nx1)(t)− (Nx2)(t)

)
(log t)1−γ

∣∣
6
|Z|

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1∣∣Kx1(s)−Kx2(s)
∣∣ds
s

+
(log t)1−γ

Γ(α)

t∫
1

(
log

t

s

)α−1∣∣Kx1
(s)−Kx2

(s)
∣∣ds
s

(14)

and ∣∣Kx1(t)−Kx2(t)
∣∣ =

∣∣f(t, x1(t),Kx1(t)
)
− f

(
t, x2(t),Kx2(t)

)∣∣
6 K

∣∣x1(t)− x2(t)
∣∣+ L

∣∣Kx1
(t)−Kx2

(t)
∣∣

6
K

1− L
∣∣x1(t)− x2(t)

∣∣. (15)
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By replacing (15) in inequality (14) we get∣∣((Nx1)(t)− (Nx2)(t)
)
(log t)1−γ

∣∣
6
|Z|

Γ(α)

m∑
i=1

ci

(
K

1− L
B(γ, α)(log τ)α+γ−1‖x1 − x2‖C1−γ,log

)
+

(log b)1−γ

Γ(α)
(log b)α+γ−1

K

1− L
B(γ, α)‖x1 − x2‖C1−γ,log

6
K

(1− L)Γ(α)
B(γ, α)

(
|Z|

m∑
i=1

ci(log τi)
α+γ−1 + (log b)α

)
‖x1 − x2‖C1−γ,log .

Hence,∥∥Nx1(t)−Nx2(t)
∥∥
C1−γ,log

6
K

(1− L)Γ(α)
B(γ, α)

(
|Z|

m∑
i=1

ci(log τi)
α+γ−1 + (log b)α

)
‖x1 − x2‖C1−γ,log .

From (13) it follows that N has a unique fixed point, which is solution of system (1). The
proof of Theorem 2 is completed.

4 Ulam–Hyers–Rassias stability

In this section, we consider the Ulam stability of Hilfer–Hadamard-type IDE (1). The
following observations are taken from [4, 20].

Definition 4. Equation (1) is Ulam–Hyers stable if there exists a real number Cf > 0
such that for each ε > 0 and for each solution z ∈ Cγ1−γ,log[J,X] of the inequality∣∣

HD
α,β
1+ z(t)− f

(
t, z(t),HD

α,β
1+ z(t)

)∣∣ 6 ε, t ∈ J, (16)

there exists a solution x ∈ Cγ1−γ,log[J,X] of equation (1) with∣∣z(t)− x(t)
∣∣ 6 Cf ε, t ∈ J.

Definition 5. Equation (1) is generalized Ulam–Hyers stable if there exists ψf ∈
C1−γ([1,∞), [1,∞)), ψf (1) = 0, such that for each solution z ∈ Cγ1−γ,log[J,X] of
the inequality ∣∣

HD
α,β
1+ z(t)− f

(
t, z(t),HD

α,β
1+ z(t)

)∣∣ 6 ε, t ∈ J,

there exists a solution x ∈ Cγ1−γ,log[J,X] of equation (1) with∣∣z(t)− x(t)
∣∣ 6 ψf ε, t ∈ J.
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Definition 6. Equation (1) is Ulam–Hyers–Rassias stable with respect to ϕ ∈
C1−γ,log[J,X] if there exists a real number Cf > 0 such that for each ε > 0 and for
each solution z ∈ Cγ1−γ,log[J,X] of the inequality∣∣

HD
α,β
1+ z(t)− f

(
t, z(t),HD

α,β
1+ z(t)

)∣∣ 6 εϕ(t), t ∈ J, (17)

there exists a solution x ∈ Cγ1−γ,log[J,X] of equation (1) with∣∣z(t)− x(t)
∣∣ 6 Cf εϕ(t), t ∈ J.

Definition 7. Equation (1) is generalized Ulam–Hyers–Rassias stable with respect to ϕ ∈
C1−γ,log[J,X] if there exists a real number Cf,ϕ > 0 such that for each solution z ∈
Cγ1−γ,log[J,X] of the inequality∣∣

HD
α,β
1+ z(t)− f

(
t, z(t),HD

α,β
1+ z(t)

)∣∣ 6 ϕ(t), t ∈ J, (18)

there exists a solution x ∈ Cγ1−γ,log[J,X] of equation (1) with∣∣z(t)− x(t)
∣∣ 6 Cf,ϕϕ(t), t ∈ J.

Remark 2. A function z ∈ Cγ1−γ,log[J,X] is a solution of inequality (16) if and only if
there exist a function g ∈ Cγ1−γ,log[J,X] (which depends on solution z) such that

(i) |g(t)| 6 ε for all t ∈ J ;
(ii) HD

α,β
1+ z(t) = f(t, z(t),HD

α,β
1+ z(t)) + g(t), t ∈ J .

Remark 3. It is clear that

(i) Definition 4 =⇒ Definition 5.
(ii) Definition 6 =⇒ Definition 7.

(iii) Definition 6 for ϕ(t) = 1 =⇒ Definition 4.

One can have similar remarks for inequalities (17) and (18).

Lemma 9. Let 0 < α < 1, 0 6 β 6 1. If a function z ∈ Cγ1−γ,log[J,X] is a solution of
inequality (16), then x is a solution of the following integral inequality:∣∣∣∣∣z(t)−Az − 1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kz(s)

ds

s

∣∣∣∣∣
6

(
Z(mc)(log b)α+γ−1

Γ(α+ 1)
+

(log b)α

Γ(α+ 1)

)
ε,

where

Az =
Z

Γ(α)
(log t)γ−1

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kz(s)

ds

s
.
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Proof. Indeed, by Remark 2 we have that

HD
α,β
1+ z(t) = f

(
t, z(t),HD

α,β
1+ z(t)

)
+ g(t) = Kz(t) + g(t).

Then

z(t) =
Z(log t)γ−1

Γ(α)

m∑
i=1

ci

( τi∫
1

(
log

τi
s

)α−1
Kz(s)

ds

s
+

τi∫
1

(
log

τi
s

)α−1
g(s)

ds

s

)

+
1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kz(s)

ds

s
+

1

Γ(α)

t∫
1

(
log

t

s

)α−1
g(s)

ds

s
.

From this it follows that∣∣∣∣∣z(t)−Az − 1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kz

ds

s

∣∣∣∣∣
=

∣∣∣∣∣Z(log t)γ−1

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
g(s)

ds

s
+

1

Γ(α)

t∫
1

(
log

t

s

)α−1
g(s)

ds

s

∣∣∣∣∣
6
Z(log t)γ−1

Γ(α)

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1∣∣g(s)
∣∣ds
s

+
1

Γ(α)

t∫
1

(
log

t

s

)α−1∣∣g(s)
∣∣ds
s

6

(
Z(mc)(log b)α+γ−1

Γ(α+ 1)
+

(log b)α

Γ(α+ 1)

)
ε.

We have similar remark for the solutions of inequalities (17) and (18).
The following generalized Gronwall inequalities will be used to deal with our system

in the sequence.

Lemma 10. (See [26].) Let v, w : [1, b] → [1,+∞) be continuous functions. If w is
nondecreasing and there are constants k > 0 and 0 < α < 1 such that

v(t) 6 w(t) + k

t∫
1

(
log

t

s

)α−1
v(s)

ds

s
, t ∈ J = [1, b],

then

v(t) 6 w(t) +

t∫
1

[ ∞∑
n=1

(kΓ(α))n

Γ(nα)

(
log

t

s

)nα−1
w(s)

]
ds

s
, t ∈ J.

Remark 4. Under the assumptions of Lemma 10, let w(t) be a nondecreasing function
on J . Then we have

v(t) 6 w(t)Eα,1
(
kΓ(α)(log t)α

)
,
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where Eα,1 is the Mittag–Leffler function defined by

Eα,1(z) =

∞∑
k=0

zk

Γ(kα+ 1)
, z ∈ C.

Now we give the Ulam–Hyers and Ulam–Hyers–Rassias results in this sequel.

Theorem 3. Assume that (H3) and (13) are satisfied. Then system (1) is Ulam–Hyers
stable.

Proof. Let ε > 0, and let z ∈ Cγ1−γ,log[J,X] be a function, which satisfies inequality (16),
and let x ∈ Cγ1−γ,log[J,X] is the unique solution of the following Hilfer–Hadamard-type
IDE:

HD
α,β
1+ x(t) = f

(
t, x(t),HD

α,β
1+ x(t)

)
, t ∈ J := [1, b],

HI
1−γ
1+ x(1) = HI

1−γ
1+ z(1) =

m∑
i=1

cix(τi), τi ∈ [1, b], γ = α+ β − αβ,

where 0 < α < 1, 0 6 β 6 1.
Using Lemma 8, we obtain

x(t) = Ax +
1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kx(s)

ds

s
,

where

Ax =
Z

Γ(α)
(log t)γ−1

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kx(s)

ds

s
.

On the other hand, if
∑m
i=1 cix(τi) =

∑m
i=1 ciz(τi) and HI

1−γ
1+ z(1) = HI

1−γ
1+ x(1), then

Ax = Az .
Indeed,

|Ax −Az| 6
|Z|

Γ(α)
(log t)γ−1

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1∣∣Kx(s)−Kz(s)
∣∣ds
s

6
|Z|

Γ(α)
(log t)γ−1

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
K

1− L
∣∣x(s)− z(s)

∣∣ds
s

6
K|Z|
1− L

(log t)γ−1
m∑
i=1

ci HI
α
1+

∣∣x(τi)− z(τi)
∣∣ = 0.

Thus,
Ax = Az.
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Then we have

x(t) = Az +
1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kx(s)

ds

s
.

By integration of inequality (16) and applying Lemma 9, we obtain∣∣∣∣∣z(t)−Az − 1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kz(s)

ds

s

∣∣∣∣∣
6

(
Z(mc)(log b)α+γ−1

Γ(α+ 1)
+

(log b)α

Γ(α+ 1)

)
ε. (19)

For sake of brevity, we take U = Z(mc)(log b)α+γ−1/Γ(α+ 1) + (log b)α/Γ(α+ 1).
We have for any t ∈ J ,

∣∣z(t)− x(t)
∣∣ 6 ∣∣∣∣∣z(t)−Az − 1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kz(s)

ds

s

∣∣∣∣∣
+

1

Γ(α)

t∫
1

(
log

t

s

)α−1∣∣Kz(s)−Kx(s)
∣∣ds
s

6

∣∣∣∣∣z(t)−Az − 1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kz(s)

ds

s

∣∣∣∣∣
+

K

(1− L)Γ(α)

t∫
1

(
log

t

s

)α−1∣∣z(s)− x(s)
∣∣ds
s
.

By using (19) we have

∣∣z(t)− x(t)
∣∣ 6 Uε+

K

(1− L)Γ(α)

t∫
1

(
log

t

s

)α−1∣∣z(s)− x(s)
∣∣ds
s
,

and applying Lemma 10 and Remark 4, we obtain∣∣z(t)− x(t)
∣∣ 6 UEα,1

(
K

1− L
(log b)α

)
· ε

:= Cf ε,

where

Cf = UEα,1

(
K

1− L
(log b)α

)
.

Thus, system (1) is Ulam–Hyers stable.
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Theorem 4. Assume that (H3) and (13) are satisfied. Suppose that there exists an in-
creasing function ϕ ∈ C1−γ,log[J,X] and there exists λϕ > 0 such that for any t ∈ J ,

HI
α
1+ϕ(t) 6 λϕϕ(t).

Then system (1) is generalized Ulam–Hyers–Rassias stable.

Proof. Let ε > 0, and let z ∈ Cγ1−γ,log[J,X] be a function, which satisfies inequality (17),
and let x ∈ Cγ1−γ,log[J,X] be the unique solution of the following Hilfer–Hadamard IDE:

HD
α,β
1+ x(t) = f

(
t, x(t),HD

α,β
1+ x(t)

)
, t ∈ J := [1, b],

HI
1−γ
1+ x(1) = HI

1−γ
1+ z(1) =

m∑
i=1

cix(τi), τi ∈ [1, b], γ = α+ β − αβ,

where 0 < α < 1, 0 6 β 6 1.
Using Lemma 8, we obtain

x(t) = Az +
1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kx(s)

ds

s
,

where

Az =
Z

Γ(α)
(log t)γ−1

m∑
i=1

ci

τi∫
1

(
log

τi
s

)α−1
Kz(s)

ds

s
.

By integration of (17) we obtain∣∣∣∣∣z(t)−Az − 1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kz(s)

ds

s

∣∣∣∣∣
6

ε

Γ(α)

t∫
1

(
log

t

s

)α−1
ϕ(s)

ds

s
6
(
Z(log b)γ−1(mc) + 1

)
ελϕϕ(t). (20)

For sake of brevity, we take U = Z(log b)γ−1(mc) + 1.
On the other hand, we have

∣∣z(t)− x(t)
∣∣ 6 ∣∣∣∣∣z(t)−Az − 1

Γ(α)

t∫
1

(
log

t

s

)α−1
Kz(s)

ds

s

∣∣∣∣∣
+

K

(1− L)Γ(α)

t∫
1

(
log

t

s

)α−1∣∣z(s)− x(s)
∣∣ds
s
.
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By using (20) we have

∣∣z(t)− x(t)
∣∣ 6 Uελϕϕ(t) +

K

(1− L)Γ(α)

t∫
1

(
log

t

s

)α−1∣∣z(s)− x(s)
∣∣ds
s
,

and applying Lemma 10 and Remark 4, we obtain

∣∣z(t)− x(t)
∣∣ 6 Uελϕϕ(t)Eα,1

(
K

1− L
(log b)α

)
, t ∈ [1, b].

Thus, system (1) is generalized Ulam–Hyers–Rassias stable. The proof is completed.

5 An example

As an application of our results, we consider the following problem of Hilfer–Hadamard
IDE:

HD
α,β
1+ x(t) =

e−(log t)

(9 + elog t)

[
|x(t)|

1 + |x(t)|
+
|HDα,β

1+ x(t)|
1 + |HDα,β

1+ x(t)|

]
, t ∈ J := [1, e], (21)

HI
1−γ
1+ = 2x

(
3

2

)
, γ = α+ β − αβ. (22)

Notice that this problem is a particular case of (1), where α = 2/3, β = 1/2, and
choose γ = 5/6.

Set

f(t, u, v) =
e−(log t)

(9 + elog t)

[
u

1 + u
+

v

1 + v

]
for any u, v ∈ X.

Clearly, the function f satisfies the condition of Theorem 1.
For any u, v, u, v ∈ X and t ∈ J ,∣∣f(t, u, v)− f(t, u, v)

∣∣ 6 1

10

∣∣u− u∣∣+
1

10
|v − v|.

Hence, condition (H3) is satisfied with K = L = 1/10.
Thus, from (13) we have

K

(1− L)Γ(α)
B(γ, α)

(
|Z|

m∑
i=1

ci(log τi)
α+γ−1 + (log b)α

)
< 1,

where |Z| = 0.8959. It follows from Theorem 2 that problem (21)–(22) has a unique
solution.

From the above example the existence and Ulam–Hyers stability of Hilfer–Hadamard-
type IDE with nonlocal condition are verified by Theorems 1 and 3.
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