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1 Introduction

Quaternion, as a supercomplex number, was discovered by W.R. Hamilton in 1943, and
it has been shown that the quaternion is with expansive potential for future development
in three-dimensional and four-dimensional data processing. In three-dimensional space,
for example, the spatial rotation could be described tersely and efficiently with the quater-
nion [22]. As its extensively application prospects are revealed, plenty of scholars from
different areas, such as quantum mechanics, attitude control, computer, and so forth, show
extreme enthusiasm to the quaternion and its applications [2, 14, 15, 35].

Real-valued neural networks (RVNNs) have been successfully applied in secure com-
munication, information processing, engineer optimization, automatic control engineer-
ing, and other areas. Correspondingly, numerous meaningful results have been reported
[1, 4, 5, 9, 10, 29, 31, 36, 45–47]. In order to ensure the fixed-time synchronization for
memristive neural networks, Cao and Li proposed some control strategies to achieve
desired performance in [9]. The multistability of delayed competitive neural networks was
studied, and some delay-independent criteria were established to ascertain the existence
and stability of multi-equilibria [36]. Based on Halanay inequality, Yang et al. provided
some sufficient criteria for the stability of discrete neural networks in [46]. However,
RVNNs have its own limitations, such as the detection of symmetry problem cannot be
resolved by a real-valued neuron, whereas it can be well solved by a complex-valued
neuron [23]. In addition, the problem involving with ultrasonic wave, electromagnetic
processing, quantum wave can be also well resolved by the complex number. Therefore,
the performance of complex-valued neural networks (CVNNs) is more preferable than
that of RVNNs in practical application with complex signals, and CVNNs have captured
plenty of attentions from different areas [6,16,18,20,23,25,38,41,43,50]. By virtue of Ha-
lanay inequality and matrix measure approach, some sufficient criteria were presented to
guarantee CVNNs be exponentially stable with different activation functions [16]. Based
on the energy minimization method and local inhibition, Zhou and Song have investigated
the complete stability of delayed CVNNs [50], and sufficient conditions were given out
in the form of LMIs. Bao et al. have discussed the drive-response synchronization of
fractional-order CVNNs, criteria were established by designing a delay feedback con-
troller [6]. The Lagrange stability of CVNNs was considered [43], some sufficient condi-
tions were obtained by using Lyapunov theory. Analogously, neural networks along with
quaternion should be with better performs and wider applications than both CVNNs and
RVNNs due to the quaternion as an extension of plurality. In fact, the three-dimensional
and four-dimensional data can be expressed as an entirety, and this is more truly in
modeling of practical application, and quaternion-valued neural networks (QVNNs) bring
forth at the right time. The states, activation functions, connection weights, and input of
QVNNs take values as quaternions, quaternion vectors, and quaternion matrices. Increas-
ing scholars are devoted to investigating dynamical behavior of QVNNs for its extensive
application prospects [3,8,21,32,33,39,40,44]. The quaternionic multilayer perceptrons
were employed to predict the chaotic time series, and the better performances along
with smaller complexity of quaternionic multilayer perceptrons than those of CVNNs
were also verified in [3]. As one of applications of QVNNs, the optimum separation of
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polarized signals was achieved, and better performance of separation based on QVNNs
was shown by simulation results [8]. The problem of color image compression was well
resolved by QVNNs along with BP algorithm, while it cannot be done by RVNNs with BP
algorithm [21]. The instantaneously trained neural networks were discussed in [39], and
obtained results showed that quaternion encoding can greatly reduce the sizes of networks.
Some sufficient criteria were given out to ensure the µ-stability of QVNNs [33, 40].
Song et al. have investigated the stability and robust stability for delayed QVNNs by
homeomorphic theorem and inequality technique [12, 13]. Based on matrix measure and
Halanay inequality, Liu et al. considered the exponential stability of delayed QVNNs, and
several criteria were presented in [32, 48]. Several criteria have been provided to ensure
the boundedness and periodicity of discrete-time QVNNs [19]. The dissipativity analysis
for delayed QVNNs was conducted in [44], and some algebraic criteria ascertaining the
global dissipativity were proposed by some analytic techniques.

As is known to us all, the stability is pivotal to various applications of neural networks,
and it is the precondition of applications in optimization problems, associative memory,
and so on. Therefore, it is not only important but also necessary to study stability of neural
networks, and many excellent results have been published [11, 17, 24, 26–28, 30, 34, 37,
42, 49]. The existence and uniqueness of the equilibrium of fractional-order CVNNs was
discussed via contracting mapping principle [49], and several delay-dependent conditions
were derived. Based on homeomorphism theory and Lyapunov function, the existence
and stability of equilibrium for several neural networks were considered in [11, 40, 42].
A novelty approach called as the nonlinear measure approach was employed to discuss
the stability of Hopfield neural networks [37]. Since then, the nonlinear measure method
was employed to discuss the stability problem of neural networks [17,26,28]. Gong et al.
have discussed the asymptotic stability of CVNNs, and sufficient criteria were obtained in
the form of LMIs by using the nonlinear measure approach [17]. Based on the nonlinear
measure approach, some delay-independent conditions were established to ascertain the
stability of delayed neural networks [26]. The robust stability of inertial Cohen–Grossberg
neural networks was discussed by using the nonlinear measure approach and Halanay
inequality [28]. To the best of our knowledge, however, only few results if not none have
discussed the stability of delayed QVNNs with nonlinear measure approach, which is one
of our motivations to carry out this research.

Motivated by the aforementioned analysis, this paper aims to discuss the stability of
delayed QVNNs. Compared to reported results, the main contributions of this manuscript
can be summarized as follow:

(i) The existence and uniqueness of the equilibrium point of QVNN are discussed
with nonlinear measure approach. Compared to some existing results, our results
are with less conservatism.

(ii) The globally exponential stability of QVNNs is discussed by disassembling the
QVNNs into four equivalently real-valued systems, and the estimation of expo-
nential convergence can be established with our results.

(iii) The obtained criteria are given out in the shape of LMIs, which can be easily
checked by the LMI toolbox in MATLAB.
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The rest part is arrayed as follows. Model descriptions and preliminaries are presented
in Section 2. In Section 3, the stability analysis for QVNNs is demonstrated via nonlinear
measure approach. Two comparison examples are demonstrated to show the validity and
less conservatism of our results in Section 4. Section 5 gives out conclusions as well as
some future works.

2 Preliminaries

Firstly, some definitions and notations are recapitulated. The quaternion is a kind of super-
complex number involving a real part and three imaginary parts i, j, k, and a quaternion x
can be denoted as

x = x(r) + x(i)i+ x(j)j + x(k)k,

where x(r), x(i), x(j), x(k) ∈ R, R represents the set of real number, and i, j, k satisfy the
Hamilton rule, i.e.,

i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

Obviously, the quaternion is a noncommutative division algebra. The set of quaternion is
denoted by Q, i.e., Q = {x(r) + x(i)i + x(j)j + x(k)k | x(r), x(i), x(j), x(k) ∈ R}. Qn
denotes the n-dimensional quaternion space, and the conjugate of quaternion x is denoted
as x̄ = x(r) − x(i)i− x(j)j − x(k)k. The modulus of x ∈ Q is defined as

|x| =
√
xx̄ =

√
(x(r))2 + (x(i))2 + (x(j))2 + (x(k))2,

and the norm of quaternion vector x = (x1, x2, . . . , xn)T is given as

‖x‖ =

(
n∑
p=1

|xp|2
)1/2

.

ϕ ∈ C([−τ, 0];Qn) represents a class of continuous mapping set from [t0 − τ, t0] to Qn.
For ϕ ∈ C([t0 − τ, t0];Qn), ‖ϕ‖ .= supt0−τ6s6t0 |ϕ(s)|.

In this article, considering the delayed QVNN as follow:

q̇(t) = −Cq(t) +Af
(
q(t)

)
+Bf

(
q(t− τ)

)
+ U, (1)

where q(t) ∈ Qn is the state vector; C = diag{c1, c2, . . . , cn} > 0 denotes the self-
feedback matrix; A,B ∈ Qn×n are the link weights matrices; f(·) is the vector activation
function; τ is the time delay; U ∈ Qn is an external input vector. The initial condition is
given as q(s) = ϕ(s), s ∈ [t0 − τ, t0].

Since q(t) = q(r)(t)+ iq(i)(t)+jq(j)(t)+kq(k)(t), q(r)(t), q(i)(t), q(j)(t), q(k)(t) ∈
Rn, and denoting f(tτ )) = f(t − τ), then the QVNN (1) can be separated into four
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RVNNs as

q̇(r)(t) = −Cq(r)(t) +A(r)f (r)
(
q(r)(t)

)
−A(i)f (i)

(
q(i)(t)

)
−A(j)f (j)

(
q(j)(t)

)
−A(k)f (k)

(
q(k)(t)

)
+B(r)f (r)

(
q(r)(tτ )

)
−B(i)f (i)

(
q(i)(tτ )

)
−B(j)f (j)

(
q(j)(tτ )

)
−B(k)f (k)

(
q(k)(tτ )

)
+ U (r),

q̇(i)(t) = −Cq(i)(t) +A(r)f (i)
(
q(i)(t)

)
+A(i)f (r)

(
q(r)(t)

)
+A(j)f (k)

(
q(k)(t)

)
−A(k)f (j)

(
q(j)(t)

)
+B(r)f (i)

(
q(i)(tτ )

)
+B(i)f (r)

(
q(r)(tτ )

)
+B(j)f (k)

(
q(k)(tτ )

)
−B(k)f (j)

(
q(j)(tτ )

)
+ U (i),

q̇(j)(t) = −Cq(j)(t) +A(r)f (j)
(
q(j)(t)

)
+A(j)f (r)

(
q(r)(t)

)
−A(i)f (k)

(
q(k)(t)

)
+A(k)f (i)

(
q(i)(t)

)
+B(r)f (j)

(
q(j)(tτ )

)
+B(j)f (r)

(
q(r)(tτ )

)
−B(i)f (k)

(
q(k)(tτ )

)
+B(k)f (i)

(
q(i)(tτ )

)
+ U (j),

q̇(k)(t) = −Cq(k)(t) +A(r)f (k)
(
q(k)(t)

)
+A(k)f (r)

(
q(r)(t)

)
+A(i)f (j)

(
q(j)(t)

)
−A(j)f (i)

(
q(i)(t)

)
+B(r)f (k)

(
q(k)(tτ )

)
+B(k)f (r)

(
q(r)(tτ )

)
+B(i)f (j)

(
q(j)(tτ )

)
−B(j)f (i)

(
q(i)(tτ )

)
+ U (k),

which can be written as

Q̇(t) = −C1Q(t) +A1f1
(
Q(t)

)
+A2f2

(
Q(t)

)
+A3f3

(
Q(t)

)
+A4f4

(
Q(t)

)
+B1f1

(
Q(t− τ)

)
+B2f2

(
Q(t− τ)

)
+B3f3

(
Q(t− τ)

)
+B4f4

(
Q(t− τ)

)
+ U1, (2)

where

Q(t) =
((
q(r)(t)

)T
,
(
q(i)(t)

)T
,
(
q(j)(t)

)T
,
(
q(k)(t)

)T)T
, C1 = diag{C,C,C,C},

A1 = diag
{
A(r), A(i), A(j), A(k)

}
, A2 = diag

{
−A(i), A(r), A(k),−A(j)

}
,

A3 = diag
{
−A(j),−A(k), A(r), A(i)

}
, A4 = diag

{
−A(k), A(j),−A(i), A(r)

}
,

B1 = diag
{
B(r), B(i), B(j), B(k)

}
, B2 = diag

{
−B(i), B(r), B(k),−B(j)

}
,

B3 = diag
{
−B(j),−B(k), B(r), B(i)

}
, B4 = diag

{
−B(k), B(j),−B(i), B(r)

}
,

f1
(
Q(t)

)
=
((
f (r)

(
q(r)(t)

))T
,
(
f (r)

(
q(r)(t)

))T
,
(
f (r)

(
q(r)(t)

))T
,
(
f (r)

(
q(r)(t)

))T)T
,

f2
(
Q(t)

)
=
((
f (i)
(
q(i)(t)

))T
,
(
f (i)
(
q(i)(t)

))T
,
(
f (i)
(
q(i)(t)

)))T
,
(
f (i)
(
q(i)(t)

))T)T
,

f3
(
Q(t)

)
=
((
f (j)

(
q(j)(t)

))T
,
(
f (j)

(
q(j)(t)

))T
,
(
f (j)

(
q(j)(t)

)))T
,
(
f (j)

(
q(j)(t)

))T)T
,

f4
(
Q(t)

)
=
((
f (k)

(
q(k)(t)

))T
,
(
f (k)

(
q(k)(t)

))T
,
(
f (k)

(
q(k)(t)

)))T
,
(
f (k)

(
q(k)(t)

))T)T
,

U1 =
((
U (r)

)T
,
(
U (i)

)T
,
(
U (j)

)T
,
(
U (k)

)T)T
.
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An equilibrium point of QVNNs q̇(t) = −Cq(t) +Af(q(t)) +Bf(q(t− τ)) + U is
a constant quaternion vector q̂ satisfying −Cq̂ + Af(q̂) + Bf(q̂) + U = 0. Obviously,
the QVNN (1) shares the same equilibrium point and identical dynamics characters with
system (2) by regarding q(t) = q(r)(t) + iq(i)(t) + jq(j)(t) + kq(k)(t) as an vector
Q(t) = ((q(r)(t))T, (q(i)(t))T, (q(j)(t))T, (q(k)(t))T)T. Therefore, one can investigate
the existence and uniqueness of the equilibrium of system (2) instead of system (1).

Assumption H. Let q = q(r) + iq(i) + jq(j) + kq(k), q(r), q(i), q(j), q(k) ∈ Rn, the
activation function fp(q) is of the following form:

fp(q) = f (r)p

(
q(r)
)

+ if (i)p
(
q(i)
)

+ jf (j)p

(
q(j)
)

+ kf (k)p

(
q(k)

)
, p = 1, 2, . . . , n,

where the continuous function f (d)p : R→ R. There exist positive constants l(d)p such that∣∣f (d)p (x)− f (d)p (y)
∣∣ 6 l(d)p |x− y|, d = r, i, j, k; p = 1, 2, . . . , n,

and let
Γ1 = diag

{(
l
(r)
1

)2
,
(
l
(r)
2

)2
, . . . ,

(
l(r)n
)2}

,

Γ2 = diag
{(
l
(i)
1

)2
,
(
l
(i)
2

)2
, . . . ,

(
l(i)n
)2}

,

Γ3 = diag
{(
l
(j)
1

)2
,
(
l
(j)
2

)2
, . . . ,

(
l(j)n
)2}

,

Γ4 = diag
{(
l
(k)
1

)2
,
(
l
(k)
2

)2
, . . . ,

(
l(k)n

)2}
.

Definition 1. (See [32].) The unique equilibrium point Q̃ of QVNN (1) is said to be
globally exponentially stable if there exist two positive constants M , α such that∣∣Q(t)− Q̃

∣∣ 6Me−α(t−t0), t > t0.

Definition 2. (See [26].) Let Ω be an open set of Rn, and G : Ω → Rn is an operator.
The constant

mΩ
.
= sup
x,y∈Ω, x6=y

〈G(x)−G(y), x− y〉
‖x− y‖22

is said to be the nonlinear measure of G on Ω with the Euclidean norm ‖·‖2.

Lemma 1. (See [26].) If mΩ(G) 6 0, then G is an injective mapping on Ω. Moreover, if
Ω = Rn, then G is a homeomorphism of Rn.

Lemma 2. (See [7].) The LMI S =
( S11 S12

ST
12 S22

)
< 0 with S11 = ST

11, S22 = ST
22 is

equivalent to one of the following conditions:

(i) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0;

(ii) S11 < 0, S22 − ST
12S
−1
11 S12 < 0.

Lemma 3. Let x, y ∈ Rn, then, for any matrix S > 0, 2xTy 6 xTSx+ yTS−1y.
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3 Main results

Theorem 1. If Assumption H holds and there exist appropriate dimension positive defined
matrix P and diagonal matrices Sp > 0, p = 1, 2, . . . , 8, such thatΞ < 0, then QVNN (1)
has a unique equilibrium point, and it is globally asymptotically stable, where

Ξ =



Π11 PA1 PA2 PA3 PA4 PB1 PB2 PB3 PB4

AT
1 P Π22 0 0 0 0 0 0 0

AT
2 P 0 Π33 0 0 0 0 0 0

AT
3 P 0 0 Π44 0 0 0 0 0

AT
4 P 0 0 0 Π55 0 0 0 0

BT
1 P 0 0 0 0 Π66 0 0 0

BT
2 P 0 0 0 0 0 Π77 0 0

BT
3 P 0 0 0 0 0 0 Π88 0

BT
4 P 0 0 0 0 0 0 0 Π99


,

Π11 = −PC1 − C1P + 4Ω1 + 4Ω2 + 4Ω3 + 4Ω4 + 4Ω5 + 4Ω6 + 4Ω7 + 4Ω8,

Πp+1,p+1 = −I4 ⊗ Sp, p = 1, 2, . . . , 8;

Ωp =


SpΓp 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , Ω4+p =


S4+pΓp 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , p = 1, 2, 3, 4.

Proof. Consider the operator G : R4n → R4n as follows:

G(Q) = −C1Q+A1f1(Q) +A2f2(Q) +A3f3(Q) +A4f4(Q)

+B1f1(Q) +B2f2(Q) +B3f3(Q) +B4f4(Q) + U1, Q ∈ R4n.

Then we introduce the following differential system:

Ḣ(t) = PG
(
H(t)

)
. (3)

Obviously, system (2) shares the same equilibrium point with system (3). Therefore,
one can discuss the existence and uniqueness of the equilibrium point of system (3)
instead of (2). According to Lemma 1, the existence and uniqueness can be ensured by
proving mΩ(PG) 6 0 for two different vectors Q = ((q(r))T, (q(i))T, (q(j))T, (q(k))T)T

and H = ((h(r))T, (h(i))T, (h(j))T, (h(k))T)T. Considering the inner product 〈PG(Q)−
PG(H), Q−H〉, one can get〈

PG(Q)− PG(H), Q−H
〉

= (Q−H)TP
(
G(Q)−G(H)

)
= (Q−H)TP

(
−C1(Q−H) +A1

(
f1(Q)− f1(H)

)
+A2

(
f2(Q)− f2(H)

)
+A3

(
f3(Q)− f3(H)

)
+A4

(
f4(Q)− f4(H)

)
+B1

(
f1(Q)− f1(H)

)
+B2

(
f2(Q)− f2(H)

)
+B3

(
f3(Q)− f3(H)

)
+B4

(
f4(Q)− f4(H)

))
Nonlinear Anal. Model. Control, 23(3):361–379
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= −(Q−H)TPC1(Q−H) + (Q−H)TPA1

(
f1(Q)− f1(H)

)
+ (Q−H)TPA2

(
f2(Q)− f2(H)

)
+ (Q−H)TPA3

(
f3(Q)− f3(H)

)
+ (Q−H)TPA4

(
f4(Q)− f4(H)

)
+ (Q−H)TPB1

(
f1(Q)− f1(H)

)
+ (Q−H)TPB2

(
f2(Q)− f2(H)

)
+ (Q−H)TPB3

(
f3(Q)− f3(H)

)
+ (Q−H)TPB4

(
f4(Q)− f4(H)

)
. (4)

According to Lemma 3 and Assumption H, the following inequality holds with a pos-
itive diagonal matrix S1 ∈ Rn×n:

2(Q−H)TPA1

(
f1(Q)− f1(H)

)
6 (Q−H)TPA1

(
I4 ⊗ S−11

)
AT

1 P (Q−H) + 4

n∑
p=1

s1p
(
f (r)p

(
Q(r)
p

)
−f (r)p

(
H(r)
p

))2
6 (Q−H)TPA1

(
I4 ⊗ S−11

)
AT

1 P (Q−H) + 4

n∑
p=1

s1p
(
l(r)p
)2∣∣Q(r)

p )−H(r)
p

∣∣2
= (Q−H)TPA1

(
I4 ⊗ S−11

)
AT

1 P (Q−H) + 4(Q−H)TΩ1(Q−H). (5)

Similarly, the following inequalities are also true with positive diagonal matrices
S2, S3, S4 ∈ Rn×n:

2(Q−H)TPA2

(
f2(Q)− f2(H)

)
6 (Q−H)TPA2

(
I4 ⊗ S−12

)
AT

2 P (Q−H) + 4(Q−H)TΩ2(Q−H), (6)

2(Q−H)TPA3

(
f3(Q)− f3(H)

)
6 (Q−H)TPA3

(
I4 ⊗ S−13

)
AT

3 P (Q−H) + 4(Q−H)TΩ3(Q−H), (7)

2(Q−H)TPA4

(
f4(Q)− f4(H)

)
6 (Q−H)TPA4

(
I4 ⊗ S−14

)
AT

4 P (Q−H) + 4(Q−H)TΩ4(Q−H), (8)

2(Q−H)TPB1

(
f1(Q)− f1(H)

)
6 (Q−H)TPB1

(
I4 ⊗ S−12

)
BT

1 P (Q−H) + 4(Q−H)TΩ5(Q−H), (9)

2(Q−H)TPB2

(
f2(Q)− f2(H)

)
6 (Q−H)TPB2

(
I4 ⊗ S−12

)
BT

2 P (Q−H) + 4(Q−H)TΩ6(Q−H), (10)

2(Q−H)TPB3

(
f3(Q)− f3(H)

)
6 (Q−H)TPB3

(
I4 ⊗ S−13

)
BT

3 P (Q−H) + 4(Q−H)TΩ7(Q−H), (11)

2(Q−H)TPB4

(
f4(Q)− f4(H)

)
6 (Q−H)TPB4(I4 ⊗ S−14 )BT

4 P (Q−H) + 4(Q−H)TΩ8(Q−H). (12)
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Combining (4)–(12), one can easily get〈
PG(Q)− PG(H), Q−H

〉
6

1

2
(Q−H)T

(
−PC1 − C1P + 4Ω1 + 4Ω2 + 4Ω3 + 4Ω4 + 4Ω5 + 4Ω6 + 4Ω7

+ 4Ω8 + PA1

(
I4 ⊗ S−11

)
AT

1 P + PA2

(
I4 ⊗ S−12

)
AT

2 P + PA3

(
I4 ⊗ S−13

)
AT

3 P

+ PA4

(
I4 ⊗ S−14

)
AT

4 P + PB1

(
I4 ⊗ S−15

)
BT

1 P + PB2

(
I4 ⊗ S−16

)
BT

2 P

+ PB3

(
I4 ⊗ S−17

)
BT

3 P + PB4

(
I4 ⊗ S−18

)
BT

4 P
)
(Q−H).

In view of Ξ < 0, the following inequality can be derived by employing Lemma 2
continuously: 〈

PG(Q)− PG(H), Q−H
〉
< 0 for Q 6= H.

According to the definition of nonlinear measure, one gets mR4n(PG) < 0. Correspond-
ingly, the differential system (3) has a unique equilibrium point, which is ascertained
by the Lemma 1. Therefore, the existence and uniqueness of the equilibrium point of
QVNN (1) can also be guaranteed.

Without loss of generality, the unique equilibrium point can be denoted as Q̃ =
(q̃(r), q̃(i), q̃(j), q̃(k)). Resorting to the substitution x(t) = Q(t)−Q̃, the following system
can be obtained from (2):

ẋ(t) = −C1x(t) +A1f̃1
(
x(t)

)
+A2f̃2

(
x(t)

)
+A3f̃3

(
x(t)

)
+A4f̃4

(
x(t)

)
+B1f̃1

(
x(t−τ)

)
+B2f̃2

(
x(t−τ)

)
+B3f̃3

(
x(t−τ)

)
+B4f̃4

(
x(t−τ)

)
, (13)

where

f̃1
(
x(t)

)
= f1

(
x(t) + Q̃

)
− f1(Q̃), f̃2

(
x(t)

)
= f2

(
x(t) + Q̃

)
− f2(Q̃),

f̃3
(
x(t)

)
= f3

(
x(t) + Q̃

)
− f3(Q̃), f̃4

(
x(t)

)
= f4

(
x(t) + Q̃

)
− f4(Q̃),

f̃1
(
x(t− τ)

)
= f1

(
x(t− τ) + Q̃

)
− f1(Q̃),

f̃2
(
x(t− τ)

)
= f2

(
x(t− τ) + Q̃

)
− f2(Q̃),

f̃3
(
x(t− τ)

)
= f3

(
x(t− τ) + Q̃

)
− f3(Q̃),

f̃4
(
x(t− τ)

)
= f4

(
x(t− τ) + Q̃

)
− f4(Q̃).

Considering the Lyapunov functional as

V
(
x(t)

)
= xT(t)Px(t) +

t∫
t−τ

f̃T1
(
x(s)

)
(I4 ⊗ S5)f̃1

(
x(s)

)
ds

+

t∫
t−τ

f̃T2
(
x(s)

)
(I4 ⊗ S6)f̃2

(
x(s)

)
ds+

t∫
t−τ

f̃T3
(
x(s)

)
(I4 ⊗ S7)f̃3

(
x(s)

)
ds

+

t∫
t−τ

f̃T4
(
x(s)

)
(I4 ⊗ S8)f̃4

(
x(s)

)
ds.
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Calculating the derivative of V (x(t)), one can derive

dV (x(t))

dt

∣∣∣∣
(13)

= 2xT(t)P
(
−C1x(t) +A1f̃1

(
x(t)

)
+A2f̃2

(
x(t)

)
+A3f̃3

(
x(t)

)
+A4f̃4

(
x(t)

)
+B1f̃1

(
x(t− τ)

)
+B2f̃2

(
x(t− τ)

)
+B3f̃3

(
x(t−τ)

)
+B4f̃4

(
x(t−τ)

))
+ f̃T1

(
x(t)

)
(I4 ⊗ S5)f̃1

(
x(t)

)
− f̃T1

(
x(t−τ)

)
(I4 ⊗ S5)f̃1

(
x(t−τ)

)
+ f̃T2

(
x(t)

)
(I4 ⊗ S6)f̃2

(
x(t)

)
− f̃T2

(
x(t−τ)

)
(I4 ⊗ S6)f̃2

(
x(t−τ)

)
+ f̃T3

(
x(t)

)
(I4 ⊗ S7)f̃3

(
x(t)

)
− f̃T3

(
x(t−τ)

)
(I4 ⊗ S7)f̃3

(
x(t−τ)

)
+ f̃T4

(
x(t)

)
(I4 ⊗ S8)f̃4

(
x(t)

)
− f̃T4

(
x(t−τ)

)
(I4 ⊗ S8)f̃4

(
x(t−τ)

)
6 −2xT(t)PC1x(t) + xT(t)PA1

(
I4 ⊗ S−11

)
AT

1 Px(t)

+ f̃T1
(
x(t)

)
(I4 ⊗ S1)f̃1

(
x(t)

)
+ xT(t)PA2

(
I4 ⊗ S−12

)
AT

2 Px(t)

+ f̃T2
(
x(t)

)
(I4 ⊗ S2)f̃2

(
x(t)

)
+ xT(t)PA3

(
I4 ⊗ S−13

)
AT

3 Px(t)

+ f̃T3
(
x(t)

)
(I4 ⊗ S3)f̃3

(
x(t)

)
+ xT(t)PA4

(
I4 ⊗ S−14

)
AT

4 Px(t)

+ f̃T4
(
x(t)

)
(I4 ⊗ S4)f̃4

(
x(t)

)
+ xT(t)PB1

(
I4 ⊗ S−15

)
BT

1 Px(t)

+ xT(t)PB2

(
I4 ⊗ S−16

)
BT

2 Px(t) + xT(t)PB3

(
I4 ⊗ S−17

)
BT

3 Px(t)

+ xT(t)PB4

(
I4 ⊗ S−18

)
BT

4 Px(t) + f̃T1
(
x(t)

)
(I4 ⊗ S5)f̃1

(
x(t)

)
+ f̃T2

(
x(t)

)
(I4 ⊗ S6)f̃2

(
x(t)

)
+ f̃T3

(
x(t)

)
(I4 ⊗ S7)f̃3

(
x(t)

)
+ f̃T4

(
x(t)

)
(I4 ⊗ S8)f̃4

(
x(t)

)
. (14)

Based on Assumption H, the following inequalities can be obtained:

f̃T1
(
x(t)

)
(I4 ⊗ S1)f̃1

(
x(t)

)
6 xT(t)Ω1x(t),

f̃T2
(
x(t)

)
(I4 ⊗ S2)f̃2

(
x(t)

)
6 xT(t)Ω2x(t),

f̃T3
(
x(t)

)
(I4 ⊗ S3)f̃3

(
x(t)

)
6 xT(t)Ω3x(t),

f̃T4
(
x(t)

)
(I4 ⊗ S4)f̃4

(
x(t)

)
6 xT(t)Ω4x(t),

f̃T1
(
x(t)

)
(I4 ⊗ S5)f̃1

(
x(t)

)
6 xT(t)Ω5x(t),

f̃T2
(
x(t)

)
(I4 ⊗ S6)f̃2

(
x(t)

)
6 xT(t)Ω6x(t),

f̃T3
(
x(t)

)
(I4 ⊗ S7)f̃3

(
x(t)

)
6 xT(t)Ω7x(t),

f̃T4
(
x(t)

)
(I4 ⊗ S8)f̃4

(
x(t)

)
6 xT(t)Ω8x(t).

(15)
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Substituting (15) to (14), one gets

V̇
(
x(t)

)
6 xT(t)

(
−PC1 − C1P + 4Ω1 + 4Ω2

+ 4Ω3 + 4Ω4 + 4Ω5 + 4Ω6 + 4Ω7 + 4Ω8

+ PA1

(
I4 ⊗ S−11

)
AT

1 P + PA2

(
I4 ⊗ S−12

)
AT

2 P

+ PA3

(
I4 ⊗ S−13

)
AT

3 P + PA4

(
I4 ⊗ S−14

)
AT

4 P

+ PB1

(
I4 ⊗ S−15

)
BT

1 P + PB2

(
I4 ⊗ S−16

)
BT

2 P

+ PB3

(
I4 ⊗ S−17

)
BT

3 P + PB4

(
I4 ⊗ S−18

)
BT

4 P
)
x(t).

According to Ξ < 0 and Lemma 2, one yields V̇ (x(t)) < 0 for all x(t) 6= 0.
V̇ (x(t)) = 0 if and only if x(t) = 0, and ‖V (x(t))‖ → ∞ as ‖x(t)‖ → ∞. Hence,
the equilibrium point of system (2) is globally asymptotically stable. Correspondingly,
the equilibrium point of QVNN (1) is globally asymptotically stable.

Theorem 2. If Assumption H holds and there exist appropriate dimension positive ma-
trix P , diagonal matrices Sp > 0, p = 1, 2, . . . , 8, and positive constant α such that
Ξ̂ < 0, then QVNN (1) has a unique equilibrium point, and the equilibrium point of
system (2) is globally exponential stable, where

Ξ̂ =



Π̂11 PA1 PA2 PA3 PA4 PB1 PB2 PB3 PB4

AT
1 P Π22 0 0 0 0 0 0 0

AT
2 P 0 Π33 0 0 0 0 0 0

AT
3 P 0 0 Π44 0 0 0 0 0

AT
4 P 0 0 0 Π55 0 0 0 0

BT
1 P 0 0 0 0 Π66 0 0 0

BT
2 P 0 0 0 0 0 Π77 0 0

BT
3 P 0 0 0 0 0 0 Π88 0

BT
4 P 0 0 0 0 0 0 0 Π99


,

Π̂11 = αP − PC1 − C1P + 4Ω1 + 4Ω2 + 4Ω3 + 4eατΩ4

+ 4Ω5 + 4eατΩ6 + 4eατΩ7 + 4eατΩ8,

Πp+1,p+1 = −I4 ⊗ Sp, p = 1, 2, . . . , 8;

Ωp =


SpΓp 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , Ω4+p =


S4+pΓp 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , p = 1, 2, 3, 4.

Proof. According to Lemma 2, the following inequality can be derived with the condition
Ξ̂ < 0:

αP − PC1 − PC1 + 4Ω1 + 4Ω2 + 4Ω3

+ 4Ω4 + 4eατΩ5 + 4eατΩ6 + 4eατΩ7 + 4eατΩ8
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+ PA1

(
I4 ⊗ S−11

)
AT

1 P + PA2

(
I4 ⊗ S−12

)
AT

2 P + PA3

(
I4 ⊗ S−13

)
AT

3 P

+ PA4

(
I4 ⊗ S−14

)
AT

4 P + PB1

(
I4 ⊗ S−15

)
BT

1 P + PB2

(
I4 ⊗ S−16

)
BT

2 P

+ PB3

(
I4 ⊗ S−17

)
BT

3 P + PB4

(
I4 ⊗ S−18

)
BT

4 P < 0. (16)

Let eατ = 1 + β. Obviously, β > 0 as α > 0. Correspondingly, inequality (16) can
be rewritten as

αP − PC1 − C1P + 4Ω1 + 4Ω2 + 4Ω3 + 4Ω4

+ 4(1 + β)Ω5 + 4(1 + β)Ω6 + 4(1 + β)Ω7 + 4(1 + β)Ω8

+ PA1

(
I4 ⊗ S−11

)
AT

1 P + PA2

(
I4 ⊗ S−12

)
AT

2 P + PA3

(
I4 ⊗ S−13

)
AT

3 P

+ PA4

(
I4 ⊗ S−14

)
AT

4 P + PB1

(
I4 ⊗ S−15

)
BT

1 P + PB2

(
I4 ⊗ S−16

)
BT

2 P

+ PB3

(
I4 ⊗ S−17

)
BT

3 P + PB4

(
I4 ⊗ S−18

)
BT

4 P < 0. (17)

Ξ < 0 can be ascertained by inequality (17) and Lemma 2 for α > 0, P > 0, Ωi > 0,
i = 5, 6, 7, 8. Consequently, the conditions in Theorem 1 are satisfied, which implies that
the existence and uniqueness of the equilibrium point can be ascertained.

Next, the exponential stability will be investigated with the following Lyapunov func-
tional:

V (t) = eαtxT(t)Px(t) +

t∫
t−τ

f̃T1
(
x(s)

)
(I4 ⊗ S5)f̃1

(
x(s)

)
eα(s+τ) ds

+

t∫
t−τ

f̃T2
(
x(s)

)
(I4 ⊗ S6)f̃2

(
x(s)

)
eα(s+τ) ds

+

t∫
t−τ

f̃T3
(
x(s)

)
(I4 ⊗ S7)f̃3

(
x(s)

)
eα(s+τ) ds

+

t∫
t−τ

f̃T4
(
x(s)

)
(I4 ⊗ S8)f̃4

(
x(s)

)
eα(s+τ) ds.

Calculating the derivative of V (x(t)), one can derive

dV (x(t))

dt

∣∣∣∣
(13)

= αeαtxT(t)Px(t) + 2eαtxT(t)P
(
−C1x(t) +A1f̃1

(
x(t)

)
+A2f̃2

(
x(t)

)
+A3f̃3

(
x(t)

)
+A4f̃4

(
x(t)

)
+B1f̃1

(
x(t− τ)

)
+B2f̃2

(
x(t− τ)

)
+B3f̃3

(
x(t− τ)

)
+B4f̃4

(
x(t− τ)

))
+ eα(t+τ)f̃T1

(
x(t)

)
(I4 ⊗ S5)f̃1

(
x(t)

)
− eαtf̃1

(
x(t− τ)

)
(I4 ⊗ S5)f̃1

(
x(t− τ)

)
+ eα(t+τ)f̃2

(
x(t)

)
(I4 ⊗ S6)f̃2

(
x(t)

)
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− eαtf̃T2
(
x(t− τ)

)
(I4 ⊗ S6)f̃2

(
x(t− τ)

)
+ eα(t+τ)f̃T3

(
x(t)

)
(I4 ⊗ S7)f̃3

(
x(t)

)
− eαtf̃T3

(
x(t− τ)

)
(I4 ⊗ S7)f̃3

(
x(t− τ)

)
+ eα(t+τ)f̃T4

(
x(t)

)
(I4 ⊗ S8)f̃4

(
x(t)

)
− eαtf̃T4

(
x(t− τ)

)
(I4 ⊗ S8)f̃4

(
x(t− τ)

)
.

Similar to the proof of Theorem 1, the following inequality can be established with
Ξ̂ < 0:

V̇
(
x(t)

)
6 eαtxT(t)

(
αP − PC1 − C1P + 4Ω1 + 4Ω2 + 4Ω3

+ 4Ω4 + 4eατΩ5 + 4eατΩ6 + 4eατΩ7 + 4eατΩ8

+ PA1

(
I4 ⊗ S−11

)
AT

1 P + PA2

(
I4 ⊗ S−12

)
AT

2 P

+ PA3

(
I4 ⊗ S−13

)
AT

3 P + PA4

(
I4 ⊗ S−14

)
AT

4 P

+ PB1

(
I4 ⊗ S−15

)
BT

1 P + PB2

(
I4 ⊗ S−16

)
BT

2 P

+ PB3

(
I4 ⊗ S−17

)
BT

3 P + PB4

(
I4 ⊗ S−18

)
BT

4 P
)
x(t)

< 0.

By some sample calculations, one gets

eαtxT(t)Px(t) 6 V
(
x(t)

)
6 sup
t0−τ6s6t0

V
(
x(s)

)
,

which can result in xT(t)x(t) 6Me−αt, whereM = (supt0−τ6s6t0 V (x(s)))/λmin(P ).
Following from the definition of exponential stability, the equilibrium point of system (2)
is globally exponentially stable. Consequently, the equilibrium point of QVNN (1) is
globally exponentially stable.

Remark 1. Different from some of the existing results [11, 40, 42, 49], in which the
existence and uniqueness for the equilibrium point were investigated based on the con-
tracting mapping principle or homeomorphism theory, the nonlinear measure approach is
developed to discuss the existence and uniqueness for the equilibrium point of QVNNs.
The criteria are derived by employing the linear matrix inequality, and they can be easily
verified via the LMI toolbox in MATLAB. Furthermore, the globally exponential stability
of QVNNs can be reached with the proposal criteria.

Remark 2. The stability is one of key factors to a control system, and it is pivotal to
the various applications of neural networks. The stability of RVNNs and CVNNs have
been discussed extensively [17, 28, 37, 49]. The QVNNs are with better performance and
better application than both CVNNs and RVNNs in deal with the problem involving
three-dimensional and four-dimensional data. However, there few published literatures
concerning the dynamical behavior of QVNNs [32, 33, 44]. Therefore, it is necessary to
consider the stability of QVNNs.

4 Illustrative examples

In this section, two numerical examples will be given out to show our theoretical results
to be correct and effective.
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Example 1. Considering the following QVNN with the same parameters of Example 1
in [32]:

q̇(t) = −Cq(t) +Af
(
q(t)

)
+Bg

(
q(t− τ)

)
+ U, (18)

where

A =

(
−0.1− 0.5i− 0.1j − 0.5k 0.4 + 0.2i− 0.4j + 0.2k
−0.3 + 0.1i− 0.1j + 0.1k −0.6− 0.1i− 0.1j − 0.1k

)
,

B =

(
−0.1− 0.4i− 0.1j − 0.4k −0.4− 0.1i− 0.4j − 0.1k
−0.1− 0.1i− 0.1j − 0.1k −0.1− 0.2i− 0.1j − 0.2k

)
,

C =

(
7 0
0 2

)
, U =

(
−1− i− j − k
−2− i− 2j − k

)
,

f
(
q(t)

)
= g
(
q(t)

)
= tanh

(
q(t)

)
, τ = 3.

Let α = 3.9563, and by using the LMI toolbox in MATLAB, the solutions of Ξ̂ < 0
can be resolved as following:

P =



0.6508 −0.0022 0 0 0 0 0 0
−0.0022 0.1264 0 0 0 0 0 0

0 0 0.6568 −0.0021 0 0 0 0
0 0 −0.0021 0.1914 0 0 0 0
0 0 0 0 0.6517 −0.0028 0 0
0 0 0 0 −0.0028 0.1919 0 0
0 0 0 0 0 0 0.6569 −0.0026
0 0 0 0 0 0 −0.0026 0.4929


,

S1 =

(
3.9102 0

0 3.9102

)
, S2 =

(
4.0256 0

0 4.0256

)
,

S3 =

(
4.0264 0

0 4.0264

)
, S4 =

(
3.9102 0

0 3.9102

)
,

S5 =

(
3.8561 0

0 3.8561

)
, S6 =

(
3.7954 0

0 33.7954

)
,

S7 =

(
3.8561 0

0 3.8561

)
, S8 =

(
3.7954 0

0 3.7954

)
.

Therefore, the conditions of Theorem 1 are satisfied, the unique equilibrium point
QVNN (18) is globally exponentially stable.

Example 2. Considering the QVNN as follow:

q̇(t) = −Cq(t) +Af
(
q(t)

)
+Bg

(
q(t− τ)

)
+ U, (19)
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where

A =

(
1.2 + 0.5i− 0.4j + 0.5k 0.4 + 1.2i+ 0.4j + 1.2k
1.3 + 0.3i+ 0.6j + 0.7k 0.6 + 0.5i− 0.6j − 0.6k

)
,

B =

(
1.1− 0.5i− 0.1j − 0.4k −0.4 + 0.5i+ 1.4j + 0.5k
−1.0 + 0.9i− 1.0j + 1.2k 1.1− 1.2i− 1.1j + 1.2k

)
,

C =

(
2 0
0 2

)
, U =

(
2− 1.2i+ j + k

1 + i− 1.5j − 1.2k

)
,

f
(
q(t)

)
= g
(
q(t)

)
= tanh

(
q(t)

)
, τ = 2.7.

Let α = 3.0, and by using the LMI toolbox in MATLAB, the solutions of Ξ̂ < 0 can be
resolved as following:

P =



1.7168 −0.0097 0 0 0 0 0 0
−0.0097 1.2134 0 0 0 0 0 0

0 0 1.5342 −0.0487 0 0 0 0
0 0 −0.0487 1.3234 0 0 0 0
0 0 0 0 1.9546 1.3166 0 0
0 0 0 0 0.2198 0.1919 0 0
0 0 0 0 0 0 1.7092 0.1608
0 0 0 0 0 0 0.1608 1.4286


,

S1 =

(
20.4497 0

0 20.4497

)
, S2 =

(
20.5259 0

0 20.5259

)
,

S3 =

(
20.6120 0

0 20.6120

)
, S4 =

(
20.4497 0

0 20.4497

)
,

S5 =

(
20.7924 0

0 20.7924

)
, S6 =

(
3.7954 0

0 33.7954

)
,

S7 =

(
20.7409 0

0 20.7409

)
, S8 =

(
20.6519 0

0 20.6519

)
,

which shows that the conditions of Theorem 2 are satisfied, the unique equilibrium point
QVNN (19) is globally exponentially stable. The simulation results are shown in Fig. 1.

Remark 3. Example 1 can be solved by both results obtained in [32] and our results.
However, the exponent convergence index ω̄ obtained by Theorem 1 in [32] is less than
0.3156, while the exponent convergence index can take the value as 3.9563, which is 12.5
times that 0.3156. The simulation results [32, Fig. 1] also showed the fast convergence
rate. On the other hand, it is easy to check that parameters in Example 2 do not meet
the conditions of Theorem 1 in [32], which means that Theorem 1 in [32] is invalid to
Example 2. From this point, our results are with less conservatism than that of [32], and
the obtained results will be with better applications.

Nonlinear Anal. Model. Control, 23(3):361–379



376 Z. Tu et al.

Figure 1. The state trajectories of x(r)(t), x(i)(t), x(j)(t), x(k)(t) of QVNN (19) with 50 random initial
conditions.

5 Conclusions

The existence and stability analysis for the equilibrium point of the QVNNs are discussed
in this paper. The QVNNs is equivalently transformed into four real-valued systems to
resolve the difficulty of noncommutativity for the multiplication of quaternion, and then
some sufficient conditions are established by virtue of Lyapunov functional, nonlinear
measure approach, and inequality technique. The proposal criteria can be easily verified
by LMI toolbox in MATLAB. Furthermore, the effectiveness our results are checked by
two numerical examples. In addition, the reported results concerning the dynamical of
QVNNs are rare, and lots of interesting topics are still open. In the near future, we will
consider the synchronization and stabilization of QVNNs.
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