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Abstract. The aim of this paper is to present fixed set theorems, collage type and anticollage type
results for single-valued operators T : X×X → X in the framework of a complete metric spaceX .
Based on the coupled fixed point theory, existence of fixed sets, collage type and anticollage type
results for iterated function systems are also presented. The results are closely related to self-similar
sets theory and the mathematics of fractals. Several examples of coupled fractals illustrate our
results.
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1 Introduction

The notion of coupled fixed point appeared for the first time in some papers of Amann [1]
and Opoitsev [13], while a large development of the field started after the works of Guo
and Lakshmikantham [6] and Bhaskar and Lakshmikantham [4]. If (X, d) is a metric
space and T : X×X → X is an operator, then, by definition, a coupled fixed point for T
is a pair (x, y) ∈ X ×X satisfying

x = T (x, y), y = T (y, x). (1)

There are many applications of the coupled fixed point theorems for solving different
problems related to systems of integral and differential equations, see [2, 4, 6, 9, 22].
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Generalizations of this problem to tripled or N -upled fixed point results were also given in
the recent literature, see, for example, [3,5,14,17,20,21]. More general contexts (coupled
coincidence problems, coupled fixed point problems in cone metric spaces etc.) were also
considered, see, for example, [18, 19].

The aim of this paper is to present some fixed set and coupled fixed set theorems
for single-valued operators and iterated function systems consisting of a finite number
of self operators in complete metric spaces. Some connections with the mathematics of
self-similar sets are also discussed.

More precisely, if T : X×X → X is a given operator, we are interested under which
conditions there exists a (unique) pair (A,B) ∈ Pcp(X)× Pcp(X) such that

A = T (A,B), B = T (B,A), (2)

where T (A,B) := {T (a, b) | a ∈ A, b ∈ B}.
A pair (A,B) ∈ Pcp(X)× Pcp(X) with the above property will be called a coupled

fixed set or a pair of coupled self-similar sets. By this approach new examples of self-
similar constructions are given, and the classical theory of self-similar sets and fractals is
extended to operators working on a Cartesian product of metric spaces.

2 Preliminaries

In this short section, we will present some auxiliary notions. Let (X, d) be a metric space,
and P (X) be the family of all nonempty subsets of X . We also denote by Pcp(X) the
family of all nonempty compact subsets of X .

If f : X → X , then we denote Fix(f) := {x ∈ X: x = f(x)} the fixed point set
for f . Moreover, the fractal operator generated by a continuous mapping f : X → X is
denoted by f̂ and is defined f̂ : Pcp(X) → Pcp(X), f̂(Y ) :=

⋃
y∈Y f(y) = f(Y ) for

all Y ∈ Pcp(X).
When X := Rn, a fixed point of f̂ (i.e., a fixed set for f ) is called a self-similar set

for f .
The following functionals are well known in the field of set-valued analysis:

• the gap functional generated by d

Dd(A,B) := inf
{
d(a, b)

∣∣ a ∈ A, b ∈ B
}
, A,B ∈ P (X);

• the Hausdorff–Pompeiu functional generated by d

Hd(A,B) = max
{

sup
a∈A

Dd(a,B), sup
b∈B

Dd(b, A)
}
, A,B ∈ P (X).

3 Coupled self-similar sets for contractions type operators

We recall first some notions and a fixed point result for contractions type operators in
vector-valued metric spaces.

We denote by Mmm(R+) the set of all m×m matrices with positive elements, by I the
identity m×m matrix, and by Om the null m×m matrix. If x, y ∈ Rm, x = (x1, . . . , xm)
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and y = (y1, . . . , ym), then, by definition, we write x 6 y if and only if xi 6 yi for
i ∈ {1, 2, . . . ,m}. Throughout this paper, we will make an identification between row
and column vectors in Rm.

Let us recall first some important preliminary concepts and results. Let X be a non-
empty set. A mapping d : X × X → Rm

+ is called a vector-valued metric on X if all
the axioms of the classical metric are satisfied with respect to the component-wise partial
order. Moreover, a nonempty set X endowed with a vector-valued metric d is called
a generalized metric space in the sense of Perov (in short, a generalized metric space), and
it will be denoted by (X, d). The usual notions of analysis (such as convergent sequence,
Cauchy sequence, completeness, open subset, closed set, open and closed ball, etc.) are
defined in a similar to the case of metric spaces.

Moreover, the vector-valued Hausdorff–Pompeiu metric on Pcp(X) generated by
a vector-valued metric d̄ : X × X → Rm

+ given by d̄(x, y) := (d1(x, y), . . . , dm(x, y))
will be denoted by Hd̄ and represented as Hd̄(A,B) := (Hd1

(A,B), . . . ,Hdm
(A,B)).

We notice that (Pcp(X), Hd̄) is a generalized metric space in the sense of Perov, i.e.,
Hd̄ satisfies all the axioms of the vector-valued metric on Pcp(X). We point out that
(Pcp(X), Hd̄) is complete if the vector-valued metric d̄ is complete. We also mention that
the generalized metric space in the sense of Perov is a particular case of the so-called cone
metric spaces (or K-metric space), see [26].

A square matrix A of real positive numbers is said to be convergent to zero if and only
if all the eigenvalues of A are in the open unit disc (see, for example, [16]).

A classical result in matrix analysis is the following theorem (see, for example, [16]).

Theorem 1. Let A ∈Mmm(R+). The following assertions are equivalent:

(i) A is convergent towards zero;
(ii) An → Om as n→∞;

(iii) the matrix (I −A) is nonsingular, and

(I −A)−1 = I + A + · · ·+ An + · · · ; (3)

(iv) the matrix (I −A) is nonsingular, and (I −A)−1 has nonnegative elements.

We recall now Perov’s fixed point theorem [15].

Theorem 2 [Perov theorem]. Let (X, d) be a complete generalized metric space, and
let f : X → X be a contraction with matrix A, i.e., A ∈ Mmm(R+) converges towards
zero, and

d
(
f(x), f(y)

)
6 Ad(x, y) ∀x, y ∈ X.

Then:

(i) Fix f = {x∗};
(ii) the sequence of successive approximations (xn)n∈N, xn := fn(x0) is convergent

in X to x∗ for all x0 ∈ X;
(iii) one has the following estimation:

d(xn, x
∗) 6 An(I −A)−1d(x0, x1). (4)
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Remark 1. If, in the above theorem, we take m = 1, then we obtain the well-known
Banach’s contraction principle with A := a ∈ (0, 1).

The following theorem is our first main result. The proof is based on the application
of Banach’s contraction principle on X ×X endowed with a scalar type metric.

Theorem 3. Let (X, d) be a complete metric space. Let T : X×X → X be an operator.
Assume that there exists k1, k2 ∈ R+ with k := max{k1, k2} ∈ (0, 1) such that

d
(
T (x, y), T (u, v)

)
+ d
(
T (y, x), T (v, u)

)
6 k1d(x, u) + k2d(y, v) ∀(x, y), (u, v) ∈ X ×X.

Then the following conclusions hold:

(i) there exists a unique self-similar set U∗ ∈ Pcp(X ×X) of the operator

F : X ×X → X ×X, (x, y) 7→
(
T (x, y), T (y, x)

)
,

and, for any U0 ∈ Pcp(X × X), the sequence (Un)n∈N defined by Un+1 =
F (Un), n ∈ N, converges in (Pcp(X × X), Hd̃) to U∗ as n → ∞, where
d̃((x, y), (u, v)) := d(x, u) + d(y, v);

(ii) the following estimation holds:

Hd̃(Un, U
∗) 6

kn

1− k
·Hd̃(U0, U1) ∀n ∈ N;

(iii) (the collage theorem)

Hd̃(U,U∗) 6
1

1− k
·Hd̃

(
U,F (U)

)
∀U ∈ Pcp(X ×X);

(iv) (the anti-collage theorem)

Hd̃(U,U∗) >
1

1 + k
·Hd̃

(
U,F (U)

)
∀U ∈ Pcp(X ×X).

Proof. We introduce on Z := X ×X the functional d̃ : Z × Z → R+ defined by

d̃
(
(x, y), (u, v)

)
:= d(x, u) + d(y, v).

Notice that d̃ is a complete metric on Z.
We consider now the operator F : Z → Z given by F (x, y) := (T (x, y), T (y, x)). It

is easy to prove (see [24]) that F is a contraction in (Z, d̃) with constant k ∈ (0, 1), i.e.,

d̃
(
F (z), F (w)

)
6 kd̃(z, w) ∀z, w ∈ Z.

As a consequence, F is continuous from (Z, d̃) to (Z, d̃).
Let us consider on Pcp(Z) the fractal operator U 7→ F̂ (U) generated by F . Notice that,

by the continuity of F , the fractal operator is well defined, i.e., F̂ : Pcp(Z)→ Pcp(Z).
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Moreover, since F is a k-contraction on (Z, d̃), we immediately get (see [12]) that F̂ is
a k-contraction on (Pcp(Z), Hd̃). Hence, by Banach’s contraction principle F̂ has a unique
fixed point in Pcp(Z), i.e., there exists U∗ ∈ Pcp(Z) such that U∗ = F̂ (U∗). Moreover,
by the contraction principle we also have that

Hd̃(Un, U
∗) 6

kn

1− k
·Hd̃(U0, U1), (5)

where U0 ∈ Pcp(X) is arbitrary and U1 := F̂ (U0).
The conclusion (iii) follows by (ii), while for (iv), we notice that Hd̃(U,F (U)) 6

Hd̃(U,U∗) + Hd̃(U∗, F (U)) 6 (1 + k)Hd̃(U,U∗).

Remark 2. Using the same approach, a similar result can be obtained working on X ×X
with the metric d̂((x, y), (u, v)) := max{d(x, u), d(y, v)}. For related coupled fixed
point theorems in this framework, see [23].

In the next part of this section, we will illustrate the vector-valued metric approach in
coupled fixed point theory. For the proof of our next result, we need the following lemma,
which is itself a result with a good potential, see Remark 3.

Lemma 1. Let (X, d) be a generalized metric space in the sense of Perov with d :
X ×X → R2

+ given by

d(x, y) :=

(
d1(x, y)
d2(x, y)

)
.

Let f : X → X be a contraction with a matrix A convergent to zero of the following form:

A :=

(
k1 k2

k2 k1

)
.

Then the fractal operator f̂ generated by f is a (k1 + k2)-contraction on (Pcp(X), Hd̃),
where d̃(x, y) := d1(x, y) + d2(x, y).

Proof. Since f is a contraction with matrix A, we have, for all x, y ∈ X , that

d1

(
f(x), f(y)

)
6 k1d1(x, y) + k2d2(x, y),

d2

(
f(x), f(y)

)
6 k2d1(x, y) + k1d2(x, y).

Thus,
d̃
(
f(x), f(y)

)
6 (k1 + k2)d̃(x, y) ∀x, y ∈ X.

Since the matrix A converges to zero, we get that k1 + k2 < 1. Thus, f is a (k1 + k2)-
contraction on (X, d̃). By the classical result of Nadler [12] we obtain that the fractal
operator f̂ generated by f is a (k1 + k2)-contraction on (Pcp(X), Hd̃).

Remark 3. Let (X, d) be a generalized metric space in the sense of Perov. It is an open
question to establish when a contraction condition with a matrix A (convergent to zero,
for example) on a single-valued operator f : X → X implies that the fractal operator
f̂ : Pcp(X)→ Pcp(X) generated by f is a contraction with matrix A on (Pcp(X), Hd).
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The proof of our second result involves Lemma 1 and the vector-valued metric ap-
proach.

Theorem 4. Let (X, d) be a complete metric space. Let T : X×X → X be an operator.
Assume that there exists k1, k2 ∈ R+ with k1 + k2 < 1 such that

d
(
T (x, y), T (u, v)

)
6 k1d(x, u) + k2d(y, v) ∀(x, y), (u, v) ∈ X ×X.

Then the following conclusions hold:

(i) there exists a unique self-similar set U∗ ∈ Pcp(X ×X) of the operator

F : X ×X → X ×X, (x, y) 7→
(
T (x, y), T (y, x)

)
,

and, for any U0 ∈ Pcp(X × X), the sequence (Un)n∈N defined by Un+1 =

F (Un), n ∈ N, converges in (Pcp(X × X), Hd̃) to U∗ as n → ∞, where d̃ :
(X ×X)× (X ×X)→ R+ is given by

d̃
(
(x, y), (u, v)

)
:= d(x, u) + d(y, v);

(ii) the following estimation holds:

Hd̃(Un, U
∗) 6

kn

1− k
·Hd̃(U0, U1), n ∈ N,

where Hd̃ is the Hausdorff–Pompeiu generalized metric induced by d̃ and k :=
k1 + k2;

(iii) (the collage theorem)

Hd̃(U,U∗) 6
1

1− k
·Hd̃

(
U,F (U)

)
∀U ∈ Pcp(X ×X);

(iv) (the anti-collage theorem)

Hd̃(U,U∗) >
1

1 + k
·Hd̃

(
U,F (U)

)
∀U ∈ Pcp(X ×X).

Proof. We introduce on Z := X ×X the functional d̄ : Z × Z → R2
+ defined by

d̄
(
(x, y), (u, v)

)
:=

(
d(x, u)
d(y, v)

)
.

Notice that d̄ is a complete generalized metric (in the sense of Perov) on Z.
We will prove now that the operator F : Z → Z given by F (x, y) := (T (x, y),

T (y, x)) is a contraction in (Z, d̄) with a convergent to zero matrix

A :=

(
k1 k2

k2 k1

)
,

i.e., d̄(F (z), F (w)) 6 Ad̄(z, w) for all z, w ∈ Z.
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Indeed, by the contraction condition on T we also get that

d
(
T (y, x), T (v, u)

)
6 k2d(x, u) + k1d(y, v) ∀(y, x), (v, u) ∈ X ×X.

Thus, for all z = (x, y), w = (u, v) ∈ Z, we have

d̄
(
F (x, y), F (u, v)

)
=

(
d(T (x, y), T (u, v))
d(T (y, x), T (v, u))

)
6 Ad̄

(
(x, y), (u, v)

)
.

On the other hand, an easy calculation shows that the eigenvalues of the matrix A are in
the unit open disc. Hence, F is a contraction on (Z, d̄) with matrix A.

Let us now consider the fractal operator F̂ : Pcp(Z) → Pcp(Z), U 7→ F̂ (U) gener-
ated by F . By the continuity of F (with respect to d̄) the fractal operator is well defined.
Moreover, since F is a contraction with matrix A on (Z, d̄), we get (see Lemma 1) that
F̂ is a (k1 + k2)-contraction on (Pcp(Z), Hd̃). Hence, by Banach’s contraction principle
F̂ has a unique fixed point in Pcp(Z), i.e., there exists U∗∈Pcp(Z) such that U∗= F̂ (U∗).
Additionally, by the same theorem we also have that

Hd̃(Un, U
∗) 6

kn

1− k
·Hd̃(U0, U1), (6)

where U0 ∈ Pcp(X) is arbitrary, and U1 := F̂ (U0).
Notice that conclusions (iii) and (iv) follow in a similar manner as above.

Remark 4. It is worth to mention that Theorem 4 also follows directly by Theorem 3.
Indeed, by the hypothesis we have, for all (x, y), (u, v) ∈ X ×X , that

d
(
T (x, y), T (u, v)

)
+ d
(
T (y, x), T (v, u)

)
6 (k1 + k2)

[
d(x, u) + d(y, v)

]
.

We will discuss now the case of coupled self-similar sets. We need first another aux-
iliary result.

Lemma 2. Let (X, d) be a metric space, and T : X ×X → X be an operator. Assume
that there exists k > 0 such that

d
(
T (x, y), T (u, v)

)
6

k

2

[
d(x, u) + d(y, v)

]
∀(x, y), (u, v) ∈ X ×X.

Then the following conclusions hold:

(i) d(T (y, x), T (v, u)) 6 (k/2)[d(x, u) + d(y, v)] for all (x, y), (u, v) ∈ X ×X;
(ii) Hd(T (A,B), T (U, V )) 6 (k/2)[Hd(A,U) + Hd(B, V )] for all A,B,U, V ∈

Pcp(X);
(iii) Hd(T (B,A), T (V,U)) 6 (k/2)[Hd(A,U) + Hd(B, V )] for all A,B,U, V ∈

Pcp(X);
(iv) Hd(T (A,B), T (U, V )) +Hd(T (B,A), T (V,U)) 6 k · [Hd(A,U) +Hd(B, V )]

for all A,B,U, V ∈ Pcp(X).

Nonlinear Anal. Model. Control, 23(2):141–158



148 A. Petruşel, A. Soós

Proof. (i), (iii), and (iv) follow immediately. Let us show (ii). For this purpose, it is
enough to prove that, for all c ∈ T (A,B), there exists w ∈ T (U, V ) such that

d(c, w) 6
k

2

[
Hd(A,U) + Hd(B, V )

]
,

and that, for all s ∈ T (U, V ), there exists f ∈ T (A,B) such that

d(s, f) 6
k

2

[
Hd(A,U) + Hd(B, V )

]
.

Let c ∈ T (A,B). Then there exists a ∈ A and b ∈ B such that c = T (a, b). For a ∈ A,
there exists u ∈ U such that d(a, u) 6 Hd(A,U). In a similar way, for b ∈ B, there
exists v ∈ V such that d(b, v) 6 Hd(B, V ). Define w := T (u, v). Thus,

d(c, w) = d
(
T (a, b), T (u, v)

)
6

k

2

[
d(a, u) + d(b, v)

]
6

k

2

[
Hd(A,U) + Hd(B, V )

]
,

proving the first relation from above. In a similar way, we can prove the second relation,
and the conclusion follows.

Our third main result is the following coupled self-similar set theorem.

Theorem 5. Let (X, d) be a complete metric space, and T : X×X → X be an operator.
Assume that there exists k ∈ (0, 1) such that

d
(
T (x, y), T (u, v)

)
6

k

2

[
d(x, u) + d(y, v)

]
∀(x, y), (u, v) ∈ X ×X.

Then the following conclusions hold:

(i) there exists a unique pair of coupled self-similar sets (A∗, B∗)∈Pcp(X)×Pcp(X),
and, for any starting point (A0, B0) ∈ Pcp(X)×Pcp(X), the sequences (An)n∈N,
(Bn)n∈N defined, for n ∈ N, by

An+1 = T (An, Bn), Bn+1 = T (Bn, An) (7)

converge (with respect to Hd) to A∗ and respectively to B∗ as n→∞;
(ii) for each n ∈ N, the following estimation holds:

Hd(An, A
∗) + Hd(Bn, B

∗)

6
kn

1− k
·
[
Hd

(
A0, T (A0, B0)

)
+ Hd

(
B0, T (B0, A0)

)]
;

(iii) (the collage theorem) for all A,B ∈ Pcp(X), we have

Hd(A,A∗) + Hd(B,B∗) 6
1

1− k
·
[
Hd

(
A, T (A,B)

)
+ Hd

(
B, T (B,A)

)]
;
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(iv) (the anti-collage theorem) for all A,B ∈ Pcp(X), we have

Hd(A,A∗) + Hd(B,B∗) >
1

1 + k
·
[
Hd

(
A, T (A,B)

)
+ Hd

(
B, T (B,A)

)]
.

Proof. Let T̂ : Pcp(X) × Pcp(X) → Pcp(X) be defined by (A,B) 7→ T (A,B). Since
T is continuous, T̂ is well defined, i.e., T̂ (A,B) ∈ Pcp(X) for all A,B ∈ Pcp(X).
By (iv) in Lemma 2 we get that T̂ satisfies all the assumptions of Theorem 3.7 in [24].
Hence, there exists a unique pair (A∗, B∗) ∈ Pcp(X)×Pcp(X) such that A∗= T̂ (A∗, B∗)

and B∗= T̂ (B∗, A∗). These relations show that (A∗, B∗) defines a pair of coupled self-
similar sets for T . The second conclusion also follows by [24, Thm. 3.7]. Conclusion (iii)
follows by (ii), while (iv) is a consequence of the following estimations:

Hd

(
A, T (A,B)

)
+ Hd

(
B, T (B,A)

)
6 Hd(A,A∗) + Hd

(
A∗, T (A,B)

)
+ Hd(B,B∗) + Hd

(
B∗, T (B,A)

)
6 (1 + k)

[
Hd(A,A∗) + Hd(B,B∗)

]
.

A similar approach can be considered by working with the following contraction
condition on the operator T :

d
(
T (x, y), T (u, v)

)
6 k max

{
d(x, u), d(y, v)

}
∀(x, y), (u, v) ∈ X ×X,

where k ∈ (0, 1). For example, we have the following results.

Lemma 3. Let (X, d) be a metric space, and let T : X×X → X be an operator. Assume
that there exists k > 0 such that

d
(
T (x, y), T (u, v)

)
6 k max

{
d(x, u), d(y, v)

}
∀(x, y), (u, v) ∈ X ×X.

Then the following conclusions hold:

(i) d(T (y, x), T (v, u)) 6 k max{d(x, u), d(y, v)} for all (x, y), (u, v) ∈ X ×X;
(ii) for all A,B,U, V ∈ Pcp(X), we have

Hd

(
T (A,B), T (U, V )

)
6 k max

{
Hd(A,U), Hd(B, V )

}
;

(iii) for all A,B,U, V ∈ Pcp(X), we have

Hd

(
T (B,A), T (V,U)

)
6 k max

{
Hd(A,U), Hd(B, V )

}
;

(iv) for all A,B,U, V ∈ Pcp(X), we have

max
{
Hd

(
T (A,B), T (U, V )

)
, Hd

(
T (B,A), T (V,U)

)}
6 k ·max

{
Hd(A,U), Hd(B, V )

}
.
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Proof. We will prove conclusion (ii). For this purpose, it is enough to prove that, for all
c ∈ T (A,B), there exists w ∈ T (U, V ) such that

d(c, w) 6 k max
{
Hd(A,U), Hd(B, V )

}
and that, for all s ∈ T (U, V ), there exists f ∈ T (A,B) such that

d(s, f) 6 k max
{
Hd(A,U), Hd(B, V )

}
.

Let c ∈ T (A,B). Then there exists a ∈ A and b ∈ B such that c = T (a, b). For a ∈ A,
there exists u ∈ U such that d(a, u) 6 Hd(A,U). In a similar way, for b ∈ B, there exists
v ∈ V such that d(b, v) 6 Hd(B, V ). Define w := T (u, v). Thus,

d(c, w) = d
(
T (a, b), T (u, v)

)
6 k max

{
d(a, u), d(b, v)

}
6 k max

{
Hd(A,U), Hd(B, V )

}
,

proving the first relation from above. In a similar way, we can prove the above second
relation and the conclusion follows.

For our next theorems, we need the following result, which was essentially proved
in [23], see Theorem 5.

Theorem 6. Let (X, d) be a complete metric space. Let T : X×X → X be an operator.
Assume that there exists k ∈ (0, 1) such that, for all (x, y), (u, v) ∈ X ×X , we have

max
{
d
(
T (x, y), T (u, v)

)
, d
(
T (y, x), T (v, u)

)}
6 k max

{
d(x, u), d(y, v)

}
.

Then the following conclusions hold:

(i) there exists a unique solution (x∗, y∗) ∈ X × X of the coupled fixed point
problem (1), and, for any initial point (x0, y0) ∈ X×X , the sequences (xn)n∈N,
(yn)n∈N defined, for n ∈ N, by

xn+1 = T (xn, yn), yn+1 = T (yn, xn) (8)

converge to x∗ and respectively to y∗ as n→∞;
(ii) for all n ∈ N∗, the following estimation holds:

max
{
d
(
Tn(x0, y0), x∗

)
, d
(
Tn(y0, x0), y∗

)}
6

kn

1− k
·max

{
d
(
x0, T (x0, y0)

)
, d
(
y0, T (y0, x0)

)}
.

Based on Lemma 3 and Theorem 6, we can prove the following coupled self-similar
set theorem.

Theorem 7. Let (X, d) be a complete metric space and T : X×X → X be an operator.
Assume that there exists k ∈ (0, 1) such that

d
(
T (x, y), T (u, v)

)
6 k max

{
d(x, u), d(y, v)

}
∀(x, y), (u, v) ∈ X ×X.

Then the following conclusions hold:
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(i) there exists a unique coupled self-similar pair (A∗, B∗) ∈ Pcp(X) × Pcp(X),
and, for any starting point (A0, B0) ∈ Pcp(X)×Pcp(X), the sequences (An)n∈N,
(Bn)n∈N defined, for n ∈ N, by

An+1 = T (An, Bn), Bn+1 = T (Bn, An) (9)

converge (with respect to Hd) to A∗ and respectively to B∗ as n→∞;
(ii) the following estimation holds:

max
{
Hd(An, A

∗), Hd(Bn, B
∗)
}

6
kn

1− k
·max

{
Hd

(
A0, T (A0, B0)

)
, Hd

(
B0, T (B0, A0)

)}
∀n ∈ N∗;

(iii) (the collage theorem)

max
{
Hd(A,A∗), Hd(B,B∗)

}
6

1

1− k
·max

{
Hd

(
A, T (A,B)

)
, Hd

(
B, T (B,A)

)}
∀A,B ∈ Pcp(X);

(iv) (the anti-collage theorem)

max
{
Hd(A,A∗), Hd(B,B∗)

}
>

1

1 + k
·max

{
Hd

(
A, T (A,B)

)
, Hd

(
B, T (B,A)

)}
∀A,B ∈ Pcp(X).

Proof. As in the proof of Theorem 5, the operator T̂ : Pcp(X) × Pcp(X) → Pcp(X)

defined by (A,B) 7→ T (A,B) is well defined. By (iv) in Lemma 3 we get that T̂ satisfies
all the assumptions of Theorem 6. Hence, there exists a unique pair (A∗, B∗) ∈ Pcp(X)×
Pcp(X) such that A∗ = T̂ (A∗, B∗) and B∗ = T̂ (B∗, A∗). These relations show that
(A∗, B∗) defines a pair of coupled self-similar sets for T . The rest of the conclusions also
follows, in a similar way to the proof of Theorem 5, by Theorem 6. Notice that (iv) is
a consequence of the following estimations:

max
{
Hd

(
A, T (A,B)

)
, Hd

(
B, T (B,A)

)}
6 max

{
Hd(A,A∗) + Hd

(
A∗, T (A,B)

)
, Hd(B,B∗) + Hd

(
B∗, T (B,A)

)}
6 (1 + k) max

{
Hd(A,A∗), Hd(B,B∗)

}
.

4 Iterated function systems and coupled self-similar pairs

The purpose of this section is to discuss coupled fixed point properties for iterated function
system of operators fi : X ×X → X , where i ∈ {1, 2, . . . ,m}.

Let (X, d) be a metric space, and fi : X × X → X (where i ∈ {1, 2, . . . ,m}) be
continuous operators. We denote by F : Pcp(X)× Pcp(X)→ Pcp(X) given by

F (A,B) :=

m⋃
i=1

fi(A,B),
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where fi(A,B) := {fi(a, b) | a ∈ A, b ∈ B} for i ∈ {1, 2, . . . ,m}. We will call F the
fractal operator generated by the iterated function system (f1, . . . , fm).

By the continuity of fi the operator F is well defined. Then we have the following
result.

Theorem 8. Let (X, d) be a complete metric space, and fi : X ×X → X be operators
such that, for each i ∈ {1, 2, . . . ,m}, there exists ki ∈ (0, 1) satisfying

d
(
fi(x, y), fi(u, v)

)
6 ki max

{
d(x, u), d(y, v)

}
∀(x, y), (u, v) ∈ X ×X.

Then the following conclusions hold:
(i) the fractal operator F generated by the iterated function system (f1, . . . , fm)

satisfies the following condition:

max
{
Hd

(
F (A,B), F (U, V )

)
, Hd

(
F (B,A), F (V,U)

)}
6 max

16i6m
ki ·max

{
Hd(A,U), Hd(B, V )

}
∀A,B,U, V ∈ Pcp(X);

(ii) there exists a unique pair (A∗, B∗) ∈ Pcp(X)× Pcp(X) such that

A∗ = F (A∗, B∗), B∗ = F (B∗, A∗); (10)

(iii) for any pair (A0, B0) ∈ Pcp(X) × Pcp(X), the sequence ((An, Bn))n∈N ⊂
Pcp(X)× Pcp(X) given by

An+1 = F (An, Bn), Bn+1 = F (Bn, An) (11)

converges to (A∗, B∗) ∈ Pcp(X)× Pcp(X) as n→∞.

Proof. Notice first that, by the contraction condition, each operator fi is continuous for
each i ∈ {1, 2, . . . ,m}.

(i) For all A,B,U, V ∈ Pcp(X), using Lemma 3, we successively can write

Hd

(
F (A,B), F (U, V )

)
6 max

16i6m
Hd

(
fi(A,B), fi(U, V )

)
6 max

16i6m
ki ·max

{
Hd(A,U), Hd(B, V )

}
.

Thus, we also have

Hd(F (B,A), F (V,U)) 6 max
16i6m

Hd

(
fi(B,A), fi(V,U)

)
6 max

i
ki ·max

{
Hd(A,U), Hd(B, V )

}
.

Hence,

max
{
Hd

(
F (A,B), F (U, V )

)
, Hd

(
F (B,A), F (V,U)

)}
6 max

16i6m
ki ·max

{
Hd(A,U), Hd(B, V )

}
.

(ii)–(iii) The conclusions follow by Theorem 6.

A similar result takes place for the case of the additive metric.
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Theorem 9. Let (X, d) be a complete metric space, and fi : X ×X → X be operators
for which there exists ki ∈ (0, 1) such that, for each i ∈ {1, 2, . . . ,m}, we have

d
(
fi(x, y), fi(u, v)

)
6

ki
2

(
d(x, u) + d(y, v)

)
∀(x, y), (u, v) ∈ X ×X.

Then the following conclusions hold:
(i) the fractal operator F generated by the iterated function system (f1, . . . , fm)

satisfies, for all A,B,U, V ∈ Pcp(X), the following condition:

Hd

(
F (A,B), F (U, V )

)
+ Hd

(
F (B,A), F (V,U)

)
6 max

i
ki ·
(
Hd(A,U) + Hd(B, V )

)
;

(ii) there exists a unique pair (A∗, B∗) ∈ Pcp(X)× Pcp(X) such that relations (10)
hold;

(iii) for any pair (A0, B0) ∈ Pcp(X) × Pcp(X), the sequence ((An, Bn))n∈N ⊂
Pcp(X) × Pcp(X) given by relations (11) converges to (A∗, B∗) ∈ Pcp(X) ×
Pcp(X) as n→∞.

Remark 5.
1. We also refer to [11] for an extension of this study to a discussion on some quali-

tative properties (such as well-posedness or Ulam–Hyers stability) of a fixed point
problem.

2. The above approach can be generalized to the case of n-tuples self-similar sets
using the methods presented in [5, 14, 17, 20] and [21]. For the tripled fixed point
problem, see [3]. It could be also of interest to consider the above study for some
extensions of the coupled fixed point problem, see, for example, [18, 19].

3. A unified treatment of the coupled fixed point problem (and its consequences such
as coupled fixed sets) can be given by considering, instead of the `1-type metric d̃
or the `∞-type metric d̂, the `p-type metric on the Cartesian product X ×X . It is
known that this general `p-product metric was often employed in the fixed point
theory, see [8, 10, 25]. Another research direction on this topic could involve the
symmetric product of the sets, see [7].

5 Examples

Example 1. Let f1, f2 : [0, 1]× [0, 1]→ [0, 1] given by

f1(x, y) :=
x + y

6
, f2(x, y) = 1− x + y

6
.

Then fi, i ∈ {1, 2}, satisfy, for all (x, y), (u, v) ∈ [0, 1]2, the following relations:∣∣fi(x, y)− fi(u, v)
∣∣ 6 1

6

(
|x− u|+ |y − v|

)
,∣∣fi(x, y)− fi(u, v)

∣∣ 6 1

3
max

{
|x− u|, |y − v|

}
.
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Consider the iterated function system f = (f1, f2) and the fractal operator F generated
by f , i.e., F : Pcp([0, 1])× Pcp([0, 1])→ Pcp([0, 1]) given by

F (A,B) := f1(A,B) ∪ f2(A,B).

If we take, for example, A0 = B0 = [0, 1], then the sequences (An) and (Bn) given by

An+1 = F (An, Bn), Bn+1 = F (Bn, An) (12)

both take, for n > 1, the values An = Bn = [0, 1/3] ∪ [2/3, 1] = A∗ = B∗. In this case,
even the iterated function system f is of Cantor type, the sets A∗, B∗ have not a self-
similar structure.

Example 2 (Cantor-type coupled fixed points). Let f1, f2 : [−1, 1] × [−1, 1] → [−1, 1]
given by

f1(x, y) =

{
1
3 max(|x|, |y|) if x = 0,

signx 1
3 max(|x|, |y|) if x 6= 0,

f2(x, y) =

{
2
3 + 1

3 max(|x|, |y|) if x = 0,

signx( 2
3 + 1

3 max(|x|, |y|)) if x 6= 0.

Consider the iterated function system f = (f1, f2) and the fractal operator F generated
by f , i.e., F :Pcp([−1, 1])×Pcp([−1, 1])→Pcp([−1, 1]) given by F (A,B) :=f1(A,B)∪
f2(A,B). Consider A0 = B0 = [−1, 1] and, for n > 1, the sequences (An) and (Bn)
given by]

An+1 = F (An, Bn), Bn+1 = F (Bn, An). (13)

Then A∗, B∗ ∈ Pcp([−1, 1]) have a Cantor-type self-similar structure, see the approxi-
mations of it in Fig. 1.

Figure 1. A3 and B3 from Example 2.
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Example 3 (Sierpinski gasket-type coupled fixed points). Let us consider f1, . . . , f8 :
[−1, 1]2 × [−1, 1]2 → [−1, 1]2 as follows:

f1

(
(x, y), (u, v)

)
=

(
signx

1

3
max

(
|x|, |u|

)
, sign y

1

3
max

(
|y|, |v|

))
,

f2

(
(x, y), (u, v)

)
=

(
signx

(
1

3
+

1

3
max

(
|x|, |u|

))
, sign y

1

3
max

(
|y|, |v|

))
,

f3

(
(x, y), (u, v)

)
=

(
signx

(
2

3
+

1

3
max

(
|x|, |u|

))
, sign y

1

3
max

(
|y|, |v|

))
,

f4

(
(x, y), (u, v)

)
=

(
signx

(
2

3
+

1

3
max

(
|x|, |u|

))
, sign y

(
1

3
+

1

3
max

(
|y|, |v|

)))
,

f5

(
(x, y), (u, v)

)
=

(
signx

(
2

3
+

1

3
max

(
|x|, |u|

))
, sign y

(
2

3
+

1

3
max

(
|y|, |v|

)))
,

f6

(
(x, y), (u, v)

)
=

(
signx

(
1

3
+

1

3
max

(
|x|, |u|

))
, sign y

(
2

3
+

1

3
max

(
|y|, |v|

)))
,

f7

(
(x, y), (u, v)

)
=

(
signx

(
1

3
max

(
|x|, |u|

))
, sign y

(
2

3
+

1

3
max

(
|y|, |v|

)))
,

f8

(
(x, y), (u, v)

)
=

(
signx

(
1

3
max

(
|x|, |u|

))
, sign y

(
1

3
+

1

3
max

(
|y|, |v|

)))
.

Consider the iterated function system f = (f1, . . . , f8) and the fractal operator F gener-
ated by f , i.e., F : Pcp([−1, 1]2)×Pcp([−1, 1]2)→ Pcp([−1, 1]2) given by F (A,B) :=
f1(A,B) ∪ · · · ∪ f8(A,B). Consider A0 = B0 = [−1, 1]2 and, for n > 1, the sequences
(An) and (Bn) given by

An+1 = F (An, Bn), Bn+1 = F (Bn, An). (14)

Then the coupled self-similar sets A∗, B∗ ∈ Pcp([−1, 1]2) of the iterated function system
f = (f1, . . . , f8) are approximated in Fig. 2.

Example 4. If, in the same context as before, working with the same initial sets A0, B0,
we choose the following iterated function system:

f1

(
(x, y), (u, v)

)
=

(
signx

1

3
|x|, sign y

1

3
|y|
)
,

f2

(
(x, y), (u, v)

)
=

(
signx

(
1

3
+

1

3
|x|
)
, sign y

1

3
|y|
)

f3

(
(x, y), (u, v)

)
=

(
signx

(
2

3
+

1

3
|x|
)
, sign y

1

3
|y|
)
,

f4

(
(x, y), (u, v)

)
=

(
signx

(
2

3
+

1

3
|x|
)
, sign y

(
1

3
+

1

3
|y|
))

,
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Figure 2. A3 and B3 from Example 3.

Figure 3. A3 and B3 from Example 4.

f5

(
(x, y), (u, v)

)
=

(
signx

(
2

3
+

1

3
|x|
)
, sign y

(
2

3
+

1

3
|y|
))

,

f6

(
(x, y), (u, v)

)
=

(
signx

(
1

3
+

1

3
|x|
)
, sign y

(
2

3
+

1

3
|y|
))

,

f7

(
(x, y), (u, v)

)
=

(
signx

(
1

3
|x|
)
, sign y

(
2

3
+

1

3
|y|
))

,

f8

(
(x, y), (u, v)

)
=

(
signx

(
1

3
|x|
)
, sign y

(
1

3
+

1

3
|y|
))

,

then the fixed point will be the pair (Sierpinski carpet ×{(0, 0)}), see Fig. 3.
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10. K. Leśniak, On the Lifshits constant for hyperspaces, Bull. Polish Acad. Sci., Math., 55(2):155–
160, 2007.
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18. S. Radenović, Remarks on some coupled coincidence point results in partially ordered metric
spaces, Arab J. Math. Sci., 20(1):29–39, 2014.

Nonlinear Anal. Model. Control, 23(2):141–158



158 A. Petruşel, A. Soós
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