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Abstract. This paper is concerned with the problem of nonfragile mixed H∞ and passivity
control for neural networks with successive time-varying delay components. We construct a suitable
Lyapunov–Krasovskii function with triple and quadruple integral terms then utilizing Jensen’s
lemma and Wirtinger-type inequality technique. Some sufficient conditions are presented for the
existence of nonfragile mixed H∞ and passivity performance criterions. The expressions for the
nonfragile controller can be obtained by solving a set of linear matrix inequality. Finally, two
numerical examples are presented to demonstrate the effectiveness of our proposed method.
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Lyapunov–Krasovskii function.

1 Introduction

Neural networks are generally recognized as one of the simplified models of neural pro-
cessing in the human brain [5]. Due to its strong capability of information processing,
neural networks have been applied in many areas such as signal and image process-
ing, fault diagnosis, pattern recognition, fixed-point computations, associative memories,
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optimization and other scientific areas [7, 39, 50, 52]. In such applications, it is important
to know the stability properties of the designed neural network, which makes the analysis
of dynamical behavior of neural networks one of the key factors in the design and applica-
tions of neural networks. Therefore, many interesting and important results for different
types of neural networks have been reported (see, e.g., [1, 13, 22, 24, 37, 42, 51] and the
references therein).

In addition, the study on time-delay system has become a topic of great theoretically
and practically importance since time-delay is inherent features of more physical process
and may lead to instability or significantly affect performances of the corresponding time-
delay system. It should be pointed out that the finite neurons communicate with speed and
time-delay of the switching amplifiers when the interaction between neurons and induce
time-delay neural networks are implemented by very large-scale integrated electronic cir-
cuits. Time-delay phenomena are often appeared in most physical systems such as AIDS
epidemic, aircraft stabilization, chemical engineering systems, control of epidemics, dis-
tributed networks, inferred grinding model, manual control, microwave oscillator, models
of lasers, neural network, nuclear reactor, population dynamic model, rolling mill, ship
stabilization and systems with lossless transmission lines. Therefore, the study on stability
analysis of time-delay system has been widely investigated in [19–21, 38, 56]. Some
sufficient conditions were given out to ascertain the exponential stability for delayed
complex-valued memristor-based neural networks in [38]. Recently, a new type neural
network model with successive time-varying delay components was proposed in [57].
This model has a strong application background in remote control and networked control.
For example, in network control systems, signals transmitted from one point to another
may experience a few segments of networks, which can possibly induce successive time-
delays with different properties due to the variable network transmission conditions [9].
Therefore, the problem of stability criteria for neural networks with successive time-
varying delay components have been rarely investigated (see, e.g., [25,28,35,41,46,55]).

In addition, the problem ofH∞ control plays a major role in performance constrained
control for industrial plants. So it is important to design a valid control law to eliminate
the effect of approximation errors and external disturbances to achieve the desired perfor-
mance. It is the aim of this theory to design the controller such that the closed-loop system
is internally stable and itsH∞ norm of the transfer function between the controlled output
and the disturbances will not exceed a given H∞ performance level γ. Hence, there has
been increasing interest in the problem of H∞ control of dynamical systems because of
their useful applications in robust control, image processing, especially in classification
of patterns, associative memories and other areas [4,8,14,33,36,40,47,58]. Therefore, in
general, it is important both theoretically and practically to studied the stability criteria of
the dynamical systems. In [26], the authors presented a multiple delayed state feedback
control design for H∞ problem of a class of neural networks with multiple time-varying
delays. The problem of H∞ design for a class of neural networks with delay-dependent
time-varying delays was addressed in [43].

On the other hand, stability issues are often bound up with theory of passive systems
in various dynamic problems. Passive systems mainly mean that the energy supplied
from external source is more than the one dissipated inside a dynamic system. Based on
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the concept of energy, the passivity is the property of dynamic systems and describes the
energy flowing through the systems. It relates the input and output with the storage func-
tion and thus defines a set of useful input-output properties. The main concept of passivity
theory is that the passive properties of a system can keep the system internal stability. The
passivity theory is originated from circuit analysis [2] and since then has found successful
applications in diverse areas such as stability, signal processing, complexity, chaos control
and synchronization, fuzzy control, power control, group coordination, flow control and
energy management [3, 6, 32, 44, 48, 53]. Therefore, the problem of passivity analysis
for neural networks with time-varying delays have received a great deal of attention
and a great many of related literatures have been published [17, 30, 31, 45, 49, 54]. The
passivity analysis for switched neural networks with parametric uncertainties have been
investigated by Lyapunov theorey and some analysis techniques [11, 18].

In recent years, the nonfragile control problem has been an attractive topic in theory
analysis and practical implementation. The main topic of the nonfragile control scheme is
how to design a feedback control that will be insensitive to some error or gains variation
in feedback loop. Therefore, the nonfragile control problem has attracted the interest of
many researchers. For example, the problem of nonfragile passivity control for dynamical
systems with time-varying delay has been investigated in [10, 12, 16, 23, 27, 29]. The
nonfragile passivity and passification problems for a class of nonlinear singular networked
control systems with network-induced time-varying delay has been proposed in [16].
In [29], the problem of nonfragile H∞ control has been discussed for memristor-based
neural networks using passivity theory. The problem of nonfragile observer-based passive
control for a class of Markovian jumping systems subjected to uncertainties and time-
delays are investigated in [10]. In [23], the authors studied the state estimation problem
of H∞ and passive for memristive neural networks with random gain fluctuations. The
nonfragile mixed H∞ and passive asynchronous state estimation problem for uncertain
Markov jump neural networks with time-varying delay is presented in [12]. Very recently,
the finite-time nonfragile passivity control problem for neural networks with time-varying
delay has been studied in [27]. However, to the best of authors knowledge, so far, no
results on the nonfragile mixed H∞ and passivity control for neural networks with suc-
cessive time-varying delay components. This motivates our present research.

Motivated by the above statement, in this paper, we consider the problem of nonfragile
mixed H∞ and passivity control neural networks with successive time-varying delay
components. The main contributions of this paper are summarised as follows:

• The nonfragile mixed H∞ and passivity control neural networks with successive
time-varying delay components are proposed for the first time.

• The required results are derived by using a suitable Lyapunov–Krasovskii function
and using linear matrix inequality approach together with Jensen’s lemma and
Wirtinger-type inequality technique.

• Further, the sufficient conditions for the existence of nonfragile state feedback
control gain is obtained by using the mixed H∞ and passivity analysis.

• The conditions in our main results can be converted into linear matrix inequalities
easily, which can be solved by using Matlab LMI toolbox.
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The contributions of the above techniques are demonstrated through two numerical ex-
amples.

Notations. Throughout this paper, the superscripts T and −1 denote transpose of
a matrix and matrix inverse, respectively; Rn and Rn×n denote the n-dimensional Eu-
clidean space and set of all n × n real matrices; for symmetric matrices A and B, the
notation A > B (respectively A > B) means that the matrix A − B is positive definite
(respectively nonnegative); symmetric terms in a symmetric matrix are denoted by ∗; I is
an appropriately dimensioned identity matrix.

2 Problem formulation and preliminaries

Consider the following neural networks with discrete and distributed time-varying delays:

ż(t) = −Az(t) +W0f
(
z(t)

)
+W1f

(
z
(
t− σ(t)

))
+W2

t∫
t−ρ(t)

f
(
z(s)

)
ds

+Bu(t) +Bωω(t),

y(t) = Cz(t), z(t) = φ(t), t ∈ [−β, 0], β = max[σ12, σ22, ρ],

(1)

where z(t) = [z1(t), z2(t) . . . , zn(t)]T ∈ Rn is the state vector associated with the
neurons, f(z(t)) = [f1(z(t)), f2(z(t)), . . . , fn(z(t))]T ∈ Rn is the neuron activation
function; u(t) ∈ Rm is the control input; y(t) ∈ Rq is the system output; ω(t) ∈ Rp is the
deterministic disturbance input, which belongs to L2[0,∞]; A is a diagonal matrix; W0 is
the connection weight matrix;W1 is the discrete delayed connection weight matrix;W2 is
the distributed delayed connection weight matrix; B,Bω and C are known real constant
matrices with appropriate dimensions; The time-varying delays σ(t) and ρ(t) satisfied the
following conditions:

0 6 σ11 6 σ1(t) 6 σ12, σ̇1(t) 6 µ1 < 1,

0 6 σ21 6 σ2(t) 6 σ22, σ̇2(t) 6 µ2 < 1,

0 6 ρ(t) 6 ρ, ρ̇(t) 6 η < 1,

where σ12 > σ11, σ22 > σ21 and µ1, µ2 are constants. Here, let us denote

σ(t) = σ1(t) + σ2(t), µ = µ1 + µ2, h1 = σ12 − σ11, h2 = σ22 − σ21.

(A1) For any j = 1, 2, . . . , n, there exist constants F−j and F+
j such that

F−j 6
fj(k1)− fj(k2)

k1 − k2
6 F+

j , (2)

where fj(0) = 0, k1, k2 ∈ R, k1 6= k2.

For presentation convenience, in the following, we denote F1 = diag{F−1 F
+
1 , . . . ,

F−n F
+
n }, F2 = diag{(F−1 + F+

1 )/2, . . . , (F−n + F+
n )/2}.
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We consider the following nonfragile state feedback controller:

u(t) = K(t)z(t),

where K(t) = K +∆K(t) and K is the controller gain, ∆K is perturbed matrix, which
is assumed to be

∆K(t) = HaF (t)Ea,

where Ha and Ea are known real constant matrices with appropriate dimensions, the
time-varying matrix F (t) satisfying FT(t)F (t) 6 I.

Definition 1. (See [45].) The neural network (1) is said to be asymptotically stable with
a mixed H∞ and passivity performance γ if, under zero initial condition, there exists
a scaler γ > 0 such that

t∗∫
0

[
−γ−1θyT(α)y(α) + 2(1− θ)yT(α)ω(α)

]
dα > −γ

t∗∫
0

ωT(α)ω(α) dα (3)

for all t∗ > 0 and any nonzero ω(t) ∈ L2[0,∞], where θ ∈ [0, 1] represents a weighting
parameter that defines the trade-off between mixed H∞ and passivity performance.

Lemma 1. (See [15].) For a positive matrix N and scalars b > a > 0 such that the
following integrations are well defined, it holds that

−(b− a)

t−a∫
t−b

yT(s)Ny(s) ds 6 −

( t−a∫
t−b

y(s) ds

)T
N

t−a∫
t−b

y(s) ds,

−b
2 − a2

2

t−a∫
t−b

t∫
s

yT(u)Ny(u) duds 6 −

( t−a∫
t−b

t∫
s

y(u) duds

)T
×N

t−a∫
t−b

t∫
s

y(u) duds,

−b
3 − a3

6

t−a∫
t−b

t∫
s

t∫
u

yT(v)Ny(v) dv duds

6 −

( t−a∫
t−b

t∫
s

t∫
u

y(v) dv duds

)T
×N

t−a∫
t−b

t∫
s

t∫
u

y(v) dv duds.

Lemma 2. (See [34].) For given symmetric positive definite matrix N > 0 and for any
differentiable function ω(·) ∈ [a, b]→ Rn, the following inequality holds:

b∫
a

ω̇T(s)Nω̇(s) ds >
1

b− a

ω(b)
ω(a)
υ

T

R2(N)

ω(b)
ω(a)
υ

 ,
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where

υ =
1

b− a

b∫
a

ω(s) ds, R2(N) =

N −N 0
∗ N 0
0 0 0

+
π2

4

N N −2N
∗ N −2N
∗ ∗ 4N

 .
Lemma 3. (See [47].) Let H , E and F (t) be real matrices of appropriate dimensions
with F (t) satisfying FT(t)F (t) 6 I . Then, for any scalar ε > 0,

HF (t)E +
(
HF (t)E

)T
6 ε−1HHT + εETE.

3 Main results

In this section, we will propose a sufficient condition of the mixed H∞ and passivity con-
trol for neural networks with successive time-varying delay components and nonfragile
controller designs.

Theorem 1. Under assumption (A1), for given scalers σ11, σ12, σ21, σ22, ρ, µ1, µ2

and η, the neural network (1) is asymptotically stable with a mixed H∞ and passivity
performance γ if there exists positive definite matrices P , Qi (i = 1, 2, . . . , 13), R1, R2,
S1, S2, T1, T2, U1, U2, V1, V2,

P =

P11 P12 P13

∗ P22 P23

∗ ∗ P33

 ,
and positive diagonal matrices H1, H2, H3 such that the following LMIs hold:

Φ̄ =


Ω̄
√
θC̄1 Γ̄1 εΓ̄2

∗ −γI 0 0
∗ ∗ −εI ∗
∗ ∗ ∗ −εI

 < 0, (4)

where Ω̄ = (Ω̄i,j)20×20 with

Ω̄1,1 = Q̄1 + Q̄4 + Q̄7 + Q̄10 + Q̄11 + Q̄12 + Q̄13 + h1R̄1 + h2R̄2 − T̄1 − T̄T
1 − T̄2

− T̄T
2 −

3

2
h1Ū1 −

3

2
h2Ū2 −AXT −XA+BF + FTBT − F1H̄1 − F1H̄3,

Ω̄1,2 = F1H̄3, Ω̄1,5 = P̄12, Ω̄1,6 = −P̄12, Ω̄1,7 = P̄13, Ω̄1,8 = −P̄13,

Ω̄1,9 = P̄11 −XT −AXT +BF, Ω̄1,10 = Q̄2 + Q̄5 + Q̄8 +W0X
T + F2H̄1 + F2H̄3,

Ω̄1,11 = W1X
T − F2H̄3, Ω̄1,15 =

2

h1
T̄1, Ω̄1,16 =

2

h2
T̄2, Ω̄1,17 = W2X

T,

Ω̄1,18 =
3

h1
Ū1, Ω̄1,19 =

3

h2
Ū2, Ω̄1,20 = BωX

T − (1 − θ)CT,

Ω̄2,2 = −(1 − µ)Q̄1 − F1H̄2 − F1H̄3, Ω̄2,10 = −H̄T
3 F

T
2 ,

Ω̄2,11 = −(1 − µ)Q̄2 + F2H̄2 + F2H̄3, Ω̄3,3 = −(1 − µ1)Q̄4,
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Ω̄3,12 = −(1 − µ1)Q̄5, Ω̄4,4 = −(1 − µ2)Q̄7, Ω̄4,13 = −(1 − µ2)Q̄8,

Ω̄5,5 = −Q̄10 −
1

h1

(
S̄1 +

π2

4
S̄1

)
, Ω̄5,6 = −

1

h1

(
−S̄1 +

π2

4
S̄1

)
,

Ω̄5,15 = P̄T
22 +

1

h21

π2

2
S̄1, Ω̄6,6 = −Q̄11 −

1

h1

(
S̄1 +

π2

4
S̄1

)
,

Ω̄6,15 = −P̄T
22 +

1

h21

π2

2
S̄1, Ω̄7,7 = −Q̄12 −

1

h2

(
S̄2 +

π2

4
S̄2

)
,

Ω̄7,8 = −
1

h2

(
−S̄2 +

π2

4
S̄2

)
, Ω̄7,15 = P̄T

23, Ω̄7,16 = P̄T
33 +

1

h22

π2

2
S̄2,

Ω̄8,8 = −Q̄13 −
1

h2

(
S̄2 +

π2

4
S̄2

)
, Ω̄8,15 = −P̄T

23, Ω̄8,16 = −P̄T
33 +

1

h22

π2

2
S̄2,

Ω̄9,9 = h1S̄1 + h2S̄2 +
h21
2
T̄1 +

h22
2
T̄2 +

h31
6
Ū1 +

h32
6
Ū2 −XT −X,

Ω̄9,10 = W0X
T, Ω̄9,11 = W1X

T, Ω̄9,17 = W2X
T, Ω̄9,20 = BωX

T,

Ω̄10,10 = Q̄3 + Q̄6 + Q̄9 + V̄1 + ρV̄2 − H̄1 − H̄3, Ω̄10,11 = H̄3,

Ω̄11,11 = −(1 − µ)Q̄3 − H̄2 − H̄3, Ω̄12,12 = −(1 − µ1)Q̄6,

Ω̄13,13 = −(1 − µ2)Q̄9, Ω̄14,14 = −V̄1, Ω̄15,15 = −
1

h1
R̄1 −

π2

h31
S̄1 −

2

h21
T̄1,

Ω̄16,16 = −
1

h2
R̄2 −

π2

h32
S̄2 −

2

h22
T̄2, Ω̄17,17 = −

1

ρ
V̄2, Ω̄18,18 = −

6

h31
Ū1,

Ω̄19,19 = −
6

h32
Ū2, Ω̄20,20 = −γI, C̄1 =

[
C

19 times︷ ︸︸ ︷
0 · · · 0

]
,

ΓT
1 =

[
XBT

7 times︷ ︸︸ ︷
0 · · · 0XBT

11 times︷ ︸︸ ︷
0 · · · 0

]T
Ha, ΓT

2 =
[
Ea

19 times︷ ︸︸ ︷
0 · · · 0

]T
.

Proof. We construct the following Lyapunov–Krasovskii function:

V (t) =

7∑
i=1

Vi(t), (5)

where

V1(t) = ηT(t)Pη(t), ηT(t) =

[
zT(t)

t−σ11∫
t−σ12

zT(s) ds

t−σ21∫
t−σ22

zT(s) ds

]
,

V2(t) =

t∫
t−σ(t)

[
z(s)

f(z(s))

]T [
Q1 Q2

∗ Q3

] [
z(s)

f(z(s))

]
ds

+

t∫
t−σ1(t)

[
z(s)

f(z(s))

]T [
Q4 Q5

∗ Q6

] [
z(s)

f(z(s))

]
ds
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+

t∫
t−σ2(t)

[
z(s)

f(z(s))

]T [
Q7 Q8

∗ Q9

] [
z(s)

f(z(s))

]
ds+

t∫
t−σ11

zT(s)Q10z(s) ds

+

t∫
t−σ12

zT(s)Q11z(s) ds+

t∫
t−σ21

zT(s)Q12z(s) ds+

t∫
t−σ22

zT(s)Q13z(s) ds,

V3(t) =

−σ11∫
−σ12

t∫
t+ξ

zT(s)R1z(s) dsdξ +

−σ21∫
−σ22

t∫
t+ξ

zT(s)R2z(s) dsdξ,

V4(t) =

−σ11∫
−σ12

t∫
t+ξ

żT(s)S1ż(s) dsdξ +

−σ21∫
−σ22

t∫
t+ξ

żT(s)S2ż(s) dsdξ,

V5(t) =

−σ11∫
−σ12

0∫
θ

t∫
t+ξ

żT(s)T1ż(s) dsdξ dθ +

−σ21∫
−σ22

0∫
θ

t∫
t+ξ

żT(s)T2ż(s) dsdξ dθ,

V6(t) =

−σ11∫
−σ12

0∫
α

0∫
θ

t∫
t+ξ

żT(s)U1ż(s) dsdξ dθ dα

+

−σ21∫
−σ22

0∫
λ

0∫
θ

t∫
t+β

żT(s)U2ż(s) dsdξ dθ dα,

V7(t) =

t∫
t−ρ(t)

fT
(
z(s)

)
V1f

(
z(s)

)
ds+

0∫
−ρ(t)

t∫
t+ξ

fT
(
z(s)

)
V2f

(
z(s)

)
dsdξ.

Now, taking the time-derivative of V (t) along the solutions of neural network (1), we
have that

V̇ (t) =

7∑
i=1

V̇i(t),

where

V̇1(t) = 2

 zT(t)∫ t−σ11

t−σ12
zT(s) ds∫ t−σ21

t−σ22
zT(s) ds


P11 P12 P13

∗ P22 P23

∗ ∗ P33

 ż(t)
z(t− σ11)− z(t− σ12)
z(t− σ21)− z(t− σ22)

 ,
= 2zT(t)P11ż(t) + 2zT(t)P12z(t− σ11)− 2zT(t)P12z(t− σ12)

+ 2zT(t)P13z(t− σ21)− 2zT(t)P13z(t− σ22)

+ 2zT(t− σ11)PT
22

t−σ11∫
t−σ12

z(s) ds− 2zT(t− σ12)PT
22

t−σ11∫
t−σ12

z(s) ds
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+ 2zT(t− σ21)PT
23

t−σ11∫
t−σ12

z(s) ds− 2zT(t− σ22)PT
23

t−σ11∫
t−σ12

z(s) ds

+ 2zT(t− σ21)PT
33

t−σ21∫
t−σ22

z(s) ds− 2zT(t− σ22)PT
33

t−σ21∫
t−σ22

z(s) ds, (6)

V̇2(t) =

[
z(t)

f(z(t))

]T{[
Q1 Q2

∗ Q3

]
+

[
Q4 Q5

∗ Q6

]
+

[
Q7 Q8

∗ Q9

]}[
z(t)

f(z(t))

]
− (1− µ)

[
z(t− σ(t))

f(z(t− σ(t)))

]T [
Q1 Q2

∗ Q3

] [
z(t− σ(t))

f(z(t− σ(t)))

]
− (1− µ1)

[
z(t− σ1(t))

f(z(t− σ1(t)))

]T [
Q4 Q5

∗ Q6

] [
z(t− σ1(t))

f(z(t− σ1(t)))

]
− (1− µ2)

[
z(t− σ2(t))

f(z(t− σ2(t)))

]T [
Q7 Q8

∗ Q9

] [
z(t− σ2(t))

f(z(t− σ2(t)))

]
+ zT(t)[Q10 +Q11 +Q12 +Q13]z(t)− zT(t− σ11)Q10z(t− σ11)

− zT(t− σ12)Q11z(t− σ12)− zT(t− σ21)Q12z(t− σ21)

− zT(t− σ22)Q13z(t− σ22), (7)

V̇3(t) = zT(t)[h1R1 + h2R2]z(t)−
t−σ11∫
t−σ12

zT(s)R1z(s) ds−
t−σ21∫
t−σ22

zT(s)R2z(s) ds. (8)

Now, applying the Lemma 1, we have

−
t−σ11∫
t−σ12

zT(s)R1z(s) ds 6 − 1

h1

( t−σ11∫
t−σ12

z(s) ds

)T
R1

t−σ11∫
t−σ12

z(s) ds, (9)

−
t−σ21∫
t−σ22

zT(s)R2z(s) ds 6 − 1

h2

( t−σ21∫
t−σ22

z(s) ds

)T
R2

t−σ21∫
t−σ22

z(s) ds, (10)

V̇4(t) = żT(t)[h1S1 + h2S2]ż(t)−
t−σ11∫
t−σ12

żT(s)S1ż(s) ds−
t−σ21∫
t−σ22

żT(s)S2ż(s) ds. (11)

By using Lemma 2 we can get

−
t−σ11∫
t−σ12

żT(s)S1ż(s) ds 6 − 1

h1

z(t− σ11)
z(t− σ12)

υ1

T

M2(S1)

z(t− σ11)
z(t− σ12)

υ1

 , (12)

where υ1 =1/h1
∫ t−σ11

t−σ12
z(s) ds,
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M2(S1) = M0(S1) +
π2

4

S1 S1 −2S1

∗ S1 −2S1

∗ ∗ 4S1

 , M0(S1) =

S1 −S1 0
∗ S1 0
0 0 0

 ,
−

t−σ11∫
t−σ12

żT(s)S1ż(s) ds

6 − 1

h1

[
zT(t− σ11)

(
S1 +

π2

4
S1

)
z(t− σ11) + 2xT(t− σ11)

(
−S1 +

π2

4
S1

)
× z(t− σ12) + zT(t− σ12)

(
S1 +

π2

4
S1

)
z(t− σ12) + 2zT(t− σ11)

×
(
− π2

2h1
S1

) t−σ11∫
t−σ12

z(s) ds+ 2zT(t− σ12)

(
− π2

2h1
S1

) t−σ11∫
t−σ12

z(s) ds

+

t−σ11∫
t−σ12

zT(s) ds
π2

h21
S1

t−σ11∫
t−σ12

z(s) ds

]
. (13)

Similarly,

−
t−σ21∫
t−σ22

żT(s)S2ż(s) ds

6 − 1

h2

[
zT(t− σ21)

(
S2 +

π2

4
S2

)
z(t− σ21) + 2xT(t− σ21)

(
−S2 +

π2

4
S2

)
× z(t− σ22) + zT(t− σ22)

(
S2 +

π2

4
S2

)
z(t− σ22) + 2zT(t− σ21)

×
(
− π2

2h2
S2

) t−σ21∫
t−σ22

z(s) ds+ 2zT(t− σ22)

(
− π2

2h2
S2

) t−σ21∫
t−σ22

z(s) ds

+

t−σ21∫
t−σ22

zT(s) ds
π2

h22
S2

t−σ21∫
t−σ22

z(s) ds

]
. (14)

V̇5(t) = żT(t)

[
h21
2
T1 +

h22
2
T2

]
ż(t)−

−σ11∫
−σ12

t∫
t+θ

żT(s)T1ż(s) dsdθ

−
−σ21∫
−σ22

t∫
t+θ

żT(s)T2ż(s) dsdθ. (15)
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From Lemma 1 we can have

−
−σ11∫
−σ12

t∫
t+θ

żT(s)T1ż(s) dsdθ

6 − 2

h21

( −σ11∫
−σ12

t∫
t+θ

ż(s) dsdθ

)T
T1

−σ11∫
−σ12

t∫
t+θ

ż(s) dsdθ

= − 2

h21

[
h1z

T(t)−
t−σ11∫
t−σ12

zT(s) ds

]
T1

[
h1z(t)−

t−σ11∫
t−σ12

z(s) ds

]

= −2zT(t)T1z(t) +
4

h1
zT(t)T1

t−σ11∫
t−σ12

z(s) ds

− 2

h21

t−σ11∫
t−σ12

zT(s) ds T1

t−σ11∫
t−σ12

z(s) ds. (16)

Similarly,

−
−σ21∫
−σ22

t∫
t+θ

żT(s)T2ż(s) dsdθ 6 −2zT(t)T2z(t) +
4

h2
zT(t)T2

t−σ21∫
t−σ22

z(s) ds

− 2

h22

t−σ21∫
t−σ22

zT(s) ds T2

t−σ21∫
t−σ22

z(s) ds. (17)

V̇6(t) = żT(t)

[
h31
6
U1 +

h32
6
U2

]
ż(t)−

−σ11∫
−σ12

0∫
α

t∫
t+θ

żT(s)U1ż(s) dsdθ dα

−
−σ21∫
−σ22

0∫
α

t∫
t+θ

żT(s)U2ż(s) dsdθ dα. (18)

Further, by applying Lemma 1, we have

−
−σ11∫
−σ12

0∫
α

t∫
t+θ

żT(s)U1ż(s) dsdθ dα

6 − 6

h31

( −σ11∫
−σ12

0∫
α

t∫
t+θ

ż(s) dsdθ dα

)T
U1

−σ11∫
−σ12

0∫
α

t∫
t+θ

ż(s) dsdθ dα
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= − 6

h31

[
h21
2
zT(t)−

−σ11∫
−σ12

t∫
t+α

zT(s) dsdα

]
U1

[
h21
2
z(t)−

−σ11∫
−σ12

t∫
t+α

z(s) dsdα

]

= −3

2
h1z

T(t)U1z(t) +
6

h1
zT(t) U1

−σ11∫
−σ12

t∫
t+α

z(s) dsdα

− 6

h31

−σ11∫
−σ12

t∫
t+α

z(s) dsdα U1

−σ11∫
−σ12

t∫
t+α

z(s) dsdα. (19)

Similarly,

−
−σ21∫
−σ22

0∫
α

t∫
t+θ

żT(s)U2ż(s) dsdθ dα

6 −3

2
h2z

T(t)U2z(t) +
6

h2
zT(t)U2

−σ21∫
−σ22

t∫
t+α

z(s) dsdα

− 6

h32

−σ11∫
−σ12

t∫
t+α

z(s) dsdα U2

−σ21∫
−σ22

t∫
t+α

z(s) dsdα. (20)

V̇7(t) = fT
(
z(t)

)
[V1 + ρV2]f

(
z(t)

)
− (1− η)fT

(
z
(
t− ρ(t)

))
V1f

(
z
(
t− ρ(t)

))
− 1

ρ

( t∫
t−ρ(t)

z(s) ds

)T
V2

t∫
t−ρ(t)

z(s) ds. (21)

Moreover, for any matrix Λ with appropriate dimensions, it is true that

0 = 2
[
zT(t)Λ+ żT(t)Λ

][
−ż(t) +

(
−A+BK +B∆K(t)

)
z(t) +W0f

(
z(t)

)
+W1f

(
z
(
t− σ(t)

))
+W2

t∫
t−ρ(t)

f
(
z(s)

)
ds+Bωω(t)

]
. (22)

For any h1i 6 0, h2i 6 0, h3i 6 0, i = 1, 2, . . . , n, it follows from (2) that[
fi
(
zi(t)

)
− F−i zi(t)

]
h1i
[
F+
i zi(t)− fi

(
zi(t)

)]
> 0, (23)[

fi
(
zi(t− σ(t)

))
− F−i zi

(
t− σ(t)

)]
× h2i

[
F+
i zi

(
t− σ(t)

)
− fi

(
zi
(
t− σ(t)

))]
> 0, (24)[

fi
(
zi(t)

)
− fi

(
zi
(
t− σ(t)

))
− F−i

(
zi(t)− zi

(
t− σ(t)

))]
h3i

×
[
F+
i

(
zi(t)− zi

(
t− σ(t)

))
− fi

(
zi(t)

)
+ fi

(
zi
(
t− σ(t)

))]
> 0, (25)
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which imply

0 6

[
zT(t)

fT(z(t))

] [
−F1H1 F2H1

∗ −H1

] [
z(t)

f(z(t))

]
, (26)

0 6

[
zT(t− σ(t))

fT(z(t− σ(t)))

] [
−F1H2 F2H2

∗ −H2

] [
z(t− σ(t))

f(z(t− σ(t)))

]
(27)

and

0 6


zT(t)

fT(z(t))
zT(t−σ(t))

fT(z(t−σ(t)))



−F1H3 F2H3 F1H3 −F2H3

∗ −H3 −F2H3 H3

∗ ∗ −F1H3 F2H3

∗ ∗ ∗ −H3




z(t)
f(z(t))
z(t−σ(t))

f(z(t−σ(t)))

 , (28)

where H1 = diag{h11, h12, . . . , h1n}, H2 = diag{h21, h22, . . . , h2n}, H3 = diag{h31,
h32, . . . , h3n}.

Next, we show that the neural network (1) is asymptotically stable with a mixed H∞
and passivity performance γ. To this end, we define the following index:

Jyω(t) =

t∗∫
0

(
−γ−1θyT(α)y(α)− 2(1− θ)yT(α)ω(α)− γωT(α)ω(α)

)
dα,

where t∗ > 0.
From Eqs. (6)–(28) it can be deduced that

V̇ (t) + γ−1θyT(t)y(t)− 2(1− θ)yT(t)ω(t)− γωT(t)ω(t)

6 ξT(t)[Ξ +∆Ξ]ξ(t), (29)

where Ξ = Ω + γ−1θCTC, ∆Ξ = Γ1F (t)Γ2 + ΓT
2 F (t)ΓT

1 . Applying Lemma 3, there
exists a scalar ε > 0 such that

∆Ξ 6 εΓT
2 Γ2 + ε−1Γ1Γ

T
1 .

Then (29) becomes

V̇ (t) + γ−1θyT(t)y(t)− 2(1− θ)yT(t)ω(t)− γωT(t)ω(t)

6 ξT(t)
[
Ω + γ−1θCTC + εΓT

2 Γ2 + ε−1Γ1Γ
T
1

]
ξ(t), (30)

where

ξT(t) =

[
zT(t), zT

(
t− σ(t)

)
, zT

(
t− σ1(t)

)
, zT

(
t− σ2(t)

)
, zT

(
t− σ11

)
,

zT(t− σ12), zT(t− σ21), zT(t− σ22), żT(t), fT
(
z(t)

)
, fT

(
z
(
t− σ(t)

))
,

fT
(
z
(
t− σ1(t)

))
, fT

(
z
(
t− σ2(t)

))
, fT

(
z
(
t− ρ(t)

))
,
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t−σ11∫
t−σ12

zT(s) ds,

t−σ21∫
t−σ22

zT(s) ds,

t∫
t−ρ(t)

zT(s) ds,

−σ11∫
−σ12

t∫
t+α

zT(s) dsdα,

−σ21∫
−σ22

t∫
t+α

zT(s) dsdα, ωT(t)

]

and Ω = (Ωi,j)20×20 with

Ω1,1 = Q1 +Q4 +Q7 +Q10 +Q11 +Q12 +Q13 + h1R1 + h2R2 − T1 − TT
1 − T2

− TT
2 −

3

2
h1U1 −

3

2
h2U2 − ΛA−ATΛT + ΛBK + (ΛBK)T − F1H1 − F1H3,

Ω1,2 = F1H3, Ω1,5 = P12, Ω1,6 = −P12, Ω1,7 = P13, Ω1,8 = −P13,

Ω1,9 = P11 − Λ− (AΛ)T + (KBΛ)T, Ω1,10 = Q2 +Q5 +Q8 + ΛW0 + F2H1 + F2H3,

Ω1,11 = ΛW1 − F2H3, Ω1,15 =
2

h1
T1, Ω1,16 =

2

h2
T2, Ω1,17 = ΛW2,

Ω1,18 =
3

h1
U1, Ω1,19 =

3

h2
U2, Ω1,20 = ΛBω − (1 − θ)CT,

Ω2,2 = −(1 − µ)Q1 − F1H2 − F1H3, Ω2,10 = −HT
3 F

T
2 ,

Ω2,11 = −(1 − µ)Q2 + F2H2 + F2H3, Ω3,3 = −(1 − µ1)Q4,

Ω3,12 = −(1 − µ1)Q5, Ω4,4 = −(1 − µ2)Q7, Ω4,13 = −(1 − µ2)Q8,

Ω5,5 = −Q10 −
1

h1

(
S1 +

π2

4
S1

)
, Ω5,6 = −

1

h1

(
−S1 +

π2

4
S1

)
,

Ω5,15 = PT
22 +

1

h21

π2

2
S1, Ω6,6 = −Q11 −

1

h1

(
S1 +

π2

4
S1

)
,

Ω6,15 = −PT
22 +

1

h21

π2

2
S1, Ω7,7 = −Q12 −

1

h2

(
S2 +

π2

4
S2

)
,

Ω7,8 = −
1

h2

(
−S2 +

π2

4
S2

)
, Ω7,15 = PT

23, Ω7,16 = PT
33 +

1

h22

π2

2
S2,

Ω8,8 = −Q13 −
1

h2

(
S2 +

π2

4
S2

)
, Ω8,15 = −PT

23, Ω8,16 =
1

h22

π2

2
S2,

Ω8,16 = −PT
33, Ω9,9 = h1S1 + h2S2 +

h21
2
T1 +

h22
2
T2 +

h31
6
U1 +

h32
6
U2 − Λ− ΛT,

Ω9,10 = ΛW0, Ω9,11 = ΛW1, Ω9,17 = ΛW2, Ω9,20 = ΛBω ,

Ω10,10 = Q3 +Q6 +Q9 + V1 + ρV2 −H1 −H3, Ω10,11 = H3,

Ω11,11 = −(1 − µ)Q3 −H2 −H3, Ω12,12 = −(1 − µ1)Q6,

Ω13,13 = −(1 − µ2)Q9, Ω14,14 = −V1, Ω15,15 = −
1

h1
R1 −

π2

h31
S1 −

2

h21
T1,

Ω16,16 = −
1

h2
R2 −

π2

h32
S2 −

2

h22
T2, Ω17,17 = −

1

ρ
V2, Ω18,18 = −

6

h31
U1,

Ω19,19 = −
6

h32
U2, Ω20,20 = −γI,
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C1 = [C

19 times 19︷ ︸︸ ︷
0 . . . 0 ], ΓT

1 =
[
(ΛB)T

7 times︷ ︸︸ ︷
0 . . . 0 (ΛB)T

11 times︷ ︸︸ ︷
0 . . . 0 ]THa, ΓT

2 = [Ea

19 times︷ ︸︸ ︷
0 . . . 0 ]T.

Now, (30) using Schur complement, it is easy to obtain

Φ =


Ω
√
θC1 Γ1 εΓ2

∗ −γI 0 0
∗ ∗ −εI ∗
∗ ∗ ∗ −εI

 < 0, (31)

Then, pre- and post- multiplying both sides of (31) by diag(

20 times︷ ︸︸ ︷
X, . . . ,X IXI) and its

transpose, respectively. Define the following variables:

F = KXT , H̄1 = XH1X
T, H̄2 = XH2X

T, H̄3 = XH3X
T,

Λ = X−1, P̄ = XPXT, Q̄i = XQiX
T (i = 1, 2, . . . , 13),

R̄1 = XR1X
T, R̄2 = XR2X

T, S̄1 = XS1X
T, S̄2 = XS2X

T,

T̄1 = XT1X
T, T̄2 = XT2X

T, Ū1 = XU1X
T, Ū2 = XU2X

T,

V̄1 = XV1X
T, V̄2 = XV2X

T.

We can obtain (31) is equivalent to (4). Therefore, if Φ < 0, then

V̇ (t) + γ−1θyT(t)y(t)− 2(1− θ)yT(t)ω(t)T − γωT(t)ω(t) < 0 (32)

for any ξ(t) 6= 0. We integrate (32) from 0 to t∗ and get

t∗∫
0

(
−γ−1θyT(α)y(α)− 2(1− θ)yT(α)ω(α)− γωT(α)ω(α)

)
dα

6 −V (t∗) + V (0),

therefore,
Jyω(t) 6 −V (t∗) + V (0),

which implies
Jyω(t) 6 0

because V (0) = 0 under zero initial condition and V (t∗) > 0. Therefore, (3) holds for
all t∗ > 0. By Definition 1 the neural network (1) is asymptotically stable with a mixed
H∞ and passivity performance γ. This concludes the proof.

Remark 1. In Corollary 1, when W2 = 0, B = 0 and Bω = 0, the neural network (1)
will be reduced to the following system:

ż(t) = −Az(t) +W0f
(
z(t)

)
+W1f

(
z
(
t− σ(t)

))
. (33)

Then setting S1 = S2 = S3 = S4 = 0 in the proof of Theorem 1.
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Corollary 1. Under assumption (A1), for given scalers σ11, σ12, σ21, σ22, µ1 and µ2,
the neural network (33) is asymptotically stable if there exists positive definite matrices
P , Qi (i = 1, 2, . . . , 13), R1, R2, S1, S2, T1, T2, U1, U2,

P =

P11 P12 P13

∗ P22 P23

∗ ∗ P33

 ,
and positive diagonal matrices H1, H2, H3 such that the following LMIs hold:

Ω̃17×17 < 0, (34)
where

Ω̃1,1 = Q1 +Q4 +Q7 +Q10 +Q11 +Q12 +Q13 + h1R1 + h2R2 − T1 − TT
1 − T2

− TT
2 −

3

2
h1U1 −

3

2
h2U2 − F1H1 − F1H3,

Ω̃1,2 = F1H3, Ω̃1,5 = P12, Ω̃1,6 = −P12, Ω̃1,7 = P13,

Ω̃1,8 = −P13, Ω̃1,9 = P11, Ω̃1,10 = Q2 +Q5 +Q8 + ΛW0 + F2H1 + F2H3,

Ω̃1,11 = −F2H3, Ω̃1,14 =
2

h1
T1, Ω̃1,15 =

2

h2
T2, Ω̃1,16 =

3

h1
U1,

Ω̃1,17 =
3

h2
U2, Ω̃2,2 = −(1 − µ)Q1 − F1H2 − F1H3, Ω̃2,10 = −HT

3 F
T
2 ,

Ω̃2,11 = −(1 − µ)Q2 + F2H2 + F2H3, Ω̃3,3 = −(1 − µ1)Q4,

Ω̃3,12 = −(1 − µ1)Q5, Ω̃4,4 = −(1 − µ2)Q7, Ω̃4,13 = −(1 − µ2)Q8,

Ω̃5,5 = −Q10 −
1

h1

(
S1+

π2

4
S1

)
, Ω̃5,6 = −

1

h1

(
−S1+

π2

4
S1

)
,

Ω̃5,14 = PT
22 +

1

h21

π2

2
S1, Ω̃6,6 = −Q11 −

1

h1

(
S1+

π2

4
S1

)
,

Ω̃6,14 = −PT
22 +

1

h21

π2

2
S1, Ω̃7,7 = −Q12 −

1

h2

(
S2+

π2

4
S2

)
,

Ω̃7,8 = −
1

h2

(
−S2+

π2

4
S2

)
, Ω̃7,14 = PT

23, Ω̃7,15 = PT
33 +

1

h22

π2

2
S2,

Ω̃8,8 = −Q13 −
1

h2

(
S2+

π2

4
S2

)
, Ω̃8,14 = −PT

23, Ω̃8,15 =
1

h22

π2

2
S2, Ω̃8,16 = −PT

33,

Ω̃9,9 = h1S1 + h2S2 +
h21
2
T1 +

h22
2
T2 +

h31
6
U1 +

h32
6
U2 − Λ− ΛT, Ω̃9,10 = ΛW0,

Ω̃9,11 = ΛW1, Ω̃10,10 = Q3 +Q6 +Q9 −H1 −H3, Ω̃10,11 = H3,

Ω̃11,11 = −(1 − µ)Q3 −H2 −H3, Ω̃12,12 = −(1 − µ1)Q6, Ω̃13,13 = −(1 − µ2)Q9,

Ω̃14,14 = −
1

h1
R1 −

π2

h31
S1 −

2

h21
T1, Ω̃15,15 = −

1

h2
R2 −

π2

h32
S2 −

2

h22
T2,

Ω̃16,16 = −
6

h31
U1, Ω̃17,17 = −

6

h32
U2.

Remark 2. In general, computational complexity will be a big issue based on how
large are the LMIs and how more are the decision variables. The results in Theorem 3.1
and Corollary 1 are derived based on the construction of proper Lyapunov? Krasovskii
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functional with triple and four integral terms and by using Wirtinger-based inequality,
Jensen’s inequality. It should be mentioned that the derived nonfragile mixed H∞ pas-
sivity criteria for the considered neural networks with time-varying delays is less conser-
vative. Meanwhile, it should also be noticed that the relaxation of the derived results is
acquired at the cost of more number of decision variables. As far the results to be efficient
enough, it is more comfortable to have larger maximum allowable upper bounds, but still
in order to reduce computational burden and time consumption, our future work will be
focused on reducing the number of decision variables.

Remark 3. In [1,21,30,37,56], the authors discussed stability, passivity and dissipativity
of various models such as Markov jump NNs, BAM NNs, neutral-type NNs, genetic
regulatory networks. These models are dealt with only one time-varying delay, but in
[25, 28, 35, 41, 46, 55], the systems are based on a new type of time-varying delay model
proposed recently, which contains two time-varying delay components in the state of
the dynamical systems, because the system with two additive time-varying delay has
a physically powerful application background in a networked control system. Here, it
should be mentioned that the passivity control for NNs with the additive time-varying
delays. This criterion is derived by defining LKF in (5), which makes full use of the
information about σ1(t) and σ2(t). Therefore, it is of significance to consider nonfragile
mixed H∞ and passivity control problem for neural networks with two additive time-
varying delay components.

Remark 4. In [50], the problem of nonfragile robust finite-timeH∞ control for a class of
uncertain nonlinear stochastic Itô systems via neural network is addressed. The problem
of H∞ control system with parametric uncertainty in all matrices of the system and
output equations have been investigated in [47]. In [10], the author addressed the problem
of nonfragile observer-based passive control for a class of Markovian jumping systems
(MJSs) subjected to uncertainties, nonlinearities and time-delays. In the literature, many
control methods have been used such as nonfragile H∞ control, observer-based passive
control and output feedback H∞ control. However, investigation on nonfragile mixed
H∞ and passivity with successive time-varying delay components have yet to be found in
the literature. Motivated by the above discussion, a nonfragile controller mixed H∞ and
passivity for neural networks with successive time-varying delay components, which is
different from other existing literature, has been developed in this paper.

4 Numerical examples

In this section, we present two numerical examples to demonstrate the effectiveness and
less conservativeness of the proposed results.

Example 1. Consider the neural network (1) with the following parameters:

A =

[
1.5 0
0 1.2

]
, B =

[
0.4 0.1
0.01 0.2

]
, Bω =

[
0.3 0.1
0.02 0.03

]
,

C =

[
0.2 0.01
0.01 0.4

]
, Ea =

[
0.1 0
0 0.1

]
, Ha =

[
0.5 0
0 0.5

]
,
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F1 =

[
0 0
0 0

]
, F2 =

[
0.60 0

0 0.55

]
,

W0 =

[
0.9 0.7
−0.04 −0.01

]
, W1 =

[
0.4 0.03
0.01 0.07

]
, W2 =

[
0.2 0.01
0.5 0.01

]
.

For three different values of θ (three different cases), by Theorem 1, we can obtain the
desire nonfragile state feedback controller as follows:

Case 1 (mixed H∞ and passivity case). When σ11 = 0.2, σ12 = 1.5, σ21 = 0.2,
σ22 = 1.9, ρ = 1.1, µ1 = 0.1, µ2 = 0.2, η = 0.3 and θ = 0.5, by applying
Theorem 1 and Matlab LMI toolbox to solve LMI (4), the optimized minimum mixed
H∞ and passivity performance can be obtained as γ = 0.6011, and the corresponding
nonfragile state feedback controller gain is given by

K =

[
0.6716 −0.0162
−0.0159 0.7128

]
.

Figure 1(a) denotes the state response of z(t) with the obtained controller gain. Figure 1(b)
represents the state response z(t) without controller. It is concluded from Figs. 1(a) and
1(b) that the state trajectories converges to zero quickly, and it demonstrates the efficiency
of the proposed controller.
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Figure 1. State response curves for (1) in Example 1: (a) mixed H∞ and passivity control; (b) without control;
(c) passivity control; (d) H∞ control.
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Case 2 (passivity case). When σ11 = 0.2, σ12 = 1.5, σ21 = 0.2, σ22 = 1.9, ρ = 1.1,
µ1 = 0.1, µ2 = 0.2, η = 0.3 and θ = 0, by applying Theorem 1 and Matlab LMI toolbox
to solve LMI (4), the optimized minimum passivity performance index can be obtained as
γ = 0.6371, and the associated nonfragile state feedback controller gain is given by

K =

[
0.6746 −0.0178
−0.0176 0.7160

]
.

The state response curve for passive control is provided in Fig. 1(c).
Case 3 (H∞ case). When σ11 = 0.2, σ12 = 1.5, σ21 = 0.2, σ22 = 1.9, ρ = 1.1,

µ1 = 0.1, µ2 = 0.2, η = 0.3 and θ = 1, by applying Theorem 1 and Matlab LMI
toolbox to solve LMI (4), the optimized minimum H∞ performance index is calculated
as γ = 0.9901, and the corresponding nonfragile state feedback controller gain is given by

K =

[
0.6941 −0.0076
−0.0074 0.7280

]
and the state response curves for H∞ control is given in Fig. 1(d).

Example 2. Consider the neural network (33) as discussed in [25, 28, 35, 41, 46, 55] with
the following parameters:

A =

[
2 0
0 2

]
, W0 =

[
1 1
−1 −1

]
, W1 =

[
0.88 1

1 1

]
,

F1 =

[
0 0
0 0

]
, F2 =

[
0.4 0
0 0.8

]
.

Let us consider σ12 and σ22 be the upper bounds of time-varying delays σ1(t) and
σ2(t), respectively, and σ̇1(t) 6 µ1, σ̇2(t) 6 µ2. Solving LMI (34) in Corollary 1 by
using Matlab LMI toolbox, we can calculate admissible upper bounds of σ12 and σ22,
which are given in Tables 1, 2. When σ11 = 0, σ21 = 0, µ1 = 0.7 and µ2 = 0.1, 0.2,
Table 1 illustrates admissible upper bounds of σ22 for different values of σ12. Similarly,
admissible upper bounds of σ12 for different values of σ22 with σ11 = 0, σ21 = 0,
µ1 = 0.7, µ2 = 0.1, 0.2 are described in Table 2. For system (33) with the above
parameters, Fig. 2 shows, for the state responses z(t), when σ12 = 0.8, σ22 = 2.7651,
and the initial condition (−0.2, 0.2)T. This figure shows that the state signal converges to
zero, which verifies the effectiveness of Corollary 1.

Table 1. Admissible upper bounds of σ22 for different values of µ2 and σ12 with µ1 = 0.7.

Methods µ2 = 0.1 µ2 = 0.2

σ12 = 0.8 σ12 = 1 σ12 = 1.2 σ12 = 0.8 σ12 = 1 σ12 = 1.2

[35] 1.5666 1.3668 1.1664 0.8515 0.6596 0.4616
[46] 1.9528 1.7992 1.6441 0.8703 0.6713 0.4715
[41] 2.0164 1.8203 1.6197 1.1364 0.9454 0.7207
[55] 1.9666 1.8351 1.6803 1.1296 0.9603 0.7443
[28] 2.2448 1.9642 1.8591 1.1684 1.0079 0.8856
[25] 2.3547 2.0053 1.9217 1.2012 1.1303 0.9754

Corollary 1 2.7651 2.4331 2.2156 1.7259 1.3992 1.0895
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Table 2. Admissible upper bounds of σ12 for different values of µ2 and σ22 with µ1 = 0.7.

Methods µ2 = 0.1 µ2 = 0.2

σ22 = 0.8 σ22 = 1 σ22 = 1.2 σ22 = 0.8 σ22 = 1 σ22 = 1.2

[35] 2.6928 2.2389 2.0639 1.8474 1.5292 1.3455
[46] 2.7248 2.3325 2.2187 1.8710 1.5973 1.4782
[41] 2.8545 2.4856 2.4579 1.9851 1.8881 1.6203
[55] 2.9792 2.5684 2.5104 2.0740 1.9021 1.8003

Corollary 1 3.4567 3.0017 2.9604 2.4102 2.0135 1.9136
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Figure 2. State trajectories system (33) in Example 2.

5 Conclusion

The problem of nonfragile mixed H∞ and passivity control for neural networks with
successive time-varying delay components have been presented in this paper. We con-
struct a suitable Lyapunov–Krasovskii function (LKF) with triple and quadruple integral
terms and using Wirtinger-type inequality technique. Sufficient conditions are established
to ensure the existence of nonfragile mixed H∞ and passivity analysis. The results are
proposed in terms of linear matrix inequalities, which can guarantee the asymptotic stable
of the considered neural networks and its nonfragile controller. Finally two examples are
presented to illustrate the effectiveness of the proposed criteria. This work can be extended
to complex networks and dissipative with Markovian jumping parameter and using delay
partitioning approach. This will be done in the near future.
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