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Abstract. By using the method of reducing the order of a derivative, the higher-order fractional
differential equation is transformed into the lower-order fractional differential equation and
combined with the mixed monotone operator, a unique positive solution is obtained in this paper
for a singular p-Laplacian boundary value system with the Riemann–Stieltjes integral boundary
conditions. This equation system is very wide because there are many parameters, which can be
changeable in the equation system in this paper, and the nonlinearity is allowed to be singular
in regard to not only the time variable but also the space variable. Moreover, the unique positive
solution that we obtained in this paper is dependent on λ, and an iterative sequence and convergence
rate are given, which are important for practical application. An example is given to demonstrate
the application of our main results.

Keywords: fractional differential equation system, singular p-Laplacian, integral boundary
condition; iterative positive solution, mixed monotone operator.

1 Introduction

During the last decades, boundary value problems for nonlinear fractional differential
equations have gained its popularity and significance due to its distinguished applications
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as valuable tools in different areas of applied different areas such as physics, chemistry,
electrical networks, economics, rheology, biology chemical, image processing, and so
on. Fractional calculus have been shown to be more accurate and realistic than integer-
order models, and it also provides an excellent tool to describe the hereditary properties
of material and processes, particularly in viscoelasticity, electrochemistry, porous media,
and so on. There has been a significant development in the study of fractional differential
equations in recent years. For an extensive collection of such literature, readers can refer to
[4,6–8,10–13,15,17,18,21–25,27–32], and there are a lot of methods to study differential
equations such as degree theory (see [14]), mixed monotone operator (see [8,13,15,29]),
bifurcation method (see [14,20]), spectral analysis (see [2,19,27,31]), and so on. For some
differential equation in which fractional derivatives are involved in the nonlinear terms,
reader can refer to [6–8,28,29,31]. In order to meet the needs, the p-Laplacian equation is
introduced in some boundary value problems. Fractional differential equation system of
p-Laplacian with the Riemann–Stieltjes integral boundary conditions is a type of equation
system that is very wide, and the general equation systems are special cases of p-Laplacian
equation system. We refer the reader to [3, 9, 12, 16, 20, 26, 27] for some relevant work.
In [27], the authors considered the following fractional differential equation:

−Dβ
t

(
ϕp
(
Dα
t x
))

(t) = λf
(
t, x(t)

)
, 0 < t < 1,

x(0) = 0, Dα
0+x(0) = 0, x(1) =

1∫
0

x(s) dA(s),

where α, β ∈ R+ = [0,+∞), 0 < β 6 1, 1 < α 6 2, λ > 0 is a parameter, A is
a function of bounded variation,

∫ 1

0
x(s) dA(s) denotes the Riemann–Stieltjes integral

of x with respect to A, f(t, x) : (0, 1) × (0,+∞) → (0,+∞) is continuous and may
be singular at t = 0, 1 and x = 0. Dα

t+ ,Dβ
t+ are the Riemann–Liouville differential

fractional derivatives of order α, β, and the p-Laplacian operator ϕp is defined as ϕp(s) =
|s|p−2s, p > 1. The authors obtained the existence of positive solution by the upper
and lower solutions and Schauder fixed-point theorems. In [12], the authors discussed
a Hadamard fractional differential equation boundary value problem with p-Laplacian
operator

−Dβ
t

(
ϕp
(
Dα
t x
))

(t) = f
(
t, x(t)

)
, 1 < t < e,

x(1) = x′(1) = x′(e) = 0, Dα
0+x(1) = Dα

0+x(e) = 0,

where α, β ∈ R+, 2 < α 6 3, 1 < β 6 2, ϕp(s) = |s|p−2s, p > 1, and f :
[1, e]×R+ → R+ is a positive continuous function,Dα

t+ ,Dβ
t+ are the Riemann–Liouville

differential fractional derivative of order α, β. The authors obtained the existence and
the uniqueness of positive solutions by using the Leray–Schauder-type alternative and
the Guo–Krasnoselskii fixed-point theorem. In [23], the authors investigated the singular
problem

−Dα
t u(t) + λf

(
t, u(t), Dβ

t u(t), v(t)
)

= 0, 0 < t < 1,

−Dγ
t v(t) + λg

(
t, u(t)

)
= 0, 0 < t < 1,
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Dβ
t u(0) = Dβ+1

t u(0) = 0, Dβ
t u(1) =

1∫
0

Dβ
t u(s) dA(s),

v(0) = v′(0) = 0, v(1) =

1∫
0

v(s) dB(s),

where α, β, γ ∈ R1
+, 2 < α, γ 6 3, 0 < β < 1, u denotes the number of uninfected

CD4+T cells and v denotes the number of infected cells, λ > 0 is a parameter, α−β > 2,∫ 1

0
Dβ
t u(s) dA(s) and

∫ 1

0
v(s) dB(s) denote the Riemann–Stieltjes integrals of u, v with

respect to A and B, respectively, A, B are bounded variations, f : (0, 1) × R3
+ → R,

g : (0, 1) × R+ → R are two continuous functions and may be singular at t = 0, 1,
Dα
t , Dβ

t , Dγ
t are the standard Riemann–Liouville derivatives. The authors obtained the

existence of positive solution by the fixed-point theorem.
Motivated by the excellent results above, in this paper, we will devote to consider-

ing the following singular p-Laplacian fractional differential equation (PFDE) with the
Riemann–Stieltjes integral boundary conditions:

Dα
0+

(
ϕp
(
Dγ

0+u
))

(t) + λ1/(q−1)f
(
t, u(t), Dµ1

0+u(t), Dµ2

0+u(t), . . . ,

D
µn−1

0+ u(t), v(t)
)

= 0, 0 < t < 1,

Dβ
0+

(
ϕp
(
Dδ

0+v
))

(t) + µ1/(q−1)g
(
t, u(t), Dη1

0+u(t), Dη2
0+u(t), . . . ,

D
ηm−1

0+ u(t)
)

= 0, 0 < t < 1,

u(0) = Dµi
0+u(0) = 0, Dγ

0+u(0) = Dγ+µi
0+ u(0) = 0, i = 1, 2, . . . , n− 2,

D
µn−1

0+ (1) = χ

η∫
0

h(t)D
µn−1

0+ u(t) dA(t),

v(0) = Dηi
0+v(0) = 0, Dδ

0+v(0) = Dδ+ηi
0+ v(0) = 0, i = 1, 2, . . . ,m− 2,

D
ηm−1

0+ v(1) = ι

ϑ∫
0

a(t)D
ηm−1

0+ v(t) dB(t),

(1)

where α, β, γ, δ, µκ, η% ∈ R+ (κ = 1, 2, . . . , n − 1; % = 1, 2, . . . ,m − 1), n,m ∈ N
(natural number set), n,m > 2, and 1/2 < α, β 6 1, n− 1 < γ 6 n, m− 1 < δ 6 m,
p-Laplacian operator ϕp is defined as ϕp(s) = |s|p−2s, p, q > 1, 1/p + 1/q = 1,
n − κ < γ − µκ 6 n + 1 − κ, m − % < δ − η% 6 m + 1 − % (κ = 1, 2, . . . , n − 1;
% = 1, 2, . . . ,m − 1), ηi 6 µn−1 (i = 1, 2, . . . , n − 1) and 0 < η, ϑ 6 1,
λ, µ, χ, ι > 0 are parameters, f ∈ C((0, 1) × (0,+∞)n+1,R+), and f(t, x1, x2, . . . ,
xn+1) has singularity at xi = 0 (i = 1, 2, . . . , n+ 1). t = 0, 1, g ∈ C((0, 1)×Rm+ ,R+),
h, a ∈ C(0, 1), A, B are functions of bounded variation,

∫ η
0
h(t)D

µn−1

0+ u(t) dA(t),∫ ϑ
0
a(t)D

ηm−1

0+ v(t) dB(t) denote the Riemann–Stieltjes integral with respect to A and B,
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Dα
0+u,Dβ

0+v,Dγ
0+u,Dδ

0+v,Dµκ
0+u,Dη%

0+u are the standard Riemann–Liouville derivative.
In this paper, the existence of positive solutions is obtained by means of mixed monotone
operator in cones.

In this paper, we investigate the existence of positive solutions for a singular p-Lap-
lacian boundary value system with the Riemann–Stieltjes integral boundary conditions.
A vector (u, v) ∈ C[0, 1] × C[0, 1] is said to be a positive solution of system (1) if
and only if (u, v) satisfies (1) and u(t) > 0, v(t) > 0 for any t ∈ (0, 1]. Compared
with the above results, our work presented in this paper has the following several new
features. Firstly, fractional derivatives are involved in the nonlinear terms of fractional
differential equation (1). Secondly, the method we used in this paper is reducing the
order of derivative, that is, higher-order fractional differential equation is transformed
into lower-order fractional differential equation. Thirdly, the uniqueness positive solution
of Eq. (1) is dependent on λ.

For convenience in presentation, here we list some conditions to be used throughout
the paper.

(S1) f(t, x1, x2, . . . , xn+1) = φ(t, x1, x2, . . . , xn+1)+ψ(t, x1, x2, . . . , xn+1), where
φ : (0, 1) × (0,+∞)n+1 → R+ is continuous, φ(t, x1, x2, . . . , xn+1) may be
singular at t = 0, 1 and is nondecreasing on xi > 0 (i = 1, 2, . . . , n + 1).
ψ : (0, 1) × (0,+∞)n+1 → R+ is continuous, ψ(t, x1, x2, . . . , xn+1) may be
singular at t = 0, 1, xi = 0 and is nonincreasing on xi > 0 (i = 1, 2, . . . , n+1).

(S2) There exists 0 < σ < 1 such that, for all xi > 0 (i = 1, 2, . . . , n + 1) and
t, l ∈ (0, 1),

φ(t, lx1, lx2, . . . , lxn+1) > lσ
1/(q−1)

φ(t, x1, x2, . . . , xn+1),

ψ
(
t, l−1x1, l

−1x2, . . . , l
−1xn+1

)
> lσ

1/(q−1)

ψ(t, x1, x2, . . . , xn+1).

(S3) g ∈ C((0, 1) × (0,+∞)m,R+), g(t, x1, x2, . . . , xm) is nondecreasing on
xi > 0 (i = 1, 2, . . . ,m), and g(t, 1, . . . , 1) 6= 0, t ∈ (0, 1). Moreover, there
exists ς ∈ (0, 1) such that, for all xi > 0 (i = 1, 2, . . . ,m) and t, l ∈ (0, 1),

g(t, lx1, lx2, . . . , lxm) > lς
1/(q−1)

g(t, x1, x2, . . . , xm).

(S4) 0 <
∫ 1

0
φ2(τ, 1, 1, . . . , 1) dτ < +∞,

0 <

1∫
0

τ−2(γ−1)σ
1/(q−1)

ψ2(τ, 1, 1, . . . , 1) dτ < +∞,

0 <

1∫
0

g2
(
τ, 1, 1, . . . , 1

)
dτ < +∞.

Here q is defined by (1).
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Remark 1. According to (S2) and (S3), for all xi > 0 (i = 1, 2, . . . , n + 1), σ, ς, t ∈
(0, 1), l > 1, we have

φ(t, lx1, lx2, . . . , lxn+1) 6 lσ
1/(q−1)

φ(t, x1, x2, . . . , xn+1),

ψ
(
t, l−1x1, l

−1x2, . . . , l
−1xn+1) 6 lσ

1/(q−1)

ψ(t, x1, x2, . . . , xn+1),

g(t, lx1, lx2, . . . , lxm) 6 lς
1/(q−1)

g(t, x1, x2, . . . , xm).

2 Preliminaries and lemmas

For some basic definitions and lemmas about the theory of fractional calculus, the reader
can refer to the recent literature such as [17, 18].

Lemma 1. (See [17, 18].) Assume that u ∈ Cn(0, 1) ∩ L(0, 1), then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n,

where n = [α] + 1, Ci ∈ R (i = 1, 2, . . . , n).

Lemma 2. (See [10].)

(i) If x ∈ L(0, 1), v > σ > 0, then

Iv0+I
σ
0+x(t) = Iv+σ0+ x(t),

Dσ
0+I

v
0+
x(t) = Iv−σ0+ x(t), Dσ

0+I
σ
0+x(t) = x(t).

(ii) If v > 0, σ > 0, then Dv
0+t

σ−1 = (Γ(σ)/Γ(σ − v))tσ−v−1.

Lemma 3. Let ρ ∈ L1(0, 1) ∩ C(0, 1), then the equation of the BVPs

−Dγ−µn−1

0+ x(t) = ρ(t), 0 < t < 1,

x(0) = 0, x(1) = χ

η∫
0

h(t)x(t) dA(t),

−Dσ−ηm−1

0+ y(t) = ρ(t), 0 < t < 1,

y(0) = 0, y(1) = ι

ϑ∫
0

a(t)y(t) dB(t)

have integral representation

x(t) =

1∫
0

G(t, s)ρ(s) ds =

1∫
0

(
G1(t, s) +G2(t, s)

)
ρ(s) ds,

y(t) =

1∫
0

H(t, s)ρ(s) ds =

1∫
0

(
H1(t, s) +H2(t, s)

)
ρ(s) ds,

(2)

https://www.mii.vu.lt/NA
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respectively, where

G1(t, s) =
1

Γ(γ − µn−1)

×

{
tγ−µn−1−1(1− s)γ−µn−1−1 − (t− s)γ−µn−1−1, 0 6 s 6 t 6 1,

tγ−µn−1−1(1− s)γ−µn−1−1, 0 6 t 6 s 6 1,

G2(t, s) =
χtγ−µn−1−1

1− F
jA(s), F = χ

η∫
0

tγ−µn−1−1h(t) dA(t),

H1(t, s) =
1

Γ(δ − ηm−1)

×

{
tδ−ηm−1−1(1− s)δ−ηm−1−1 − (t− s)δ−ηm−1−1, 0 6 s 6 t 6 1,

tδ−ηm−1−1(1− s)δ−ηm−1−1, 0 6 t 6 s 6 1,

H2(t, s) =
ιtδ−ηm−1−1

1− C
jB(s), C = ι

ϑ∫
0

tδ−ηm−1−1a(t) dB(t),

jA(s) =

η∫
0

h(t)G1(t, s) dA(t), jB(s) =

ϑ∫
0

a(t)H1(t, s) dB(t).

Proof. The proof is similar to that for Lemma 2.3 in [25], we omit it here.

Lemma 4. Let 0 6 C, F < 1, and jA(s), jB(s) > 0 for s ∈ [0, 1], then the Green
functions defined by (2) satisfy:

(i) G,H : [0, 1] × [0, 1] → R+ are continuous, and G(t, s), H(t, s) > 0 for all
t, s ∈ (0, 1);

(ii) There exist four positive constants a∗, a∗, b∗, b∗ such that, for all t, s ∈ [0, 1],

a∗t
γ−µn−1−1jA(s) 6 G(t, s) 6 a∗tγ−µn−1−1,

b∗t
δ−ηm−1−1jB(s) 6 H(t, s) 6 b∗tδ−ηm−1−1,

where

a∗ =
χ

1− F
, a∗ =

χ‖jA(s)‖
1− F

+
1

Γ(γ − µn−1 − 1)
,

b∗ =
ι

1− C
, b∗ =

ι‖jB(s)‖
1− C

+
1

Γ(δ − ηm−1 − 1)
.

Proof. The proof is similar to that for Lemma 2.2 in [27], we omit it here.
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To study the PFDE (1), in what follows, we consider the associated linear PFDE:

Dα
0+

(
ϕp
(
D
γ−µn−1

0+ x
))

(t) + ρ(t) = 0, 0 < t < 1,

x(0) = 0, Dγ
0+x(0) = 0, x(1) = χ

η∫
0

h(t)x(t) dA(t),
(3)

Dβ
0+

(
ϕp
(
D
δ−ηm−1

0+ y
))

(t) + ρ(t) = 0, 0 < t < 1,

y(0) = 0, Dδ
0+y(0) = 0, y(1) = µ

ι∫
0

a(t)y(t) dB(t).
(4)

Lemma 5. The PFDE (3), (4) have the unique positive solution

x(t) =

1∫
0

G(t, s)

( s∫
0

a(s− τ)α−1ρ(τ) dτ

)q−1
ds, t ∈ [0, 1], (5)

y(t) =

1∫
0

H(t, s)

( s∫
0

b(s− τ)β−1ρ(τ) dτ

)q−1
ds, t ∈ [0, 1], (6)

respectively, where a = 1/Γ(α), b = 1/Γ(β).

Proof. Let h = D
γ−µn−1

0+ x, k = ϕp(h), then the solution of the initial value problem

Dα
0+k(t) + ρ(t) = 0, 0 < t < 1, k(0) = 0

is given by k(t) = C1t
α−1 − Iα0+ρ(t), t ∈ [0, 1]. By the relations k(0) = 0, we have

C1 = 0, and hence
k(t) = −Iα0+ρ(t), t ∈ [0, 1]. (7)

By Dγ
0+x = h, h = ϕ−1p (k), we have from (7) that the solution of (3) satisfies

D
γ−µn−1

0+ x(t) = ϕ−1p
(
−Iα0+ρ(t)

)
, 0 < t < 1,

x(0) = 0, x(1) = χ

η∫
0

h(t)x(t) dA(t).
(8)

By (2), the solution of Eq. (8) can be written as

x(t) = −
1∫

0

G(t, s)ϕ−1p
(
−Iα

0+
ρ(s)

)
ds, t ∈ [0, 1]. (9)

Since ρ(s) > 0, s ∈ [0, 1], we have ϕ−1p (−Iα0+ρ(s)) = −(Iα0+ρ(s))q−1, s ∈ [0, 1], which
implies that the solution of Eq. (3) is (5). Similarly, the solution of Eq. (4) is (6).
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Let u(t) = I
µn−1

0+ x(t), v(t) = I
ηm−1

0+ y(t), problem (1) can turn into the following
modified problem of the PFDE:

Dα
0+

(
ϕp
(
D
γ−µn−1

0+ x
))

(t) + λ1/(q−1)f
(
t, I

µn−1

0+ x(t), I
µn−1−µ1

0+ x(t), . . . ,

I
µn−1−µn−2

0+ x(t), x(t), I
ηm−1

0+ y(t)
)

= 0, 0 < t < 1,

Dβ
0+

(
ϕp
(
D
δ−ηm−1

0+ y
))

(t) + µ1/(q−1)g
(
t, I

µn−1

0+ x(t), I
µn−1−η1
0+ x(t), . . . ,

I
µn−1−ηm−1

0+ x(t)
)

= 0, 0 < t < 1,

x(0) = 0, Dγ
0+x(0) = 0, x(1) = χ

η∫
0

h(t)x(t) dA(t),

y(0) = 0, Dδ
0+y(0) = 0, y(1) = ι

ϑ∫
0

a(t)y(t) dB(t).

(10)

Lemma 6. Let u(t) = I
µn−1

0+ x(t), v(t) = I
ηm−1

0+ y(t), x(t), y(t) ∈ C[0, 1]. Then (1) can
be transformed into (10). Moreover, if (x, y) ∈ C[0, 1]× C[0, 1] is a positive solution of
problem (10), then (I

µn−1

0+
x, I

ηm−1

0+ y) is a positive solution of problem (1).

Proof. The proof is similar to that for Lemma 2.5 in [8], we omit it here.

The vector (u, v) is a solution of system (1) if and only if (x, y) ∈ C[0, 1] × C[0, 1]
is a solution of the following nonlinear integral equation system:

x(t) = λ

1∫
0

G(t, s)

( s∫
0

a(s− τ)α−1f
(
τ, I

µn−1

0+ x(τ), I
µn−1−µ1

0+ x(τ), . . . ,

I
µn−1−µn−2

0+ x(τ), x(τ), I
ηm−1

0+ y(τ)
)

dτ

)q−1
ds, t ∈ [0, 1],

y(τ) = µ

1∫
0

H(τ, s)

( s∫
0

b(s− w)β−1g
(
w, I

µn−1

0+ x(w), I
µn−1−η1
0+ x(w), . . . ,

I
µn−1−ηm−1

0+ x(w)
)

dw

)q−1
ds, t ∈ [0, 1].

(11)

Obviously, system (11) is equivalent to the following integral equation:

x(t) = λ

1∫
0

G(t, s)

( s∫
0

a(s− τ)α−1f

(
τ, I

µn−1

0+ x(τ),

I
µn−1−µ1

0+ x(τ), . . . , I
µn−1−µn−2

0+ x(τ), x(τ),

Nonlinear Anal. Model. Control, 23(2):182–203
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I
ηm−1

0+

[
µ

1∫
0

H(τ, s)

( s∫
0

b(s− w)β−1g
(
w, I

µn−1

0+ x(w), . . . ,

I
µn−1−ηm−1

0+ x(w)
)

dw

)q−1
ds

]
dτ

)q−1
ds.

Let P be a normal cone of a Banach space E, and e ∈ P , e > θ, where θ is a zero
element of E. Define a component of P by Qe = {u ∈ P | there exists a constant C > 1
such that e/c 6 u 6 Ce}. A : Qe × Qe → P is said to be mixed monotone if
A(u, y) is nondecreasing in u and nonincreasing in y, i.e., u1 6 u2 (u1, u2 ∈ Qe)
implies A(u1, y) 6 A(u2, y) for any y ∈ Qe, and y1 6 y2 (y1, y2 ∈ Qe) implies
A(u, y1) > A(u, y2) for any u ∈ Qe. The element u∗ ∈ Qe is called a fixed point of A if
A(u∗, u∗) = u∗.

Lemma 7. (See [1, 5].) Suppose that A : Qe ×Qe → Qe is a mixed monotone operator
and there exists a constant 0 < σ < 1 such that

A

(
lx,

1

l
y

)
> lσA(x, y), x, y ∈ Qe, 0 < l < 1, (12)

thenA has a unique fixed point x∗∈ Qe, and for any x0∈ Qe, we have limk→∞ xk = x∗,
where xk = A(xk−1, xk−1) (k = 1, 2, . . . ), and the convergence rate is ‖xk − x∗‖ =

o(1− rσk), where r is a constant dependent on x0 and 0 < r < 1.

Lemma 8. (See [1, 5].) Suppose that A : Qe ×Qe → Qe is a mixed monotone operator
and there exists a constant σ ∈ (0, 1) such that (12) holds. If x∗λ is a unique solution of
equation λA(x, x) = x, λ > 0 in Qe, then:

(i) For any λ0 ∈ (0,+∞), ‖x∗λ − x∗λ0
‖ → 0, λ→ λ0;

(ii) If 0 < σ < 1/2, then 0 < λ1 < λ2 implies x∗λ1
6 x∗λ2

, x∗λ1
6= x∗λ2

;
(iii) If 0 < σ < 1/2, then limλ→+∞ ‖x∗λ‖ = +∞, limλ→0+ ‖x∗λ‖ = 0.

Let e(t) = tγ−µn−1−1 for t ∈ [0, 1], we define a normal cone of C[0,1] by P =
{x ∈ C[0, 1]: x(t) > 0, t ∈ [0, 1]}, also define a component of P by

Qe =

{
x ∈ P : there exists D > 1,

1

D
e(t) 6 x(t) 6 De(t), t ∈ [0, 1]

}
.

Remark 2. Let s = τt, by simple calculation, we have

I
µn−1

0+ e(t) = I
µn−1

0+ tγ−µn−1−1 =
1

Γ(µn−1)

t∫
0

(t− s)µn−1−1sγ−µn−1−1 ds

=
tγ−1

Γ(n− 2)

1∫
0

(1− τ)µn−1−1τγ−µn−1−1 dτ =
Γ(γ − µn−1)

Γ(γ)
tγ−1. (13)
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Similarly, we have

I
ηm−1

0+ tδ−ηm−1 =
Γ(δ − ηm−1)

Γ(δ)
tδ−1,

I
µn−1−µκ
0+ e(t) =

Γ(γ − µn−1)

Γ(γ − µκ)
tγ−µκ−1, κ = 1, 2, . . . , n− 2, (14)

I
µn−1−η%
0+ e(t) =

Γ(γ − µn−1)

Γ(γ − η%)
tγ−η%−1, % = 1, 2, . . . ,m− 2. (15)

3 Main results

Theorem 1. Suppose that (S1)–(S4) hold. Then for all t ∈ [0, 1], the PFDE (1) has
a unique positive solution (u∗λ, v

∗
λ), which satisfies

Γ(γ − µn−1)

DΓ(γ)
tγ−1 6 u∗λ(t) 6

DΓ(γ − µn−1)

Γ(γ)
tγ−1,

µb∗Γ(δ − ηm−1)tδ−1b
q−1

Γ(β)
K1 6 v∗λ(t) 6

Γ(δ − ηm−1)b∗µtδ−1b
q−1

Γ(δ)(2β − 1)(q−1)/2
K2, (∗)

where K1, K2 are two positive constants, and at the same time, u∗λ satisfies:

(i) For λ0 ∈ (0,∞), ‖u∗λ − u∗λ0
‖ → 0, λ→ λ0;

(ii) If 0 < σ < 1/2, then 0 < λ1 < λ2 implies u∗λ1
6 u∗λ2

, u∗λ1
6= u∗λ2

;
(iii) If 0 < σ < 1/2, then limλ→0 ‖u∗λ‖ = 0, limλ→+∞ ‖u∗λ‖ = +∞.

Moreover, for any u0 ∈ Qe, constructing a successively sequence:

uk+1(t) = I
µn−1

0+

{
λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
τ, uk(τ), Dµ1

0+uk(τ), . . . ,

D
µn−1

0+ uk(τ), Au
(µn−1)
k (τ)

)
+ ψ

(
τ, uk(τ), Dµ1

0+uk(τ), . . . ,

D
µn−1

0+ uk(τ), Au
(µn−1)
k (τ)

))
dτ

]q−1
ds

}
, k = 0, 1, 2, . . . , t ∈ [0, 1],

and we have ‖uk−u∗λ‖ → 0 as k →∞, the convergence rate is ‖uk−u∗λ‖ = o(1−rσk),
where r is a constant, 0 < r < 1, and dependent on u0.

Proof. We now consider the existence of a positive solution to problem (1). From the
discussion in Section 2 we only need to consider the existence of a positive solution to
PFDE (11). In order to realize this purpose, define the operator A : Qe → P by

Ax(τ) = I
ηm−1

0+

{
µ

1∫
0

H(τ, s)

[ s∫
0

b(s− w)β−1g
(
w, I

µn−1

0+ x(w), I
µn−1−η1
0+ x(w), . . . ,

I
µn−1−ηm−1

0+ x(w)
)

dw

]q−1
ds

}
, τ ∈ [0, 1], (16)
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and define the operator Tλ : Qe ×Qe → P by

Tλ(x, z)(t) = λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
τ, I

µn−1

0+ x(τ), . . . ,

I
µn−1−µn−2

0+ x(τ), x(τ), Ax(τ)
)

+ ψ
(
τ, I

µn−1

0+ z(τ), . . . ,

I
µn−1−µn−2

0+ z(τ), z(τ), Az(τ)
))

dτ

]q−1
ds, t ∈ [0, 1].

Now we prove that Tλ : Qe ×Qe → P is well defined. For any x, z ∈ Qe, by (16), (S3),
(13), (15), and Remark 1, for all τ ∈ [0, 1], we have

µ

1∫
0

H(τ, s)

[ s∫
0

b(s− w)β−1g
(
w, I

µn−1

0+ x(w), I
µn−1−η1
0+ x(w), . . . ,

I
µn−1−ηm−1

0+ x(w)
)

dw

]q−1
ds

6 µb∗τ δ−m+1

1∫
0

[ s∫
0

b(s− w)β−1g

(
w,

DΓ(γ − µn−1)

Γ(γ)
wγ−1,

DΓ(γ − µn−1)

Γ(γ − η1)
wγ−η1−1, . . . ,

DΓ(γ − µn−1)

Γ(γ − ηm−1)
wγ−ηm−1−1

)
dw

]q−1
ds

6 µb∗τ δ−ηm−1−1
1∫

0

[ s∫
0

b(s− w)β−1g

(
w,

DΓ(γ − µn−1)

Γ(γ − ηm−2)
+ 1,

DΓ(γ − µn−1)

Γ(γ − ηm−1)
+ 1, . . . ,

DΓ(γ − µn−1)

Γ(γ − ηm−1)
+ 1

)
dw

]q−1
ds

6 µb∗τ δ−ηm−1−1b
q−1
(
DΓ(γ − µn−1)

Γ(γ − ηm−1)
+ 1

)ς

×
1∫

0

[ s∫
0

(s− w)β−1g(w, 1, 1, . . . , 1) dw

]q−1
ds, (17)

µ

1∫
0

H(τ, s)

[ s∫
0

b(s− w)β−1g
(
w, I

µn−1

0+ x(w), I
µn−1−η1
0+ x(w), . . . ,

I
µn−1−ηm−1

0+ x(w)
)

dw

]q−1
ds
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> µb∗τ
δ−ηm−1−1

1∫
0

jB(s)

[ s∫
0

b(s− w)β−1g

(
w,

Γ(γ − µn−1)

DΓ(γ)
wγ−1,

Γ(γ − µn−1)

DΓ(γ − η1)
wγ−η1−1, . . . ,

Γ(γ − µn−1)

DΓ(γ − ηm−1)
wγ−ηn−2−1

)
dw

]q−1
ds

> µb∗τ
δ−ηm−1−1

1∫
0

jB(s)

[ s∫
0

b(s− w)β−1w(γ−1)ς1/(q−1)

(
Γ(γ − µn−1)

DΓ(γ)

)ς1/(q−1)

g(w, 1, 1, . . . , 1) dw

]q−1
ds

= µb∗τ
δ−ηm−1−1b

q−1
(

Γ(γ − µn−1)

DΓ(γ)

)ς
×

1∫
0

jB(s)

[ s∫
0

w(γ−1)ς1/(q−1)

(s− w)β−1g(w, 1, 1, . . . , 1) dw

]q−1
ds. (18)

Hence, by (16), (17), (18), and the Hölder inequality, for τ ∈ [0, 1], we have

Ax(τ) = I
ηm−1

0+

(
µ

1∫
0

H(τ, s)

[ s∫
0

b(s− w)β−1g
(
w, I

µn−1

0+ x(w),

I
µn−1−η1
0+ x(w), . . . , I

µn−1−ηm−1

0+ x(w)
)

dw

]q−1
ds

)

6
Γ(δ − ηm−1)b∗µτ δ−1b

q−1

Γ(δ)(2β − 1)(q−1)/2

(
DΓ(γ − µn−1)

Γ(γ − ηm−1)
+ 1

)ς

×
1∫

0

[
s(2β−1)/2

( s∫
0

g2(w, 1, 1, . . . , 1) dw

)1/2 ]q−1
ds,

Ax(τ) = Im−20+

(
µ

1∫
0

H(τ, s)

[ s∫
0

b(s− w)β−1g
(
w, I

µn−1

0+ x(w),

I
µn−1−η1
0+ x(w), . . . , I

µn−1−ηm−1

0+ x(w)
)

dw

]q−1
ds

)

>
µb∗Γ(δ − ηm−1)τ δ−1b

q−1

Γ(δ)

(
Γ(γ − µn−1)

DΓ(γ)

)ς

×
1∫

0

jB(s)

[ s∫
0

w(γ−1)ς1/(q−1)

(s− w)β−1g(w, 1, 1, . . . , 1) dw

]q−1
ds. (19)
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By (S4), we get that Ax(τ) is well defined. From (13), (14), (19), (S1), and Remark 1 we
have

φ
(
τ, I

µn−1

0+ x(τ), I
µn−1−µ1

0+ x(τ), . . . , I
µn−1−µn−2

0+ x(τ), x(τ), Ax(τ)
)

6 φ

(
τ,
DΓ(γ − µn−1)

Γ(γ)
τγ−1 + 1, . . . ,

DΓ(γ − µn−1)

Γ(γ − µn−2)
τγ−µn−2−1 + 1,

Dτγ−µn−1−1,
Γ(δ − ηm−1)b∗µτ δ−1b

q−1

Γ(δ)(2β − 1)(q−1)/2

(
DΓ(γ − µn−1)

Γ(γ − ηm−1)
+ 1

)ς

×
1∫

0

[
s(2β−1)/2

( s∫
0

g2(w, 1, . . . , 1) dw

)1/2 ]q−1
ds+ 1

)
6 φ(τ, Db+ 1, Db+ 1, . . . , Dςb+ 1)

6 2σ
1/(q−1)

bσ
1/(q−1)

Dσ1/(q−1)

φ(τ, 1, 1, . . . , 1), τ ∈ (0, 1), (20)

where D > 1, b are two positive constants. By (13), (14), (19), (S1), and (S2), we also
have

ψ
(
τ, I

µn−1

0+ x(τ), I
µn−1−µ1

0+ x(τ), . . . , I
µn−1−µn−2

0+ x(τ), x(τ), Ax(τ)
)

6 ψ

(
τ,

Γ(γ−µn−1)

DΓ(γ)
τγ−1,

Γ(γ−µn−1)

DΓ(γ−µ1)
τγ−µ1−1, . . . ,

Γ(γ−µn−1)

DΓ(γ−µn−2)
τγ−µn−2−1,

τγ−µn−1−1

D
,
µb∗Γ(δ−ηm−1)τ δ−1b

q−1

Γ(δ)

(
Γ(γ−µn−1)

DΓ(γ)

)ς

×
1∫

0

jB(s)

[ s∫
0

w(γ−1)ς1/(q−1)

(s− w)β−1g(w, 1, 1, . . . , 1) dw

]q−1
ds

)

6 ψ

(
τ,

c

D
τγ−1,

c

D
τγ−1, . . . ,

c

D
τγ−1

)
= c−σ

1/(q−1)

Dσ1/(q−1)

τ (γ−1)σ
1/(q−1)

ψ(τ, 1, 1, . . . , 1), τ ∈ (0, 1), (21)

where c is a positive constant. Noting (c/D)τγ−1 < 1 and by (13), (14), (19), (S1), and
(S2), we have

φ
(
τ, I

µn−1

0+ x(τ), I
µn−1−µ1

0+ x(τ), . . . , I
µn−1−µn−2

0+ x(τ), x(τ), Ax(τ)
)

> φ

(
τ,

Γ(γ − µn−1)

DΓ(γ)
τγ−1,

Γ(γ − µn−1)

DΓ(γ − µ1)
τγ−µ1−1, . . . ,

Γ(γ − µn−1)

DΓ(γ − µn−2)
τγ−µn−2−1,

τγ−µn−1−1

D
,
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µb∗Γ(δ − ηm−1)τ δ−1b
q−1

Γ(δ)

(
Γ(γ − µn−1)

DΓ(γ)

)ς

×
1∫

0

jB(s)

[ s∫
0

w(γ−1)ς1/(q−1)

(s− w)β−1g(w, 1, 1, . . . , 1) dw

]q−1
ds

)

> φ

(
τ,

c

D
τγ−1,

c

D
τγ−1, . . . ,

c

D
τγ−1

)
= cσ

1/(q−1)

D−σ
1/(q−1)

τ (γ−1)σ
1/(q−1)

φ(τ, 1, 1, . . . , 1), τ ∈ (0, 1). (22)

By (13), (14), (19), (S1), and Remark 1, we also get

ψ
(
τ, I

µn−1

0+ x(τ), I
µn−1−µ1

0+ x(τ), . . . , I
µn−1−µn−2

0+ x(τ), x(τ), Ax(τ)
)

> ψ

(
τ,
DΓ(γ − µn−1)

Γ(γ)
τγ−1 + 1,

DΓ(γ − µn−1)

Γ(γ − µ1)
τγ−µ1−1 + 1, . . . ,

DΓ(γ − µn−1)

Γ(γ − µn−2)
τγ−µn−2−1 + 1, Dτγ−µn−1−1,

Γ(δ − ηm−1)b∗µτ δ−1b
q−1

Γ(δ)(2β − 1)(q−1)/2

×
(
DΓ(γ−µn−1)

Γ(γ−ηm−1)
+1

)ς 1∫
0

[
s(2β−1)/2

( s∫
0

g2(w, 1, 1, . . . , 1) dw

)1/2 ]q−1
ds+1

)
> ψ

(
τ, Dbτγ−1 + 1, Dbτγ−µ1−1 + 1, . . . , Dbτγ−µn−2−1 + 1, Dbτ δ−1 + 1

)
> 2−σ

1/(q−1)

b−σ
1/(q−1)

D−σ
1/(q−1)

ψ(τ, 1, 1, . . . , 1), τ ∈ (0, 1). (23)

For any x, z ∈ Qe, it follows from (20), (21) that

Tλ(x, z)(t)

= λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
τ, I

µn−1

0+ x(τ), I
µn−1−µ1

0+ x(τ), . . . ,

I
µn−1−µn−2

0+ x(τ), x(τ), Ax(τ)
)

+ ψ
(
τ, I

µn−1

0+ z(τ), I
µn−1−µ1

0+ z(τ), . . . ,

I
µn−1−µn−2

0+ z(τ), z(τ), Az(τ)
))

dτ

]q−1
ds

6 λa∗tγ−µn−1−1Dσaq−1
1∫

0

[
2σ

1/(q−1)

bσ
1/(q−1) 1

(2α− 1)1/2
s(2α−1)/2

×

( s∫
0

φ2(τ, 1, 1, . . . , 1) dτ

)1/2
+ c−σ

1/(q−1) 1

(2α− 1)1/2
s(2α−1)/2
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×

( s∫
0

τ−2(γ−1)σ
1/(q−1)

ψ2(τ, 1, 1, . . . , 1) dτ

)1/2 ]q−1
ds

6 λa∗tγ−µn−1−1Dσaq−1
1

(2α− 1)(q−1)/2

×
1∫

0

[
2σ

1/(q−1)

bσ
1/(q−1)

( s∫
0

φ2(τ, 1, 1, . . . , 1) dτ

)1/2

+ c−σ
1/(q−1)

( s∫
0

τ−2(γ−1)σ
1/(q−1)

ψ2(τ, 1, 1, . . . , 1) dτ

)1/2 ]q−1
ds

< +∞, t ∈ [0, 1]. (24)

By (S4), (24), we have that Tλ : Qe ×Qe → P is well defined.
Next, we will prove Tλ : Qe ×Qe → Qe. Formula (24) imply that

Tλ(x, z)(t) 6 Dtγ−n+1 = De(t), t ∈ [0, 1].

At the same time, by (22) and (23), for t ∈ [0, 1], we have

Tλ(x, z)(t)

= λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
τ, I

µn−1

0+ x(τ), I
µn−1−µ1

0+ x(τ), . . . ,

I
µn−1−µn−2

0+ x(τ), x(τ), Ax(τ)
)

+ ψ
(
τ, I

µn−1

0+ z(τ), I
µn−1−µ1

0+ z(τ), . . . ,

I
µn−1−µn−2

0+ z(τ), z(τ), Az(τ)
))

dτ

]q−1
ds

> λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
cσ

1/(q−1)

D−σ
1/(q−1)

τ (γ−1)σ
1/(q−1)

× φ(τ, 1, 1, . . . , 1) + 2−σ
1/(q−1)

b−σ
1/(q−1)

D−σ
1/(q−1)

ψ(τ, 1, 1, . . . , 1)
)

dτ

]q−1
ds

> λa∗t
γ−µn−1−1D−σaq−1

1∫
0

jA(s)

[ s∫
0

(s− τ)α−1
(
cσ

1/(q−1)

τ (γ−1)σ
1/(q−1)

× φ(τ, 1, 1, . . . , 1) + 2−σ
1/(q−1)

b−σ
1/(q−1)

ψ(τ, 1, 1, . . . , 1)
)

dτ

]q−1
ds. (25)

Formula (25) imply that

Tλ(x, z)(t) >
1

D
tγ−µn−1−1 =

1

D
e(t), t ∈ [0, 1].
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Hence, Tλ : Qe × Qe → Qe. It is easy to prove that Tλ : Qe × Qe → Qe is a mixed
monotone operator.

Finally, we show that the operator Tλ satisfies (12). For any x, z ∈ Qe and l ∈ (0, 1),
by (S2) and Remark 1, for all t ∈ [0, 1], we have

λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
τ, I

µn−1

0+ lx(τ), I
µn−1−µ1

0+ lx(τ), . . . ,

I
µn−1−µn−2

0+ lx(τ), lx(τ), Alx(τ)
)

+ ψ

(
τ, I

µn−1

0+
1

l
z(τ), I

µn−1−µ1

0+
1

l
z(τ), . . . ,

I
µn−1−µn−2

0+
1

l
z(τ),

1

l
z(τ), A

1

l
z(τ)

))
dτ

]q−1
ds

> λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1lσ
1/(q−1)(

φ
(
τ, I

µn−1

0+ x(τ), I
µn−1−µ1

0+ x(τ), . . . ,

I
µn−1−µn−2

0+ x(τ), x(τ), Ax(τ)
)

+ ψ
(
τ, I

µn−1

0+ z(τ), I
µn−1−µ1

0+ z(τ), . . . ,

I
µn−1−µn−2

0+ z(τ), z(τ), Az(τ)
))

dτ

]q−1
ds

> lσλ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
τ, I

µn−1

0+ x(τ), I
µn−1−µ1

0+ x(τ), . . . ,

I
µn−1−µn−2

0+ x(τ), x(τ), Ax(τ)
)

+ ψ
(
τ, I

µn−1

0+ z(τ), I
µn−1−µ1

0+ z(τ), . . . ,

I
µn−1−µn−2

0+ z(τ), z(τ), Az(τ)
))

dτ

]q−1
ds. (26)

Formula (26) imply that

Tλ

(
lx,

1

l
z

)
> lσTλ(x, z), x, z ∈ Qe.

Hence, Lemma 7 assume that there exists a unique positive solution x∗λ ∈ Qe such that
Tλ(x∗λ, x

∗
λ) = x∗λ. It is easy to check that x∗λ is a unique positive solution of (10) for any

given λ > 0. Moreover, by Lemma 8, we have:

(i) For any λ0 ∈ (0,+∞), ‖x∗λ − x∗λ0
‖ → 0, λ→ λ0;

(ii) If 0 < σ < 1/2, then 0 < λ1 < λ2 implies x∗λ1
6 x∗λ2

, x∗λ1
6= x∗λ2

;
(iii) If 0 < σ < 1/2, then limλ→0 ‖x∗λ‖ = 0, limλ→+∞ ‖x∗λ‖ = +∞.

By Lemma 6, for any t ∈ [0, 1], we have

u∗λ(t) = I
µn−1

0+ x∗λ(t), v∗λ(t) = I
ηm−1

0+ y∗λ(t). (27)

Hence, by (27) and the monotonicity and continuity of Iµn−1

0+ , we get:

Nonlinear Anal. Model. Control, 23(2):182–203
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(i) For any λ0 ∈ (0,+∞), ‖u∗λ − u∗λ0
‖ → 0, λ→ λ0;

(ii) If 0 < σ < 1/2, then 0 < λ1 < λ2 implies u∗λ1
6 u∗λ2

, u∗λ1
6= u∗λ2

;
(iii) If 0 < σ < 1/2, then limλ→0 ‖u∗λ‖ = 0, limλ→+∞ ‖u∗λ‖ = +∞.

Moreover, for any u0(t) = In−20+ x0 ∈ Qe and t ∈ [0, 1], by Lemma 7, constructing
a successively sequence

xk+1(t)

= λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
τ, I

µn−1

0+ xk(τ), I
µn−1−µ1

0+ xk(τ), . . . ,

I
µn−1−µn−2

0+ xk(τ), xk(τ), Axk(τ)
)

+ ψ
(
τ, I

µn−1

0+ xk(τ), I
µn−1−µ1

0+ xk(τ), . . . ,

I
µn−1−µn−2

0+ xk(τ), xk(τ), Axk(τ)
))

dτ

]q−1
ds, k = 0, 1, 2, . . . ,

by uk+1(t) = I
µn−1

0+ xk+1(t),

uk+1(t)

= I
µn−1

0+

{
λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
τ, uk(τ), Dµ1

0+uk(τ), . . . ,

D
µn−1

0+ uk(τ), uk(τ), Au
(µn−1)
k (τ)

)
+ ψ

(
τ, uk(τ), Dµ1

0+uk(τ), . . . ,

D
µn−1

0+ uk(τ), uk(τ), Au
(µn−1)
k (τ)

))
dτ

]q−1
ds

}
, k = 0, 1, 2, . . . , t ∈ [0, 1],

and we have ‖uk − u∗λ‖ = ‖Iµn−1

0+ xk − Iµn−1

0+ x∗λ‖ → 0 as k →∞, the convergence rate
is

‖uk − u∗λ‖ =
∥∥Iµn−1

0+ xk − Iµn−1

0+ x∗λ
∥∥ = o

(
1− rσ

m)
,

where r is a constant, 0 < r < 1, and dependent on u0. By (11), we easily get

y∗λ(t) = µ

1∫
0

H(t, s)

[ s∫
0

b(s− w)β−1g
(
w, I

µn−1

0+ x∗λ(w), I
µn−1−η1
0+ x∗λ(w), . . . ,

I
µn−1−ηm−1

0+ x∗λ(w)
)

dw

]q−1
ds, t ∈ [0, 1]. (28)

By (19), (27), (28), and x∗λ ∈ Qe, we get (u∗λ, v
∗
λ), which satisfies (∗). Therefore, the

proof of Theorem 1 is completed.

Remark 3. p-Laplacian boundary value system is an great extension from general frac-
tional-order differential equation, general fractional-order differential equation is a special
case of p-Laplacian fractional-order differential equation, p-Laplacian fractional-order
differential equation is general fractional-order differential equation when q = 2.
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4 An example

Example 1. Consider the following boundary value problem:

D
3/4
0+

(
ϕ2

(
D

5/2
0+ u

))
(t) + λ2f

(
t, u(t), D

1/2
0+ u(t), v(t)

)
= 0, 0 < t < 1,

D
3/4
0+

(
ϕ2

(
D

3/2
0+ v

))
(t) + µ2g

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = 0, Dγ
0+u(0) = Dγ+1

0+ u(0) = 0, u′(1) =
1

2

3/4∫
0

u′(t) dA(t),

v(0) = v′(0) = 0, Dδ
0+v(0) = Dδ+1

0+ v(0) = 0, v(1) =
5

6

3/4∫
0

v(t) dB(t),

(29)

where γ = 5/2, δ = 3/2, α = β = 3/4, h(s) = a(s) = 1, η = ϑ = 3/4, χ = 1/2,
ι = 5/6, p = 3, q = 3/2, and

φ(t, x1, x2, x3) =
(
t−1/4 + cos t

)
x
1/9
1 + 2tx

1/8
2 + 2x

1/16
3 ,

ψ(t, x1, x2, x3) = t−1/16x
−1/8
1 + x

−1/16
2 + (2− t)x−1/153 ,

g(t, u) =
(
3t+ t2

)
u3/5 + (t sin t+ t)u2/3,

A(t) =


0, t ∈ [0, 1/2),

6, t ∈ [1/2, 3/4),

2, t ∈ [3/4, 1],

B(t) =


0, t ∈ [0, 1/2),

4, t ∈ [1/2, 3/4),

3, t ∈ [3/4, 1].

Hence,

η∫
0

χtγ−n+1h(t) dA(t) =
1

2

3/4∫
0

t1/2 dA(t) = 3

(
1

2

)1/2

− 2

(
3

4

)1/2

< 1,

ϑ∫
0

ιtδ−m+1a(t) dB(t) =
5

6

3/4∫
0

t1/2 dB(t) ≈ 0.1117 < 1.

Moreover, for any (t, x1, x2, x3) ∈ (0, 1)× (0,∞)3 and 0 < l < 1, we have

φ(t, lx1, lx2, lx3) =
(
t−1/4 + cos t

)
(lx1)1/9 + 2t(lx2)1/8 + 2(lx3)1/16

> l1/8
((
t−1/4 + cos t

)
x
1/9
1 + 2tx

1/8
2 + 2x

1/16
3

)
= l1/8φ(t, x1, x2, x3) = lσ

1/(q−1)

φ(t, x1, x2, x3),

ψ
(
t, l−1x1, l

−1x2, l
−1x3

)
= t−1/16(l−1x1)−1/8 + (l−1x2)−1/16

+ (2− t)
(
l−1x3

)−1/15
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> l1/8
(
t−1/16x

−1/8
1 + x

−1/16
2 + (2− t)x−1/153

)
= l1/8ψ(t, x1, x2, x3) = lσ

1/(q−1)

ψ(t, x1, x2, x3),

g(t, lu) =
(
3t+ t2

)
(lu)3/5 + (t sin t+ t)(lu)2/3

> l2/3
((

3t+ t2)u3/5 + (t sin t+ t)u2/3
)

= l2/3g(t, u)

= lς
1/(q−1)

g(t, u).

Noting σ = 1/(2
√

2) < 1, ς =
√

6/3, ψ(τ, 1, 1, 1) = τ−1/16 + 3 − τ , φ(τ, 1, 1, 1) =
τ−1/4 + cos τ + 2τ + 2, g(τ, 1) = 3τ + τ2 + τ sin τ + τ , we have

0 <

1∫
0

φ2(τ, 1, 1, . . . , 1) dτ =

1∫
0

(
τ−1/4 + cos τ + 2τ + τ

)2
dτ 6 27 +

16

7

< +∞,

0 <

1∫
0

τ−2(γ−1)σ
1/(q−1)

ψ2(τ, 1, 1, . . . , 1) dτ 6

1∫
0

τ−3/8
(
τ−1/16 + 3

)2
dτ

= 11 +
96

9
< +∞,

0 <

1∫
0

g2(τ, 1, 1, . . . , 1) dτ 6

1∫
0

(
3τ + τ2 + τ sin τ + τ

)2
dτ 6 36 < +∞.

Thus, assumptions (S1)–(S4) of Theorem 1 hold. Then Theorem 1 implies that prob-
lem (29) has a unique solution. Furthermore, when λ → λ0, λ0 ∈ (0,+∞), we have
‖x∗λ − x∗λ0

‖ → 0. Since σ = 1/(2
√

2) ∈ (0, 1/2), 0 < λ1 < λ2 implies

x∗λ1
(t) 6 x∗λ2

(t), x∗λ1
(t) 6= x∗λ2

(t), lim
λ→0
‖x∗λ‖ = 0, lim

λ→+∞
‖x∗λ‖ = +∞.

By u∗λ(t) = I10+x
∗
λ(t), we can easily get that:

(i) λ0 ∈ (0,+∞), ‖u∗λ − u∗λ0
‖ → 0, λ→ λ0;

(ii) 0 < λ1 < λ2 implies u∗λ1
6 u∗λ2

, u∗λ1
6= u∗λ2

;
(iii) limλ→0 ‖u∗λ‖ = 0, limλ→+∞ ‖u∗λ‖ = +∞.

In addition, for any initial u0 = I10+x0 ∈ Qe, we construct a successively sequence

xk+1(t)

= λ

1∫
0

G(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
t, I10+xk(t), I

1/2
0+ xk(t), Axk(t)

)
+ ψ

(
t, I10+xk(t), I

1/2
0+ xk(t), Axk(t)

))
dτ

]q−1
ds, t ∈ [0, 1], k = 0, 1, 2, . . . ,
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by uk+1(t) = I10+xk+1(t), we have

uk+1(t)

= I10+

{ 1∫
0

λG(t, s)

[ s∫
0

a(s− τ)α−1
(
φ
(
t, uk(t), D

1/2
0+ uk(t), Au′k(t)

)
+ ψ

(
t, uk(t), D

1/2
0+ uk(t), Au′k(t)

))
dτ

]q−1
ds

}
, t ∈ [0, 1], k = 0, 1, 2, . . . ,

and we have ‖uk − u∗λ‖ = ‖I10+xk − I
1
0+x
∗
λ‖ → 0 as k →∞, the convergence rate is

‖uk − u∗λ‖ =
∥∥I10+xk − I10+x∗λ∥∥ = o

(
1− rσ

k)
,

where r is a constant dependent on u0 and 0 < r < 1.
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