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Abstract. We investigate the regression model Xt = θG(t) + Bt, where θ is an unknown
parameter, G is a known nonrandom function, and B is a centered Gaussian process. We construct
the maximum likelihood estimators of the drift parameter θ based on discrete and continuous
observations of the process X and prove their strong consistency. The results obtained generalize
the paper [13] in two directions: the drift may be nonlinear, and the noise may have nonstationary
increments. As an example, the model with subfractional Brownian motion is considered.

Keywords: Gaussian process, discrete observations, continuous observations, maximum likelihood
estimator, strong consistency.

1 Introduction

Let B = {Bt, t > 0} be a centered Gaussian process with known covariance function,
B0 = 0. We assume that all finite-dimensional distributions of the process {Bt, t > 0}
are multivariate normal distributions with nonsingular covariance matrices. Now, let the
process Xt have a drift θG(t), that is,

Xt = θG(t) +Bt, (1)

where G(t) =
∫ t
0
g(s) ds, and g ∈ L1[0, t] for any t > 0.

The paper is devoted to the estimation of the parameter θ by observations of the
process X . We construct the maximum likelihood estimators (MLEs) for discrete and
continuous schemes of observations. We establish the strong consistency of both estima-
tors. Moreover, we prove the a.s. convergence of the discrete estimator to the continuous
one. This paper generalizes the results of [13], where model (1) with G(t) = t was
considered. Moreover, contrary to [13], we do not assume the stationarity of increments
of the driving process B. This substantially extends the class of possible models. As an
example, we consider the model where B is the subfractional Brownian motion.
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Note that the problem of drift estimation for Gaussian processes is important for many
applied areas, where an observed process can be decomposed as the sum of a useful
signal and a random noise, which is usually modeled by a centered Gaussian process,
see, e.g., [10, Chap. VII]. In particular, such processes arise in telecommunication and
on financial markets. For example, Samuelson’s model (see [18]), which is popular in
finance, is of the form (1).

Mention also that similar problems for the model with linear drift driven by fractional
Brownian motion were studied in [3,9,11,15]. The mixed Brownian-fractional Brownian
model was treated in [7, 13]. Another approach to the drift parameter estimation in the
model with two fractional Brownian motions was proposed in [12, 14]. In [2, 16], the
nonparametric functional estimation of the drift of a Gaussian processes was considered
(such estimators for fractional and subfractional Brownian motions were studied in [8]
and [19], respectively).

The paper is organized as follows. In Section 2, we study the case of discrete obser-
vations and prove the strong consistency of MLE. In Section 3, we consider the estimator
constructed by continuous observations and establish the relations between discrete and
continuous estimators. Then we prove the strong consistency of the estimator in the con-
tinuous scheme. In Section 4, these results are applied to the models with fractional and
subfractional Brownian motions. Auxiliary results for nonrandom functions and integral
equations are collected in the Appendix.

2 The case of discrete-time observations

Let the process Xt be observed at the points 0 < t1 < t2 < · · · < tN . Then the vector of
increments ∆X(N) = (Xt1 , Xt2 −Xt1 , . . . , XtN −XtN−1

)> is a one-to-one function
of the observations. We assume in this section that the inequalityG(tk) 6= 0 holds at least
for one k.

2.1 The likelihood function and MLE

Evidently, vector∆X(N) has Gaussian distributionN (θ∆G(N), Γ (N)), where∆G(N) =
(G(t1), G(t2) − G(t1), . . . , G(tN ) − G(tN−1))>. Let Γ (N) be the covariance matrix
of the vector ∆B(N) = (Bt1 , Bt2 − Bt1 , . . . , BtN − BtN−1

)>. The density of the
distribution of ∆X(N) w.r.t. the Lebesgue measure is

pdf∆X(N)(x) =
(2π)−N/2√

detΓ (N)
exp

{
−1

2

(
x− θ∆G(N)

)>(
Γ (N)

)−1(
x− θ∆G(N)

)}
.

Then one can take the density of the distribution of the vector ∆X(N) for a given θ w.r.t.
the density for θ = 0 as a likelihood function:

L(N)(θ)

= exp

{
θ
(
∆G(N)

)>(
Γ (N)

)−1
∆X(N) − θ2

2

(
∆G(N)

)>(
Γ (N)

)−1
∆G(N)

}
. (2)
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Then the corresponding MLE equals

θ̂(N) =
(∆G(N))>(Γ (N))−1∆X(N)

(∆G(N))>(Γ (N))−1∆G(N)
. (3)

Since the observed process Xt is Gaussian and the MLE θ̂(N) is a linear functional
of the values of the process, we have that this estimator has a normal distribution. Taking
into account that ∆X(N) = ∆B(N) + θ∆G(N), the estimator θ̂(N) can be represented in
the following form:

θ̂(N) = θ +
(∆G(N))>(Γ (N))−1∆B(N)

(∆G(N))>(Γ (N))−1∆G(N)
. (4)

Hence, the estimator is unbiased and var θ̂(N) = 1/((∆G(N))>(Γ (N))−1∆G(N)).

2.2 The behaviour of the MLE for the increasing number of points

Let N1 6 N2, and a set of points {t(1)1 , . . . , t
(1)
N1
} be a subset of {t(2)1 , . . . , t

(2)
N2
}. Then

there exists a matrixM , relating the increments w.r.t. these two sets of points: ∆X(N1) =
M∆X(N2), ∆B(N1) = M∆B(N2), ∆G(N1) = M∆G(N2). Evidently, M is N1 × N2-
matrix, and it consists of zeros and ones. It has the following form:

M =

1 . . . 1 0 . . . 0 . . .
0 . . . 0 1 . . . 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .

 .

If t(1)N1
= t

(2)
N2

, then each column of the matrix M contains exactly one 1. If t(1)N1
= t

(2)
k ,

k < N2, then each of the first k columns of the matrix M contains exactly one 1, other
N2 − k columns consist of zeros.

Lemma 1. If N1 6 N2 and the time-points of the process Xt used for the estimator
θ̂(N1) make a subset of the time-points used for the estimator θ(N2), then the increment
θ̂(N2) − θ̂(N1) is independent of the value θ̂(N2).

Proof. Let us compute the covariance between the estimators constructed by samples of
different sizes:

cov
(
θ̂(N1), θ̂(N2)

)
=

cov((∆G(N1))>(Γ (N1))−1∆X(N1), (∆G(N2))>(Γ (N2))−1∆X(N2))

(∆G(N1))>(Γ (N1))−1∆G(N1)(∆G(N2))>(Γ (N2))−1∆G(N2)

=
(∆G(N1))>(Γ (N1))−1E∆B(N1)(∆B(N2))>(Γ (N2))−1∆G(N2)

(∆G(N1))>(Γ (N1))−1∆G(N1)(∆G(N2))>(Γ (N2))−1∆G(N2)

=
(∆G(N1))>(Γ (N1))−1EM∆B(N2)(∆B(N2))>(Γ (N2))−1∆G(N2)

(∆G(N1))>(Γ (N1))−1∆G(N1)(∆G(N2))>(Γ (N2))−1∆G(N2)
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=
(∆G(N1))>(Γ (N1))−1MΓ (N2)(Γ (N2))−1∆G(N2)

(∆G(N1))>(Γ (N1))−1∆G(N1)(∆G(N2))>(Γ (N2))−1∆G(N2)

=
(∆G(N1))>(Γ (N1))−1M∆G(N2)

(∆G(N1))>(Γ (N1))−1∆G(N1)(∆G(N2))>(Γ (N2))−1∆G(N2)

=
(∆G(N1))>(Γ (N1))−1∆G(N1)

(∆G(N1))>(Γ (N1))−1∆G(N1)(∆G(N2))>(Γ (N2))−1∆G(N2)

=
1

(∆G(N2))>(Γ (N2))−1∆G(N2)
= var θ̂(N2).

Therefore, cov(θ̂(N2) − θ̂(N1), θ̂(N2)) = var(θ̂(N2)) − cov(θ̂(N1), θ̂(N2)) = 0. The ran-
dom variables θ̂(N1) − θ̂(N2) and θ̂(N2) are linear functionals of a Gaussian process.
Therefore, their joint distribution is Gaussian. Hence, their uncorrelatedness implies in-
dependence.

Corollary 1. Under the assumptions of Lemma 1, var θ̂(N1) > var θ̂(N2).

Proof. By the independence of θ̂(N2) − θ̂(N1) and θ̂(N2), we have

var θ̂(N1) = var θ̂(N2) + var
(
θ̂(N2) − θ̂(N1)

)
> var θ̂(N2).

2.3 Consistency of MLE

Theorem 1. Let the following assumption hold:

varBt
(G(t))2

→ 0 as t→∞. (5)

If tN →∞ as N →∞, then the discrete-time MLE θ̂(N) is L2-consistent.

Proof. The estimator is unbiased: Eθ̂(N) = θ. The estimator constructed by single obser-
vation XtN ,

θ̂
(1)
tN =

G(tN )(varBtN )−1XtN

G(tN )(varBtN )−1G(tN )
=

XtN

G(tN )
, (6)

has the variance
var θ̂

(1)
tN =

varBtN
(G(tN ))2

. (7)

The estimator constructed by N observations has smaller variance according to Corol-
lary 1. Therefore,

E
(
θ̂(N) − θ

)2
= var θ̂(N) 6 var θ̂

(1)
tN =

varBtN
(G(tN ))2

→ 0.

The following statement follows from the proof of [13, Thm. 2.7]. (Note that it can be
generalized: the mean-square convergence condition can be replaced with convergence in
probability, see [5, Thm. 3.2.1].)
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Lemma 2. Assume that {ξi, i > 1} is a sequence of random variables such that its
elements ξ2, ξ3, . . . (not including ξ1) are mutually independent. If the series

∑∞
k=1 ξk

converges in the mean square sense to a random variable ζ, that is,

lim
n→∞

E

(
n∑
k=1

ξk − ζ

)2

= 0,

then it converges a.s. to the same limit as well.

Theorem 2. Under the assumptions of Theorem 1, the estimator θ̂(N) is strongly consis-
tent.

Proof. Let us show that the increments of the process {θ̂(N), N ∈ N} are uncorrelated.
For 2 6 k1 < k2,

cov
(
θ̂(k1) − θ̂(k1−1), θ̂(k2) − θ̂(k2−1)

)
= cov

(
θ̂(k2) − θ̂(k1−1), θ̂(k2)

)
− cov

(
θ̂(k2) − θ̂(k1), θ̂(k2)

)
+ cov

(
θ̂(k2−1) − θ̂(k1), θ̂(k2−1)

)
− cov

(
θ̂(k2−1) − θ̂(k1−1), θ̂(k2−1)

)
= 0

by Lemma 1. The estimators θ̂(N) and their increments θ̂(k) − θ̂(k−1) are linear func-
tionals of values of the Gaussian process Xt. Therefore, uncorrelatedness implies mutual
independence. By Theorem 1, θ̂(N) converges to θ in mean square. Hence, by Lemma 2,
θ̂(N) converges to θ a.s.

3 The case of continuous-time observations

In this section, we suppose that the process Xt is observed on the whole interval [0, T ].
We investigate MLE for the parameter θ based on these observations.

3.1 Assumptions on function G and process B

Evidently, B and X are Gaussian processes with the same covariance function, but,
generally speaking, with different means since G is not zero identically. Our additional
assumptions are:

(A) There exists a linear self-adjoint operator Γ : L2[0, T ]→ L2[0, T ] such that

cov(Xs, Xt) = EBsBt =

t∫
0

Γ 1[0,s](u) du = 〈Γ 1[0,s], 1[0,t]〉, (8)

where 〈f, g〉 =
∫ T
0
f(t)g(t) dt.

(B) The drift function G is not zero identically, and in the representation G(t) =∫ t
0
g(s) ds, function g ∈ L2[0, T ].
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Note that, under assumption (A), the covariance between integrals of deterministic func-
tions f ∈ L2[0, T ] and g ∈ L2[0, T ] w.r.t. the process B equals

E

T∫
0

f(s) dBs

T∫
0

g(t) dBt = 〈Γf, g〉.

3.2 Likelihood function

Now we establish the form of the likelihood function. In this order, introduce the notation

Ft1,...,tN = σ(Xt1 , . . . , XtN ) = σ(Bt1 , . . . , BtN ),

the σ-field generated by the observations Xt1 , . . . , XtN .

Theorem 3. Let T be fixed, assumptions (A), (B) and additional assumption

(C) there exists a function hT ∈ L2[0, T ] such that g = ΓhT

hold. Then one can choose

L(θ) = exp

{
θ

T∫
0

hT (s) dXs −
θ2

2

T∫
0

g(s)hT (s) ds

}
(9)

as a likelihood function.

Proof. Let us show that the function L(θ) defined in (9) is a density function for the
distribution of the process {Xt, t ∈ (0, T ]} for a given θ w.r.t. the distribution of the
process {Bt, t ∈ (0, T ]}, which coincides with {Xt, t ∈ (0, T ]} when θ = 0. In other
words, we need to prove that

dPθ = L(θ) dP0 for all θ ∈ R,

where Pθ is the probability measure that corresponds to the value of the parameter θ. For
that reason, let ϑ ∈ R be fixed and prove

dPϑ = L(ϑ) dP0.

It is enough to verify that for all N , for all t1, . . . , tN , 0 < t1 < · · · < tN 6 T , for all
random events A ∈ Ft1,...,tN , ∫

A

dPϑ =

∫
A

L(ϑ) dP0.

Under assumption (B), there exists tnz ∈ (0, T ] such that G(tnz) 6= 0. We can always
assume that for at least one of the observations Xtk , the inequality G(tk) 6= 0 holds (oth-
erwise, due to the fact that A ∈ Ft1,...,tnz,...,tN , we can insert tnz into the set t1, . . . , tN

Nonlinear Anal. Model. Control, 23(1):120–140
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and repeat what follows). For such A,∫
A

dPϑ =

∫
A

L(N)(ϑ) dP0,∫
A

L(ϑ) dP0 =

∫
A

Eθ=0

[
L(ϑ)

∣∣ Xt1 , . . . , XtN

]
dP0,

where L(N)(ϑ) is a likelihood function (2) for discrete-time model. Thus, it is enough to
prove ∫

A

L(N)(ϑ) dP0 =

∫
A

Eθ=0

[
L(ϑ)

∣∣ Xt1 , . . . , XtN

]
dP0,

L(N)(ϑ) = Eθ=0

[
L(ϑ)

∣∣ Xt1 , . . . , XtN

]
. (10)

Let us evaluate

Eθ=0

[
L(ϑ)

∣∣ Xt1 , . . . , XtN

]
= Eθ=0

[
L(ϑ)

∣∣ ∆X(N)
]

= Eθ=0

[
L(ϑ)

∣∣ ∆B(N)
]
.

Note that Xt = Bt if θ = 0. The random vector v = (
∫ T
0
hT (t) dBt, (∆B(N))>)>

has multivariate Gaussian distribution because all its elements are linear functions in Bt.
Ev = 0; evaluate its covariance matrix. The (k + 1, 1) element of the matrix Evv> is
equal to

E

[ T∫
0

hT (t) dBt (Btk −Btk−1
)

]
= 〈ΓhT ,1(tk,tk−1)〉 = 〈g,1(tk,tk−1)〉 = G(tk)−G(tk−1),

which is the kth element of the vector ∆G(N) (here t0 = 0); thus, the lower-left block
of the matrix Evv> is equal to E[

∫ T
0
hT (t) dBt∆B

(N)] = ∆G(N). Other blocks are
var[

∫ T
0
hT (t) dBt] = 〈ΓhT , hT 〉 = 〈g, hT 〉 and var(∆B(N)) = Γ (N). Thus, the covari-

ance matrix of vector v is equal to

Evv> =

(
〈g, hT 〉 (∆G(N))>

∆G(N) Γ (N)

)
. (11)

By [1, Thm. 2.5.1], the conditional distribution of
∫ T
0
hT (t) dBt is Gaussian with

E

[ T∫
0

hT (t) dBt

∣∣∣ ∆B(N)

]
=
(
∆G(N)

)>(
Γ (N)

)−1
∆B(N),

var

[ T∫
0

hT (t) dBt

∣∣∣ ∆B(N)

]
= 〈g, hT 〉 −

(
∆G(N)

)>(
Γ (N)

)−1
∆G(N). (12)
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Finally,

Eθ=0

[
L(ϑ)

∣∣ ∆B(N)
]

= E

[
exp

{
ϑ

T∫
0

hT (s) dBs −
ϑ2

2

T∫
0

g(s)hT (s) ds

} ∣∣∣ ∆B(N)

]

= exp

{(
∆G(N)

)>(
Γ (N)

)−1
∆B(N)

+
ϑ2

2

(
〈g, hT 〉 −

(
∆G(N)

)>(
Γ (N)

)−1
∆G(N)

)
− ϑ2

2
〈g, hT 〉

}
= L(N)(ϑ).

Thus, (10) is proved. From the fact that (10) holds true for all sets of t1, . . . , tN and for
all ϑ ∈ R it follows that L(θ) is a likelihood function.

3.3 MLE and its properties

The MLE maximizes the function L(θ). It equals

θ̂T =

∫ T
0
hT (s) dXs∫ T

0
g(s)hT (s) ds

. (13)

Since Xt = Bt +
∫ t
0
g(s) ds, we have the following representation:

θ̂T = θ +

∫ T
0
hT (s) dBs∫ T

0
g(s)hT (s) ds

. (14)

We see that the estimator is normally distributed and unbiased. Its variance equals

var θ̂T =
var[

∫ T
0
hT (s) dBs]

(
∫ T
0
g(s)hT (s) ds)2

=
〈ΓhT , hT 〉
〈g, hT 〉2

=
〈g, hT 〉
〈g, hT 〉2

=
1∫ T

0
g(s)hT (s) ds

.

Remark 1. Under the assumptions of Theorem 3, the denominator in the definition of the
estimator (13) is positive. Indeed, by (12),

T∫
0

g(s)hT (s) ds = var

[ T∫
0

hT (t) dB(N)
∣∣∣ ∆B(N)

]
+
(
∆G(N)

)>(
Γ (N)

)−1
∆G(N)

>
(
∆G(N)

)>(
Γ (N)

)−1
∆G(N) > 0.

The last inequality holds ifG(tk) 6= 0 at least for one k because, in this case,∆G(N) 6= 0,
and the matrix (Γ (N))−1 is positively definite.

Nonlinear Anal. Model. Control, 23(1):120–140
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3.4 Relations between discrete and continuous estimators

Let 0 = t0 < t1 < t2 < · · · < tN 6 T . Consider the discrete estimator θ̂(N) and the
continuous estimator θ̂T . Using (4) and (14), we can write(
θ̂T
θ̂(N)

)
=

(
θ
θ

)
+

( 1
〈g,hT 〉 0

0 ((∆G(N))>(Γ (N))−1∆G(N))−1(∆G(N))>(Γ (N))−1

)
v,

where the vector v is defined in the proof of the Theorem 3. By (11), we get

E

(
θ̂T − θ
θ̂(N) − θ

)(
θ̂T − θ
θ̂(N) − θ

)>
=

(
1

〈g,hT 〉
1

〈g,hT 〉
1

〈g,hT 〉
1

(∆G(N))>(Γ (N))−1∆G(N)

)
,

whence

E

(
θ̂T − θ

θ̂(N) − θ̂T

)(
θ̂T − θ

θ̂(N) − θ̂T

)>
=

(
1

〈g,hT 〉 0

0 1
(∆G(N))>(Γ (N))−1∆G(N) − 1

〈g,hT 〉

)
.

The random variables θ̂T−θ and θ̂(N)−θ̂T are linear functions of the Gaussian processB.
Therefore, they have bivariate normal distribution. Hence, their uncorrelatedness implies
their independence. Consequently, θ̂T and θ̂(N) − θ̂T are independent. Then

var θ̂(N) = var
(
θ̂(N) − θ̂T

)
+ var θ̂T > var θ̂T . (15)

Note that the function G(t) is continuous. Therefore, under assumptions of Theo-
rem 3, there exists N0 such that for all N > N0, G(k/N) 6= 0 for some 1 6 k 6 N .

Theorem 4. Let the assumptions of Theorem 3 hold. Construct the estimator θ̂(N) from (3)
by observations XTk/N , k = 1, . . . , N . Then θ̂(N) converges to θ̂T in mean square.

Proof. By Lemma A.2, there exists a sequence of piecewise constant functions g :
[0, T ] → R (constant on the intervals ((k − 1)T/N, kT/N)) such that fN → hT in
L2[0, T ], and

∫ T
0
fN (s)g(s) ds =

∫ T
0
hT (s)g(s) ds for sufficiently largeN . The function

fN (t) can always be chosen in the form

fN (t) =

N∑
k=1

aN,k 1((k−1)T/N, kT/N ](t).

Denote aN = (aN,1, aN,2, . . . , aN,N )>. Then

〈ΓfN , fN 〉 → 〈ΓhT , hT 〉 as N →∞. (16)

We have

〈ΓfN , fN 〉 =

N∑
k=1

N∑
l=1

akal〈Γ 1((k−1)T/N, kT/N ],1((l−1)T/N, lT/N ]〉.
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It follows from assumption (8) that

〈Γ 1((k−1)T/N, kT/N ],1((l−1)T/N, lT/N ]〉
= E(B(k−1)T/N −BkT/N )(B(l−1)T/N −BlT/N )

is (k, l)th element of the matrix Γ (N). Thus, 〈ΓfN , fN 〉 = a>NΓ
(N)aN . Recall also that

〈ΓhT , hT 〉 = 〈g, hT 〉, var θ̂T = 1/〈g, hT 〉. Hence, convergence (16) can be written in
the form

a>NΓ
(N)aN → 〈g, hT 〉. (17)

For sufficiently large N , we have

a>N∆G
(N) =

N∑
k=1

aN,k

(
G

(
kT

N

)
−G

(
(k − 1)T

N

))

=

N∑
k=1

aN,k

kT/N∫
(k−1)T/N

g(t) dt =

N∑
k=1

kT/N∫
(k−1)T/N

fN (t)g(t) dt

=

T∫
0

fN (t)g(t) dt =

T∫
0

hT (t)g(t) dt = 〈g, hT 〉.

Taking into account Lemma A.3 and convergence (17), we get

var θ̂(N) =
1

(∆G(N))>
(
Γ (N)

)−1
∆G(N)

6
a>NΓ

(N)aN
(a>N∆G

(N))2
→ 1

〈g, hT 〉
= var θ̂T .

By (15),

E
(
θ̂(N) − θ̂T

)2
= var

(
θ̂(N) − θ̂T

)
= var θ̂(N) − var θ̂T

6
a>NΓ

(N)aN
(a>N∆G

(N))2
− var θ̂T → 0 as N →∞,

whence the proof follows.

Theorem 5. Let the assumptions of Theorem 3 hold. The estimator θ̂(2
n) constructed by

the observations XTk/2n , k = 1, . . . , 2n, converges to θ̂T a.s.

The proof repeats that of Theorem 2, where the reference to Theorem 1 is replaced by
the reference to Theorem 4.

3.5 Consistency of the estimator

Theorem 6. Assume that for all T > 0, there exists a function hT ∈ L2[0, T ] such that
g|[0,T ] = ΓThT (ΓT denotes the dependence of the operator Γ on T ). If

lim inf
t→∞

varBt
G(t)2

= 0, (18)
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then the estimator θ̂T is consistent in mean square, that is,

E(θ̂T − θ)2 → 0 as T →∞.

Proof. By (18), there exists an increasing sequence of positive numbers {tk, k ∈ N} such
that limk→∞ tk = +∞, for all k, the inequality G(tk) 6= 0 holds, and

lim
k→∞

varBtk
G(tk)2

= 0.

Denote by t(T ) the largest tk that does not exceed T . Then

lim
T→+∞

varBt(T )

G(t(T ))2
= 0.

The estimator θ̂T is unbiased. Compare its variance with the variance of the estimator
θ̂
(1)
t(T ) constructed by single observation Xt(T ) (see (6) and (7) for the estimator and its

variance). According to inequality (15),

E(θ̂T − θ) = var θ̂T 6 var θ̂
(1)
t(T ) =

varBt(T )

G(T (t))2
→ 0 as T → +∞.

Lemma 3. The stochastic process θ̂T (defined for all T such that
∫ T
0
hT (s) ds 6= 0) is

a process with independent increments.

Proof. Let us calculate the covariance between estimators with T1 < T3.

cov(θ̂T1 , θ̂T3)

=
E
∫ T1

0
hT1

(s) dBs
∫ T3

0
hT3

(t) dBt∫ T1

0
g(s)hT1

(s) ds
∫ T3

0
g(t)hT3

(t) dt
=

∫ T1

0
ΓT3

hT3
(u)hT1

(u) du∫ T1

0
g(s)hT1

(s) ds
∫ T3

0
g(t)hT3

(t) dt

=

∫ T1

0
g(u)hT1

(u) du∫ T1

0
g(s)hT1

(s) ds
∫ T3

0
g(t)hT3

(t) dt
=

1∫ T3

0
g(t)hT3

(t) dt
= var θ̂T3

Therefore, for 0 < T1 < T2 6 T3 < T4,

cov(θ̂T2
− θ̂T1

, θ̂T4
− θ̂T3

)

= cov(θ̂T2
, θ̂T4

)− cov(θ̂T2
, θ̂T3

)− cov(θ̂T1
, θ̂T4

) + cov(θ̂T1
, θ̂T3

)

= var θ̂T4
− var θ̂T3

− var θ̂T4
+ var θ̂T3

= 0.

The values of θ̂T are linear functions of Gaussian process Xt. Hence they have joint
Gaussian distribution, and uncorrelatedness of the increments θ̂T2 − θ̂T1 and θ̂T4 − θ̂T3

implies their independence.

Theorem 7. Under the assumptions of Theorem 6, the estimator θ̂T is strongly consistent.

The proof repeats the proof of [13, Thm. 3.9].
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4 Examples

4.1 Model with subfractional Brownian motion

The subfractional Brownian motion B̃H with Hurst parameter H ∈ (0, 1) is a centered
Gaussian random process with covariance function

cov
(
B̃Hs , B̃

H
t

)
=

2 |t|2H + 2 |s|2H − |t− s|2H − |t+ s|2H

2
, (19)

see [4, 20] for its properties. Obviously, neither B̃H, nor its increments are stationary. If
{BHt , t ∈ R} is a fractional Brownian motion, i.e., a centered Gaussian process with
covariance function cov(BHs , B

H
t ) = (|t|2H + |s|2H − |t − s|2H)/2, then the random

process (BHt +BH−t)/
√

2 is a subfractional Brownian motion. Evidently, mixed derivative
of the covariance function (19) equals

KH(s, t) :=
∂2 cov(B̃Hs , B̃

H
t )

∂t∂s
= H(2H − 1)

(
|t− s|2H−2 − |t+ s|2H−2

)
.

If H ∈ (1/2, 1), then the operator Γ = ΓHT that satisfies (8) for B̃H equals

ΓHT f(t) =

T∫
0

KH(s, t)f(s) ds.

Consider model (1) for G(t) = t and B = B̃H :

Xt = θt+ B̃Ht . (20)

Let us construct the estimators θ̂(N) and θ̂T from (3) and (13), respectively, and establish
their properties. In particular, Proposition 1 allows to define finite-sample estimator θ̂(N).

Proposition 1. The linear equation ΓHT f = 0 has only trivial solution in L2[0, T ]. As
a consequence, the finite slice (B̃Ht1 , . . . , B̃

H
tN ) with 0 < t1 < · · · < tN has a multivariate

normal distribution with nonsingular covariance matrix.

Proof. Let f ∈ L2[0, T ] be a solution to equation ΓHT f = 0. Then f1 ∈ L2[0, 2T ],

2T∫
0

f1(s) ds

|t− s|2−2H
= 0 for almost all t ∈ (0, 2T ),

where f1(s) = −f(T − s) for 0 6 s < T , and f1(s) = f(s− T ) for T 6 s 6 2T . Then
both y = f1 ∈ L1[0, 2T ] and y = 0 ∈ L1[0, 2T ] are solutions to the equation

2T∫
0

y(s) ds

|t− s|2−2H
= 0 for almost all t ∈ (0, 2T ).
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By statement (ii) of Lemma A.4, f1(s) = 0 almost everywhere on (0, 2T ), whence
f(s) = 0 almost everywhere on (0, T ). Thus, the operator ΓHT is self-adjoint, compact,
and positive definite. It admits the spectral representation ΓHT f =

∑∞
i=1 λi〈f, ei〉ei

with {ei, i ∈ N} an orthonormal basis in L2[0, T ] and λi > 0 for all i. Let 0 =
t0 < t1 < · · · < tN 6 T be a partition of [0, T ]. For the matrix Γ

(N)
H and vector

v = (v1, . . . , vN )> ∈ RN ,

v>Γ
(N)
H v =

〈
ΓHT fv, fv

〉
=

∞∑
i=1

λi〈fv, ei〉2 > 0, (21)

where fv is piecewise constant function, fv(s) = vk for tk−1 < s < tk, and fv(s) = 0
for tN < s < T (if tN < T ). The equality in (21) is attained if only 〈fv, ei〉 = 0 for all i.
That is only possible if fv = 0 almost everywhere on [0, T ] and v = 0.

Corollary 2. Since var(B̃Ht ) = (2 − 22H−1)t2H , the random process B̃H satisfies
Theorems 1 and 2. Hence, under condition tN → +∞ as N →∞, the estimator θ̂(N) is
L2-consistent and strongly consistent.

In order to define the maximum likelihood estimator (13), we have to solve an integral
equation. The following statement guarantees the existence of the solution:

Proposition 2. If 1/2 < H < 3/4, then the integral equation ΓHT h = 1[0,T ], that is,

T∫
0

KH(s, t)h(s) ds = 1 for almost all t ∈ (0, T ) (22)

has a unique solution h ∈ L2[0, T ].

Proof. By Lemma A.5, the integral equation

2T∫
0

y(s) ds

|t− s|2−2H
= 1[T, 2T ](t) for almost all t ∈ (0, 2T )

has a solution y ∈ L2[0, 2T ]. Then

T∫
0

(
y(T + s)− y(T − s)

)( 1

|t− s|2−2H
− 1

|t+ s|2−2H

)
ds = 1

for almost all t ∈ (0, T ), and h(s) = (y(T + s)− y(T − s))/(H(2H − 1)) is a solution
to integral equation (22). Note that h ∈ L2[0, T ], and this finishes the proof.

Corollary 3. If 1/2 < H < 3/4, then the random process B̃H satisfies Theorems 3–7.
As the result, L(θ) defined in (9) is the likelihood function in model (20), and θ̂T defined
in (13) is the maximum likelihood estimator. The estimator is L2-consistent and strongly
consistent.
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4.2 Model with fractional Brownian motion and power drift

Let 1/2 < H < 1 and α > −1/2. Consider the process

Xt = θtα+1 +BHt , (23)

where Xt is a stochastic process observed on interval [0, T ], BHt is an unobserved frac-
tional Brownian motion with Hurst index H , and θ is a parameter of interest. This is
a particular case of model (1) with g(t) = (α+ 1)tα.

Now verify the conditions of the theorems. Due to Proposition 1, any finite slice of the
stochastic process {BHt , t > 0} has a multivariate normal distribution with nonsingular
covariance matrix; the process satisfies condition (A) with injective operator Γ . Condi-
tion (5) holds true if and only if α > H − 1.

Corollary 4. If α > H − 1, model (23) satisfies the conditions of Theorems 1 and 2. The
estimator θ̂(N) is L2-consistent and strongly consistent (provided that limN→∞ tN =
+∞).

Condition (B): g ∈ L2[0, T ] holds true if and only if α > −1/2. The integral equation
Γh = g is rewritten as

T∫
0

h(s) ds

|t− s|2H−2
=

α+ 1

(2H − 1)H
tα.

If α > 2H − 2, then the solution is

h(t) = const ·
(

Tα

tH−1/2(T − t)H−1/2
− αtα+1−2HW

(
T

t
, α, H − 1

2

))
, (24)

where W (T/t, α, H − 1/2) =
∫ T/t−1
0

(v+ 1)α−1v1/2−H dv. The asymptotic behaviour
of the function W (T/t, α, H − 1/2) as t→ 0+ is

W

(
T

t
, α, H − 1

2

)
∼


B( 3

2 −H, H −
1
2 − α) if α < H − 1

2 ,

ln T
t if α = H − 1

2 ,

2
2α+1−2H

Tα−H+1/2

tα−H+1/2 if α > H − 1
2 .

Therefore, the function h(t) defined in (24) is square integrable if α+1−2H−max(0, α−
H + 1/2) > −1/2, which holds if α > 2H − 3/2. Note that if α > 2H − 3/2, then
the following inequalities hold true: α > 2H − 2 (whence h defined in (24) is indeed
a solution to the integral equation Γh = g), α > H − 1 (whence conditions (5) and so
(18) are satisfied), and α > −1/2 (whence condition (B) is satisfied).

Corollary 5. If α > 2H − 3/2, the conditions of Theorems 3–7 are satisfied. The
estimator θ̂T is consistent, L2-consistent and strongly consistent. For fixed T , it can be
approximated by discrete-sample estimator in mean-square sense.
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Simulations

Tables 1 and 2 contain the results of numerical simulations for model (23) with α = 1
and α = 2, respectively. For T = 1 and T = 10 and various values of H , we find hT
directly by (24). For θ = 2, we simulate 1000 realizations of the process for each H and
compute the values of θ̂T by (13). The means and standard deviations of these estimates
are reported. We see that these simulation studies confirm the consistency of θ̂T . The
results are quite similar for different values of H . Moreover, the increase of α increases
the rate of convergence.

Table 1. Xt = θt2 +BH
t , θ = 2.

H = 0.6 H = 0.7 H = 0.8 H = 0.9

T = 1 T = 10 T = 1 T = 10 T = 1 T = 10 T = 1 T = 10

Mean 1.9690 2.0046 1.9687 2.0098 1.9931 2.0203 1.9613 2.0354
Std. dev. 0.8361 0.0328 0.8033 0.0409 0.6977 0.0433 0.5668 0.0501

Table 2. Xt = θt3 +BH
t , θ = 2.

H = 0.6 H = 0.7 H = 0.8 H = 0.9

T = 1 T = 10 T = 1 T = 10 T = 1 T = 10 T = 1 T = 10

Mean 1.9820 2.0001 1.9847 2.0002 1.9512 1.9994 1.9827 1.9964
Std. dev. 0.7009 0.0027 0.6046 0.0032 0.5153 0.0033 0.3625 0.0033

Acknowledgment. The authors are grateful to Alexei Konstantinov for advice on the
short proof of Lemma A.1. We would like to thank three anonymous referees for their
useful comments and suggesting a number of improvements.

Appendix

Lemma A.1. If f ∈ L2[0, T ], then

lim
n→∞

n∑
k=1

kT/n∫
(k−1)T/n

(
f(t)− n

T

kT/n∫
(k−1)T/n

f(s) ds

)2

dt = 0. (A.1)

Proof. The lemma follows from the criterion of strong convergence of linear operators,
since (A.1) holds true if the function f(x) is continuous, the continuous functions make
a dense set in L2[0, T ], and the sequence of linear operators

An(f) = f −
n∑
k=1

n

T

kT/n∫
(k−1)T/n

f(s) ds1((k−1)T/N, kT/N ], f ∈ L2[0, T ],

is bounded in the space of linear bounded operators L2[0, T ]→ L2[0, T ].
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Lemma A.2. If f ∈ L2[0, T ], g ∈ L2[0, T ], then one can choose a sequence of piecewise
constant functions {fn(s), n > n0} (the function fn(s) is constant on the intervals
((k− 1)T/n, kT/n)) such that limn→∞

∫ T
0

(f(s)− fn(s))2 ds = 0, and, for sufficiently
large n,

∫ T
0
fn(t)g(t) dt =

∫ T
0
f(t)g(t) dt.

Proof. If g(t) = 0 almost everywhere on [0, T ], then the statement of the lemma follows
from Lemma A.1. In what follows, we assume that g(t) is not zero everywhere. This is
equivalent to

∫ T
0
|g(s)|ds > 0. Put

sn(t) = sign

( kT/n∫
(k−1)T/n

g(s) ds

)
,

(k − 1)T

n
< t <

kT

n
;

Vn =

T∫
0

sn(t)g(t) dt =

n∑
k=1

∣∣∣∣∣
kT/n∫

(k−1)T/n

g(s)

∣∣∣∣∣ds.
Then

lim
n→∞

Vn = Var
[0,T ]

t∫
0

g(s) ds =

T∫
0

∣∣g(s)
∣∣ds > 0. (A.2)

In particular, Vn > 0 for sufficiently large n. Put

φn(t) =
n

T

kT/n∫
(k−1)T/n

f(s) ds,
(k − 1)T

n
< t <

kT

n
;

fn(t) = φn(t) +

∫ T
0

(f(s)− φn(s))g(s) ds

Vn
sn(t). (A.3)

Then φn → f in L2[0, T ]. Therefore, the numerator in (A.3) tends to 0. It follows from
the uniform boundedness of sn(t) and (A.2) that fn → f in L2[0, T ]. Moreover,

T∫
0

fn(t)g(t) dt

=

T∫
0

φn(t)g(t) dt+

∫ T
0

(f(s)− φn(s))g(s) ds

Vn

T∫
0

sn(t)g(t) dt

=

T∫
0

φn(t)g(t) dt+

T∫
0

(
f(s)− φn(s)

)
g(s) ds =

T∫
0

f(t)g(t) dt

for all n such that Vn > 0.

Lemma A.3. Let M be a positively definite n × n-matrix, a and b be n-dimensional
vectors. Then a>Mab>M−1b > (a>b)2.
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Proof. The statement of the lemma holds if b = 0. Otherwise, M−1 is also positively
definite, therefore, b>M−1b > 0. Then

0 6

(
a− (a>b)

b>M−1b
M−1b

)>
M

(
a− (a>b)

b>M−1b
M−1b

)
= a>Ma− 2

(a>b)

b>M−1b
b>M−1Ma+

(a>b)2

(b>M−1b)2
b>M−1MM−1b

= a>Ma− (a>b)2

b>M−1b
.

Lemma A.4. Let 0 < p < 1 and b > 0.

(i) If y ∈ L1[0, b] is a solution to integral equation

b∫
0

y(s) ds

|t− s|p
= f(t) (A.4)

for almost all t ∈ (0, b), then y(x) satisfies

y(x) =
Γ(p) cos πp2
πx(1−p)/2

D(1−p)/2
b−

(
x1−pD(1−p)/2

0+

(
f(x)

x(1−p)/2

))
(A.5)

almost everywhere on [0, b], where Dαa+ and Dαb− are fractional derivatives,

Dαa+f(x) =
1

Γ(1− α)

d

dx

( x∫
a

f(t)

(x− t)α
dt

)
,

Dαb−f(x) =
−1

Γ(1− α)

d

dx

( b∫
x

f(t)

(t− x)α
dt

)
.

(ii) If y1 ∈ L1[0, b] and y2 ∈ L1[0, b] are two solutions to integral equation (A.4),
then y1(x) = y2(x) almost everywhere on [0, b].

(iii) If y ∈ L1[0, b] satisfies (A.5) almost everywhere on [0, b] and the fractional
derivatives are solutions to respective Abel integral equations, that is,

1

Γ( 1−p
2 )

t∫
0

D(1−p)/2
0+ (f(x)x(p−1)/2)

(t− x)(p+1)/2
dx =

f(t)

t(1−p)/2
(A.6)

for almost all t ∈ (0, b) and

1

Γ( 1−p
2 )

b∫
x

πy(s)s(1−p)/2

Γ(p) cos πp2

ds

(s− x)(p+1)/2
= x1−pD(1−p)/2

0+

(
f(x)

x(1−p)/2

)
(A.7)

for almost all x ∈ (0, b), then y(s) is a solution to integral equation (A.4).
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Sketch of proof. The integral equation is solved in [6, 11]. In [6, Sect. 2.3], the equation
is rewritten as

t(1−p)/2

B(p, 1−p2 )

t∫
0

1

(t− τ)(p+1)/2τ1−p

b∫
τ

s(1−p)/2y(s) ds

(s− τ)(p+1)/2
dτ = f(t).

For the new equation, the statement of the theorem can readily be obtained.

Lemma A.5. Let 1/2 < p < 1 and 0 < ξ < b. Then the integral equation

b∫
0

y(s) ds

|s− t|p
= 1[ξ,b](t) for almost all t ∈ [0, b] (A.8)

has a unique solution y ∈ L2[0, b].

Proof. By Lemma A.4, if the solution to (A.8) exists within L1[0, b], it is equal to

y(x) =
Γ(p) cos πp2

πΓ(p+1
2 )x(1−p)/2

D(1−p)/2
b−

(
x1−p

d

dx

[ x∫
0

1[ξ,b](s) ds

s(1−p)/2(x− s)(1−p)/2

])
.

Note that the function
x∫

0

1[ξ,b](s) ds

s(1−p)/2(x− s)(1−p)/2
=

{
0 for 0 6 x 6 ξ,

xpB(1− ξ
x ; p+1

2 , p+1
2 ) for ξ 6 x 6 b

(A.9)

is absolutely continuous on [0, b] and is equal to 0 at the neighbourhood of 0 (here
B(x;α, β) =

∫ x
0
tα−1(1 − t)β−1 dt is the incomplete beta function). Then, by [17,

Thm. 2.1], its derivative is a solution to Abel integral equation

1

Γ( 1−p
2 )

x∫
0

1

Γ(p+1
2 )

d

dt

( t∫
0

1[ξ,b](s) ds

s(1−p)/2(t− s)(1−p)/2

)
dt

(x− t)(p+1)/2
=

1[ξ,b](x)

x(1−p)/2
.

Thus, condition (A.6) holds true for f(x) = 1[ξ,b](x).
The derivative of the right-hand side of (A.9) for x > ξ is equal to

d

dx

( x∫
ξ

ds

s(1−p)/2(x−s)(1−p)/2

)
=

p

x1−p
B

(
1− ξ

x
;
p+1

2
,
p+1

2

)
+

ξ(p+1)/2

x(x− ξ)(1−p)/2
.

Thus,

y(x) =
Γ(p) cos πp2

π Γ(p+1
2 )x(1−p)/2

(
D(1−p)/2
b− G1(x) +D(1−p)/2

b− G2(x)
)

(A.10)
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with G1(x) = pB(1 − ξ/x; (p + 1)/2, (p + 1)/2)1(ξ,+∞)(x), G2(x) = ξ(p+1)/2/

(xp(x− ξ)(1−p)/2)1(ξ,+∞)(x).
The function G1(x) is continuous, therefore G1 ∈ L2[0, T ]. Also, it is piecewise

differentiable and Hölder with exponent (1+p)/2. Consequently, its fractional derivative
D(1−p)/2
b− G1 is bounded on any interval [0, b1], 0 < b1 < b, see [17, Thm. 13.6]. It makes

a solution to Abel integral equation: I(1−p)/2b− D(1−p)/2
b− G1 = G1 almost everywhere on

(0, b). At the neighbourhood of b, it has the asymptotic behaviour: D(1−p)/2
b− G1(x) ∼

G1(b)/(Γ((p+ 1)/2)(b− x)(1−p)/2), x→ b−. Thus, D(1−p)/2
b− G1 ∈ L2[0, b].

The function G2(x) is piecewise continuous, unbounded as x → ξ+, and G2 ∈
L2[0, b]. In order to prove that D(1−p)/2

b− G2 ∈ L2[0, T ], we use Theorem 13.2 from [17],
according to which, I(1−p)/2b− D(1−p)/2

b− G2 = G2 and D(1−p)/2
b− G2 ∈ L2[0, b] if and only

if two conditions hold: (i) G2 ∈ L2[0, b]; and (ii) ψε converges in L2[0, b] as ε → 0+,
where

ψε(x) =


∫ b
x+ε

G2(t)−G2(x)
(t−x)(3−p)/2 dt, 0 6 x 6 b− ε,∫ b

x+ε
−G2(x) dt

(t−x)(3−p)/2 = −2G2(x)
1−p ( 1

ε(1−p)/2
− 1

(b−x)(1−p)/2 ), b− ε 6 x < b,

for b − ε 6 x < b. Condition (i) holds true. Condition (ii) is an immediate consequence
of the following assertions:

• The integrand, which equals either (G2(t)−G2(x))(t−x)(p−3)/2 if x+ ε 6 t 6 b
or −G2(t)(t − x)(p−3)/2 if b 6 t 6 x + ε, t > x, is positive or zero if 0 6 x 6 ξ
and negative if ξ < x < b. Therefore, for fixed x, ψε(x) is monotonous in ε.

• At ε = b,

ψb(x) =

{
0, 0 6 x 6 ξ,

2
1−p

ξ(p+1)/2

xp(x−ξ)(1−p)/2 ( 1
(b−x)(1−p)/2 −

1
b(1−p)/2

), ξ < x < b,

belongs to L2[0, T ].
• At ε = 0,

ψ0(x) =

b∫
x

G2(t)−G2(x)

(t− x)(3−p)/2
dt,

and ∣∣ψ0(x)
∣∣ < const

|x− ξ|1−p

with

const = ξ(1−p)/2
1 + p

1− p

∞∫
0

du

u(1−p)/2(1 + u)(3−p)/2
<
ξ(1−p)/2(3− p)

(1− p)2
.

Therefore, ψ0 ∈ L2[0, b].
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• limε→0+ ψε(x) = ψ0(x) for all x, 0 6 x < b, because the Lebesgue integral
is continuous-on-the-right with respect to the lower limit. The limit is finite at
the points where ψ0(x) is finite, i.e., almost everywhere on (0, b); however
limε→0+ ψε(ξ) = +∞ = ψ0(ξ).

Thus, D(1−p)/2
b− G2 ∈ L2[0, b]. Moreover, for x < ξ, the function

D(1−p)/2
b− G2(x) =

1

Γ(p−12 )

b∫
ξ

G2(t) dt

(t− x)(3−p)/2

is bounded in the neighbourhood of 0.
Since the function D(1−p)/2

b− G1(x) + D(1−p)/2
b− G2(x) is square integrable on (0, b)

and bounded in the neighbourhood of 0, multiplying it by x(p−1)/2 does not drive it out
of L2[0, b]. Thus, y ∈ L2[0, b], see (A.10). From (A.10) and equalities

I
(1−p)/2
b− D(1−p)/2

b− G1 = G1 and I
(1−p)/2
b− D(1−p)/2

b− G2 = G2

it follows that

I
(1−p)/2
b−

(
πΓ(p)y(x)x(1−p)/2

Γ(p) cos πp2

)
= G1(x) +G2(x) = x1−pD(1−p)/2

0+

(
1[ξ,b](x)

x(1−p)/2

)
.

Condition (A.7) holds true. By statement (iii) of Lemma A.4, y(x) is indeed a solution to
integral equation (A.8). Uniqueness of the solution to (A.8) follows from statement (ii) of
Lemma A.4 and from the fact that L2[0, b] ⊂ L1[0, b].
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