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Abstract. In this paper, we consider the existence and multiplicity of solutions for fractional
Schrödinger equations with critical nonlinearity in RN. We use the fractional version of Lions’
second concentration-compactness principle and concentration-compactness principle at infinity to
prove that (PSc) condition holds locally. Under suitable assumptions, we prove that it has at least
one solution and, for any m ∈ N, it has at least m pairs of solutions. Moreover, these solutions can
converge to zero in some Sobolev space as ε → 0.
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1 Introduction

The main purpose of this paper is to study the existence and multiplicity of solutions of
the following fractional Schrödinger equations with critical nonlinearity:

ε2s
[
g

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx

)]
(−∆)su+ V (x)u

= |u|2
∗
s−2u+ h(x, u), x ∈ RN ,

u(x)→ 0 as |x| → ∞,

(1)
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Solutions of stationary Kirchhoff equations involving nonlocal operators 615

where ε > 0, N > 2s, 0 < s < 1, 2∗s = 2N/(N − 2s), and

Hs
(
RN
)

:=

{
u ∈ L2

(
RN
)
:
|u(x)− u(y)|
|x− y|N/2+s

∈ L2
(
RN × RN

)}
.

We make the following assumptions on V (x), g(x), and h(x) throughout this paper:

(V ) V (x) ∈ C(RN ,R), V (x0) = minV = 0, and there is τ0 > 0 such that the set
V τ0 = {x ∈ RN: V (x) < τ0} has finite Lebesgue measure;

(G) (g1) There exists α0 > 0 such that nondecreasing function g(t) > α0 for all t > 0;
(g2) There exists Σ satisfying 2/µ < Σ < 1 and G(t) > Σg(t)t for all t > 0,

where G(t) =
∫ t
0
g(s) ds;

(H) (h1) h ∈ C(RN × R,R) and h(x, t) = o(|t|) uniformly in x as t→ 0;
(h2) There are c0 > 0 and q ∈ (2, 2∗s) such that |h(x, t)| 6 c0(1 + tq−1);
(h3) There l0 > 0, r > 2, and 2 < µ < 2∗s such that H(x, t) > l0|t|r and

µH(x, t) 6 h(x, t)t for all (x, t), where H(x, t) =
∫ t
0
h(x, s) ds.

The fractional Laplacian operator (−∆)s (up to normalization constants) may be
defined as

(−∆)su := P.V.

∫
RN

|u(x)− u(y)|
|x− y|N+2s

dy, x ∈ RN ,

where P.V. stands for the principal value. It may be viewed as the infinitesimal gener-
ators of a Lévy stable diffusion processes [1]. This operator arises in the description of
various phenomena in the applied sciences, such as phase transitions, materials science,
conservation laws, minimal surfaces, water waves, optimization, plasma physics, and so
on; see [21] and references therein for more detailed introduction.

In these last years, a great deal of work has been devoted to the study of semiclassical
standing waves for the fractional nonlinear Schrödinger equation of the form

iε
∂ψ

∂t
= ε2s(−∆)sψ + P (x)ψ − f

(
x, |ψ|

)
, x ∈ RN , (2)

where ε is a small positive constant, which corresponds to the Planck constant, (−∆)s,
0 < s < 1, is the fractional Laplacian, P (x) is a potential function. Problem (2) models
naturally many physical problems, such as phase transition, conservation laws, especially
in fractional quantum mechanics, etc.; see [14]. It was introduced by Laskin [16, 17]
as a fundamental equation of fractional quantum mechanics in the study of particles on
stochastic fields modeled by Lévy process. We refer to [21] for more physical background.

To obtain standing waves of the fractional nonlinear Schrödinger equation (2), we set
ψ(x, t) = e−iEt/εu(x) for some function u ∈ Hs(RN ), and let V (x) = P (x)−E. Then
problem (2) is reduced to the following equation:

ε2s(−∆)su+ V (x)u = f(x, u), x ∈ RN , (3)
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In quantum mechanics, when ε tends to zero, the existence and multiplicity of solutions
to (3) is of particular importance.

In the nonlocal case, that is, when s ∈ (0, 1), the nonlocal model has attracted
much attentions recently. For the case of a bounded domain, Ricceri [24] established
a theorem tailor-made for a class of nonlocal problems involving nonlinearities with
bounded primitive. In [8], Molica Bisci and Repovš studied a class of nonlocal fractional
Laplacian equations depending on two real parameters and obtained the existence of three
weak solutions by exploiting the result established by Ricceri in [24]. For more related
results, we refer the readers to [3, 4, 6, 7, 11, 13, 18] and the references therein. For the
whole space RN were also studied by a number of authors. Felmer et al. [14] studied the
existence and regularity of positive solution when f has subcritical growth and satisfies
the Ambrosetti–Rabinowitz condition. Secchi [25] obtained the existence of ground state
solutions of (3) when V (x) → ∞ as |x| → ∞ and Ambrosetti–Rabinowitz condition
holds. In [29], the authors obtained the existence of infinitely many weak solutions for (3)
by variant fountain theorem when f has subcritical growth. For the case of critical growth,
Shang and Zhang [26] studied the existence and multiplicity of solutions for the critical
fractional Schrödinger equation

ε2α(−∆)αu+ V (x)u = |u|2
∗
s−2u+ λf(u), x ∈ RN. (4)

Based on variational methods, they showed that problem (4) has a nonnegative ground
state solution for all sufficiently large λ and small ε. Moreover, Shen and Gao in [28] ob-
tained the existence of nontrivial solutions for problem (4) under various assumptions on f
and potential function V (x), in which the authors assumed the well-known Ambrosetti–
Rabinowitz condition. See also recent papers [2, 22, 25, 27] on the fractional Schrödinger
equations (4). In [32], the fractional Schrödinger equations with a critical nonlinearity
considered by using fractional version of concentration-compactness principle and radi-
ally decreasing rearrangements, they obtained the existence of a ground state solutions.
However, there are no such results on Kirchhoff type problems (1).

The interest in studying problems like problem (1) relies not only on mathematical
purposes but also on their significance in real models. For example, in the Appendix
of paper [15], the authors construct a stationary Kirchhoff variational problem, which
models, as a special significant case, the nonlocal aspect of the tension arising from
nonlocal measurements of the fractional length of the string.

In this paper, inspired by [12, 31], we consider the existence and multiplicity of
standing wave solutions of the fractional Schrödinger equation (1). To the best of our
knowledge, the existence and multiplicity of standing wave solutions to problem (1) on
RN has not ever been studied by variational methods. To prove all the results, we mainly
follow the ideas in [12,31]. Our proofs are based on variational methods. Let us point out
that although the idea was used before for other problems, the adaptation to the procedure
to our problem is not trivial at all. Because the appearance of non-local term and the
function g, we must reconsider this problem and need more delicate estimates.

Our main result is the following.

https://www.mii.vu.lt/NA



Solutions of stationary Kirchhoff equations involving nonlocal operators 617

Theorem 1. Let (V ), (G), and (H) be satisfied. Thus:

(i) For any κ > 0, there is Eκ > 0 such that if ε 6 Eκ problem (1) has at least one
solution uε satisfying

2µ−Σ
Σ

∫
RN

H(x, uε) dx+

(
2

Σ
− 1

2∗s

) ∫
RN

|uε|2
∗
s dx 6 κεN , (5)

(
Σ

2
− 1

µ

)
α0

∫
RN

ε2s
∣∣(−∆)s/2uε

∣∣2 dx+

(
1

2
− 1

µ

) ∫
RN

V (x)|uε|2 dx 6 κεN. (6)

Moreover, uε → 0 in Hs(RN ) as ε→ 0.
(ii) Assume additionally that h(x, t) is odd in t, for any m ∈ N and κ > 0, there is
Emκ > 0 such that if ε 6 Emκ, problem (1) has at least m pairs of solutions uε,i,
uε,−i, i = 1, 2, . . . ,m, which satisfy estimates (5) and (6). Moreover, uε,i → 0
in Hs(RN ) as ε→ 0, i = 1, 2, . . . ,m.

Remark 1. We should point out that Theorem 1 is different from the previous results
of [12, 31] in two main directions:

(i) g(t) 6≡ C. There exist many functions g(t) satisfying condition (g1)–(g2), for
example, g(t) = a+ bt, a, b > 0, and Σ = 1/2.

(ii) Other potentials V (x) guaranteeing compactness of the embedding from E ↪→
Hs(RN ) can also be used in this paper.

(iii) We use the fractional version of Lions’ second concentration-compactness prin-
ciple and concentration-compactness principle at infinity to prove that (PSc) con-
dition holds, which is different from methods used in [12].

(iv) The method are employed to establish the existence and multiplicity of standing
wave solutions for problems (1), which is different from methods used in [31].

This paper is organized as follows: Section 2 is devoted to preliminary. In Section 3,
we introduce the variational framework and restate the problem in a equivalent form by
replacing ε−2s with λ. Furthermore, we describe the corresponding main results (Theo-
rem 3). In Section 4, we prove the behaviors of the bounded (PS) sequences and then show
that the energy functional satisfies (PSc) by using the fractional version of concentration-
compactness principle. In Section 4, we give behaviors of (PSc) sequences and its conse-
quences. In Section 4, we verify the geometry of the mountain pass theorem and estimate
the minimax value. At last, we give the proof of the main results.

2 Preliminaries

For the convenience of the reader, in this part we recall some definitions and basic prop-
erties of fractional Sobolev spaces Hs(RN ). For a deeper treatment on these spaces and
their applications to fractional Laplacian problems of elliptic type, we refer to [9, 21] and
references therein.

Nonlinear Anal. Model. Control, 22(5):614–635



618 Z. Piao et al.

For any s ∈ (0, 1), the fractional Sobolev space Hs(RN ) is defined by

Hs
(
RN
)

=
{
u ∈ L2

(
RN
)
: [u]Hs(RN ) <∞

}
,

where [u]Hs(RN ) denotes the so-called Gagliardo semi-norm, that is

[u]Hs(RN ) =

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2

,

and Hs(RN ) is endowed with the norm

‖u‖Hs(RN ) = [u]Hs(RN ) + ‖u‖L2(RN ).

As it is well known, Hs(RN ) turns out to be a Hilbert space with scalar product

〈u, v〉Hs(RN ) =

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

∫
RN

u(x)v(x) dx

for any u, v ∈ Hs(RN ). The space Hs(RN ) is defined as the completion of C∞0 (RN )
under the norm [u]Hs(RN ).

By Proposition 3.6 in [21], we have

[u]Hs(RN ) =
∥∥(−∆)s/2

∥∥
L2(RN )

for any u ∈ Hs(RN ), i.e.∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy =

∫
RN

∣∣(−∆)s/2u(x)
∣∣2 dx.

Thus,∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy =

∫
RN

(−∆)s/2u(x) · (−∆)s/2v(x) dx.

Theorem 2. (See [14, Lemma 2.1].) The embedding Hs(RN ) ↪→ Lp(RN ) is continuous
for any p ∈ [2, 2∗s], and the embedding Hs(RN )) ↪→ Lploc(RN )) is compact for any
p ∈ [2, 2∗s).

3 An equivalent variational problem

We set λ = ε−2s and rewrite (1) in the following form:

g

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx

)
(−∆)su+ λV (x)u

= λ|u|2
∗
s−2u+ λh(x, u), x ∈ RN ,

u(x)→ 0 as |x| → ∞

(7)

for λ→∞.
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We introduce the space

E =

{
u ∈ Hs

(
RN
)
:

∫
RN

V (x)|u|2 dx <∞
}
,

which is a reflexive Banach space under the scalar product

〈v1, v2〉E =

∫
RN

(−∆)s/2v1(−∆)s/2v2 dx+

∫
RN

V (x)v1v2 dx.

The norm induced by the product 〈·, ·〉E is

‖u‖E =
√
〈u, u〉E for u ∈ Hs

(
RN
)
.

By assumption (V ), we know that the embedding E ↪→ Hs(RN ) is continuous. Note that
the norm ‖·‖E is equivalent to the one ‖·‖λ defined by

‖u‖λ =

( ∫
RN

∣∣(−∆)s/2u
∣∣2 dx+ λ

∫
RN

V (x)|u|2 dx

)1/2

for each λ > 0. It is obvious that for each s ∈ [2, 2∗s], there is cs > 0 independent of
λ > 1 such that

|u|s 6 cs‖u‖E 6 cs‖u‖λ. (8)

In the following, we denote by |·|s the norm in Ls(RN ) and by ‖·‖E the norm in
Hs(RN ). Note that the norm ‖·‖E is equivalent to the ‖·‖λ for each λ > 0.

The energy functional Jλ : E → R associated with problem (7)

Jλ(u) :=
1

2
G

( ∫
RN

∣∣(−∆)s/2u
∣∣2 dx

)
+

1

2

∫
RN

λV (x)|u|2 dx− λ

2∗s

∫
RN

|u|2
∗
s dx

− λ
∫
RN

H(x, u) dx

is well defined. Define the Nahari manifold

N =
{
u ∈ E:

〈
J ′λ(u), u

〉
E

= 0
}
.

Under the assumptions, it is easy to check that as arguments [23, 30] Jλ ∈ C1(E,R) and
its critical points are solutions of (7).

We say that u ∈ E is a weak solution of (7) if〈
J ′λ(u), v

〉
= g

( ∫
RN

∣∣(−∆)s/2u
∣∣2 dx

) ∫
RN

(−∆)s/2u · (−∆)s/2v dx

+ λ

∫
RN

V (x)uv dx− λ
∫
RN

|u|2
∗
s−2uv dx− λ

∫
RN

h(x, u)v dx,

where v ∈ E.

Nonlinear Anal. Model. Control, 22(5):614–635
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We are going to prove the following result.

Theorem 3. Let (V ), (G) and (H) be satisfied. Thus:

(i) For any κ > 0, there is Λκ > 0 such that if λ > Λκ problem (7) has at least one
solution uλ satisfying

2µ−Σ
Σ

∫
RN

H(x, uλ) dx+

(
2

Σ
− 1

2∗s

) ∫
RN

|uλ|2
∗
s dx 6 κλ−N/(2s), (9)(

Σ

2
− 1

µ

)
α0

∫
RN

∣∣(−∆)s/2uλ
∣∣2 dx+

(
1

2
− 1

µ

)
λ

∫
RN

V (x)|uλ|2 dx

6 κλ1−N/(2s). (10)

Moreover, uλ → 0 in Hs(RN ) as λ→∞.
(ii) Assume additionally that h(x, t) is odd in t, for any m ∈ N and κ > 0, there is

Λmκ > 0 such that if λ > Λmκ, problem (7) has at leastm pairs of solutions uλ,i,
uλ,−i, i = 1, 2, . . . ,m, which satisfy estimates (9) and (10). Moreover, uλ,i → 0
in Hs(RN ) as λ→∞, i = 1, 2, . . . ,m.

4 Behaviors of (PS) sequences

We recall the fractional version of concentration-compactness principle in the fractional
Sobolev space [31, 32], which due to Lions [19, 20].

Lemma 1. (See [31, 32].) Let Ω ⊆ RN be an open subset, and let {un} be a weakly
convergent sequence to u in Hs(RN ) weakly converging to u as n → ∞ and such that
|un|2

∗
s ⇀ ν and |(−∆)s/2un|2 ⇀ µ in the sense of measures. Then, either un → u in

L
2∗s
loc(RN ) or there exists a (at most countable) set of distinct points {xj}j∈I ⊆ Ω and

positive numbers {νj}j∈I such that

ν = |u|2
∗
s +

∑
j∈I

δxjνj , νj > 0.

If, in addition, Ω is bounded, then there exist a positive measure µ̃ ∈ M(RN ) with
supp µ̃ ⊆ Ω and positive numbers {µj}j∈I such that

µ =
∣∣(−∆)s/2u

∣∣2 + µ̃+
∑
j∈I

δxjµj , µj > 0,

and

νj 6
(
S−1µ

(
{xj}

))2∗s/2,
where S is the best Sobolev constant, i.e.

S = inf
u∈Hs(RN )

∫
RN |(−∆)s/2u|2 dx∫

RN |u|2
∗
s dx

,

xj ∈ RN , δxj are Dirac measures at xj , and µj , νj are constants.
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Remark 2. In the case Ω = RN , the above principle of concentration-compactness does
not provide any information about the possible loss of mass at infinity. The following
result expresses this fact in quantitative terms.

Lemma 2. (See [31, 32].) Let {un} ⊂ Hs(RN ) such that un ⇀ u weakly in Hs(RN ),
|un|2

∗
s ⇀ ν and |(−∆)s/2un|2 ⇀ µ weakly-∗ inM(RN ), and define

(i) µ∞ = lim
R→∞

lim sup
n→∞

∫
{x∈RN : |x|>R}

∣∣(−∆)s/2un
∣∣2 dx,

(ii) ν∞ = lim
R→∞

lim sup
n→∞

∫
{x∈RN : |x|>R}

|un|2
∗
s dx.

The quantities ν∞ and µ∞ exist and satisfy

(iii) lim sup
n→∞

∫
RN

∣∣(−∆)s/2un
∣∣2 dx =

∫
RN

dµ+ µ∞,

(iv) lim sup
n→∞

∫
RN

|un|2
∗
s dx =

∫
RN

dν + ν∞,

(v) ν∞ 6
(
S−1ν∞

)2∗s/2.
We recall that a C1 functional J on Banach space X is said to satisfy the Palais–

Smale condition at level c ((PSc) in short) if every sequence {un} ⊂ X satisfying
limn→∞ Jλ(un) = c and limn→∞ ‖J ′λ(un)‖X∗ = 0 has a convergent subsequence.

Lemma 3. Suppose that (V ) and (H) hold. Then any (PSc) sequence {un} is bounded
in E and c > 0.

Proof. Let {un} be a sequence in E such that

c+ o(1) = Jλ(un)

=
1

2
G

( ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

)
+

1

2

∫
RN

λV (x)|un|2 dx

− λ

2∗(s)

∫
RN

|un|2
∗
s dx− λ

∫
RN

H(x, un) dx, (11)

〈
J ′λ(un), v

〉
= g

( ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

) ∫
RN

(−∆)s/2un · (−∆)s/2v dx

+ λ

∫
RN

V (x)unv dx− λ
∫
RN

|u|2
∗
s−2unv dx− λ

∫
RN

h(x, un)v dx

= o(1)‖un‖. (12)

Nonlinear Anal. Model. Control, 22(5):614–635
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By (11), (12), and condition (h3), we have

c+ o(1)‖un‖

= Jλ(un)− 1

µ

〈
J ′λ(un), un

〉
=

1

2
G

( ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

)
− g
( ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

) ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

+

(
1

2
− 1

µ

)
λ

∫
RN

V (x)|un|2 dx+

(
1

µ
− 1

2∗s

)
λ

∫
RN

|un|2
∗
s dx

+ λ

∫
RN

[
1

µ
h(x, un)un −H(x, un)

]
dx

>

(
Σ

2
− 1

µ

)
α0

∫
RN

∣∣(−∆)s/2un
∣∣2 dx+

(
1

2
− 1

µ

)
λ

∫
RN

V (x)|un|2 dx. (13)

Therefore, inequality (13) imply that {un} is bounded in E. Taking the limit in (13), we
show that c > 0. This completes the proof of Lemma 3.

The main result in this section is the following compactness result.

Lemma 4. Suppose that (V ), (G), and (H) hold. For any λ > 1, Jλ satisfies (PSc)
condition for all c ∈ (0, Σ0λ

1−N/(2s)), where Σ0 := (1/µ − 1/2∗s)S
N/(2s), that is any

(PSc)-sequence (un) ⊂ E has a strongly convergent subsequence in E.

Proof. Let {un} be a (PSc) sequence. By Lemma 3, {un} is bounded in E. Hence, up to
a subsequence, we may assume that

un ⇀ u weakly in E,

un → u a.e. in RN ,
un → u in Ltloc

(
RN
)
, 1 6 t < 2∗s.

Moreover, by Prokhorov’s theorem (see [7, Thm. 8.6.2]) there exist µ, ν ∈ M(RN )
such that ∣∣(−∆)s/2un

∣∣2 ⇀ µ (weak*-sense of measures),

|un|2
∗
s ⇀ ν (weak*-sense of measures),

where µ and ν are a nonnegative bounded measures on RN. It follows from Lemma 1 that
un → u in L2∗s

loc(RN ) or ν = |u|2∗s +
∑
j∈I δxjνj as n→∞, where I is a countable set,

{νj} ⊂ [0,∞), {xj} ⊂ RN .
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Take φ ∈ C∞0 (RN ) such that 0 6 φ 6 1; φ ≡ 1 in B(xj , ε), φ(x) = 0 in RN \
B(xj , 2ε). For any ε > 0, define φε = φ((x− xj)/ε), where j ∈ I . It follows that∫∫

R2N

|un(x)φε(x)− un(y)φε(y)|2

|x− y|N+2s
dxdy

6 2

∫∫
R2N

|un(x)− un(y)|2φ2ε(y)

|x− y|N+2s
dxdy + 2

∫∫
R2N

|φε(x)− φε(y)|2|un(x)|2

|x− y|N+2s
dxdy

6 2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy + 2

∫∫
R2N

|φε(x)− φε(y)|2|un(x)|2

|x− y|N+2s
dx dy. (14)

Similarly to the proof of Lemma 3.4 in [31], we have∫∫
R2N

|φε(x)− φε(y)|2|un(x)|2

|x− y|N+2s
dx dy 6 Cε−2s

∫
B(xi,Kε)

∣∣un(x)
∣∣2 dx+ CK−N , (15)

whereK > 4. As {un} is bounded inHs(RN ), it follows from (14) and (15) that {unφε}
is bounded in Hs(RN ). Then 〈J ′λ(un), unφε〉 → 0, which implies

g

( ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

) ∫
RN

(−∆)s/2un · (−∆)s/2(unφε) dx

= −λ
∫
RN

V (x)u2nφε dx+ λ

∫
RN

|u|2
∗
sφε dx+ λ

∫
RN

h(x, u)φε dx+ on(1). (16)

Since ∫
RN

(−∆)s/2un · (−∆)s/2(unφε) dx

=

∫∫
R2N

(un(x)− un(y))(un(x)φε(x)− un(y)φε(y))

|x− y|N+2s
dxdy

=

∫∫
R2N

(un(x)− un(y))2φε(y)

|x− y|N+2s
dx dy

+

∫∫
R2N

(un(x)− un(y))(φε(x)− φε(y))un(x)

|x− y|N+2s
dxdy,

it is easy to verify that∫∫
R2N

(un(x)− un(y))2φε(y)

|x− y|N+2s
dx dy →

∫
RN

φε dµ
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as n→∞ and ∫
RN

φε dµ→ µ
(
{xi}

)
as ε→ 0. Note that the Hölder’s inequality implies

∣∣∣∣ ∫∫
R2N

(un(x)− un(y))(φε(x)− φε(y))un(x)

|x− y|N+2s
dxdy

∣∣∣∣
6
∫∫
R2N

|un(x)− un(y)| · |φε(x)− φε(y)| · |un(x)|
|x− y|N+2s

dxdy

6 C

(∫∫
R2N

|un(x)|2|φε(x)− φε(y)|2

|x− y|N+2s
dxdy

)1/2

. (17)

Similarly to the proof of Lemma 3.4 in [31], we have

lim
ε→0

lim
n→∞

∫∫
R2N

u2n(x)(φε(x)− φε(y))2

|x− y|N+2s
dxdy = 0. (18)

In the following, we just give a sketch of the proof for the reader’s convenience.
On the one hand, we have

RN × RN =
((
RN \B(xi, 2ε)

)
∪B(xi, 2ε)

)
×
((
RN \B(xi, 2ε)

)
∪B(xi, 2ε)

)
=
((
RN \B(xi, 2ε)

)
×
(
RN \B(xi, 2ε)

))
∪
(
B(xi, 2ε)× RN

)
∪
((
RN \B(xi, 2ε)

)
×B(xi, 2ε)

)
.

On the other hand, we have∫∫
R2N

u2n(x)(φε(x)− φε(y))2

|x− y|N+2s
dxdy

=

∫∫
B(xi,2ε)×RN

u2n(x)(φε(x)− φε(y))2

|x− y|N+2s
dxdy

+

∫∫
(RN\B(xi,2ε))×B(xi,2ε)

u2n(x)(φε(x)− φε(y))2

|x− y|N+2s
dxdy

6 Cε−2s
∫

B(xi,Kε)

u2n(x) dx+ CK−N
( ∫
RN\B(xi,Kε)

∣∣un(x)
∣∣2∗s dx

)2/2∗s

6 Cε−2s
∫

B(xi,Kε)

u2n(x) dx+ CK−N .
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Note that un⇀u weakly in E. By Theorem 1, we obtain un→u in Ltloc(RN ), 16 t<2∗s ,
which implies

Cε−2s
∫

B(xi,Kε)

u2n(x) dx+ CK−N → Cε−2s
∫

B(xi,Kε)

u2(x) dx+ CK−N

as n→∞. Then

Cε−2s
∫

B(xi,Kε)

u2(x) dx+ CK−N

6 Cε−2s
( ∫
B(xi,Kε)

∣∣un(x)
∣∣2∗s dx

)2/2∗s
( ∫
B(xi,Kε)

dx

)1−2/2∗s
+ CK−N

= CK2s

( ∫
B(xi,Kε)

∣∣un(x)
∣∣2∗s dx

)2/2∗s

+ CK−N → CK−N

as ε→ 0. Furthermore, we have

lim sup
ε→0

lim sup
n→∞

∫∫
R2N

u2n(x)(φε(x)− φε(y))2

|x− y|N+2s
dxdy

= lim
K→∞

lim sup
ε→0

lim sup
n→∞

∫∫
R2N

u2n(x)(φε(x)− φε(y))2

|x− y|N+2s
dxdy = 0.

It follows from the definition of φε and un → u in Ltloc(RN ), 1 6 t < 2∗s , that

lim
ε→0

lim
n→∞

∫
RN

h(x, un)unφε dx = 0. (19)

Since φε has compact support, letting n → ∞ in (16), we deduce from (17), (18), and
(19) that

α0µ
(
{xj}

)
6 λνj .

Combing this with Lemma 1, we obtain νj > α0λ
−1Sν

2/2∗s
j . This result implies that

either (I) νj = 0 or (II) νj >
(
α0λ

−1S
)N/(2s)

.

To obtain the possible concentration of mass at infinity, similarly, we define a cut off
function φR ∈ C∞0 (RN ) such that φR(x) = 0 on |x| < R and φR(x) = 1 on |x| > R+1.
We could verify that {unφR} is bounded in E, hence, 〈J ′λ(un), unφR〉 → 0 as n → ∞,
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which implies

g

( ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

) ∫
RN

(−∆)s/2un · (−∆)s/2(unφR) dx

= −λ
∫
RN

V (x)u2nφR dx+ λ

∫
RN

|u|2
∗
sφR dx+ λ

∫
RN

h(x, u)φR dx+ on(1). (20)

Notice that ∫
RN

(−∆)s/2un · (−∆)s/2(unφR) dx

=

∫∫
R2N

(un(x)− un(y))(un(x)φR(x)− un(y)φR(y))

|x− y|N+2s
dxdy

=

∫∫
R2N

(un(x)− un(y))2φR(y)

|x− y|N+2s
dx dy

+

∫∫
R2N

(un(x)− un(y))(φR(x)− φR(y))un(x)

|x− y|N+2s
dxdy.

It is easy to verify that

lim sup
R→∞

lim sup
n→∞

∫∫
R2N

(un(x)− un(y))2φR(y)

|x− y|N+2s
dxdy = µ∞

and ∣∣∣∣ ∫∫
R2N

(un(x)− un(y))(φR(x)− φR(y))un(x)

|x− y|N+2s
dxdy

∣∣∣∣
6 C

(∫∫
R2N

u2n(x)|φR(x)− φR(y)|2

|x− y|N+2s
dx dy

)1/2

.

Note that

lim sup
R→∞

lim sup
n→∞

∫∫
R2N

u2n(x)(φR(x)− φR(y))2

|x− y|N+2s
dxdy

= lim sup
R→∞

lim sup
n→∞

∫∫
R2N

u2n(x)((1− φR(x))− (1− φR(y)))2

|x− y|N+2s
dxdy.

Similarly to the proof of Lemma 3.4 in [31], we have

lim sup
R→∞

lim sup
n→∞

∫∫
R2N

u2n(x)((1− φR(x))− (1− φR(y)))2

|x− y|N+2s
dxdy = 0.
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It follows from the definition of φε that

lim
R→∞

lim
n→∞

∫
RN

h(x, un)unφR dx = 0.

Letting R→∞ in (20), we obtain
α0µ∞ 6 λν∞.

By Lemma 2, we obtain ν∞ > α0λ
−1Sν

2/2∗s∞ . This result implies that

either (III) ν∞ = 0 or (IV) ν∞ >
(
α0λ

−1S
)N/(2s)

.

Next, we claim that (II) and (IV) cannot occur. If case (IV) holds for some j ∈ I , then by
using Lemma 2 and condition (h3), we have that

c = lim
n→∞

(
Jλ(un)− 1

µ

〈
J ′λ(un), un

〉)
>

(
Σ

2
− 1

µ

)
g

( ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

) ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

+

(
1

2
− 1

µ

)
λ

∫
RN

V (x)|un|2 dx+

(
1

µ
− 1

2∗s

)
λ

∫
RN

|un|2
∗
s dx

+ λ

∫
RN

[
1

µ
h(x, un)un −H(x, un)

]
dx

>

(
1

µ
− 1

2∗s

)
λ

∫
RN

|un|2
∗
s dx >

(
1

µ
− 1

2∗s

)
λ

∫
RN

|u|2
∗
sφR dx

=

(
1

µ
− 1

2∗s

)
λν∞ > Σ0λ

1−N/(2s),

whereΣ0 = (1/µ−1/2∗s)S
N/(2s). This is impossible. Consequently, νj = 0 for all j ∈ J .

Similarly, we can prove that (II) cannot occur for each j. Thus,∫
RN

|un|2
∗
s dx→

∫
RN

|u|2
∗
s dx. (21)

As |un − u|2
∗
s 6 22

∗
s (|un|2

∗
s + |u|2∗s ), it follows from the Fatou lemma that∫

RN

22
∗
s+1|u|2

2∗s
dx =

∫
RN

lim inf
n→∞

(
22

∗
s |un|2

2∗s
+ 22

∗
s |u|2

2∗s − |un − u|2
2∗s )

dx

6 lim inf
n→∞

∫
RN

(
22

∗
s |un|2

2∗s
+ 22

∗
s |u|2

2∗s − |un − u|2
2∗s )

dx

=

∫
RN

22
∗
s+1|u|2

2∗s
dx− lim sup

n→∞

∫
RN

|un − u|2
2∗s

dx,
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which implies that lim supn→∞
∫
RN |un − u|

2∗s dx = 0. Then

un → u in L2∗s (RN ) as n→∞.

Thus, from the weak lower semicontinuity of the norm, conditon (g1), and Brezis–
Lieb lemma [10] we have

o(1)‖un‖ =
〈
J ′λ(un), un

〉
= g

( ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

) ∫
RN

∣∣(−∆)s/2un
∣∣2 dx

+ λ

∫
RN

V (x)|un|2 dx− λ
∫
RN

|un|2
∗(s) dx− λ

∫
RN

h(x, un)un dx

> α0

∫
RN

(∣∣(−∆)s/2un
∣∣2 − ∣∣(−∆)s/2u

∣∣2) dx+ λ

∫
RN

V (x)
(
|un|2 − |u|2

)
dx

+ g

( ∫
RN

∣∣(−∆)s/2u
∣∣2 dx

) ∫
RN

∣∣(−∆)s/2u
∣∣2 dx+ λ

∫
RN

V (x)|u|2 dx

− λ
∫
RN

|u|2
∗(s) dx− λ

∫
RN

h(x, u)udx

= min{α0, 1}‖un − u‖2λ + o(1)‖u‖λ.

Here we use J ′λ(u) = 0. Thus, we prove that {un} strongly converges to u in E. This
completes the proof of Lemma 4.

5 Proof of Theorem 3

In the following, we always consider λ > 1. By assumptions (V ), (G), and (H), one can
see that Jλ(u) has mountain pass geometry.

Lemma 5. Assume (V ), (G), and (H) hold. There exist αλ, ρλ > 0 such that Jλ(u) > 0
if u ∈ Bρλ \ {0} and Jλ(u) > αλ if u ∈ ∂Bρλ , where Bρλ = {u ∈ E: ‖u‖λ 6 ρλ}.
Proof. By (h1)–(h3), for δ 6 (2 min{Σα0/2, 1/2}λµ2

2)−1, there is Cδ > 0 such that

1

2∗s

∫
RN

|u|2
∗
s dx+

∫
RN

H(x, u) dx 6 δ|u|22 + Cδ|u|
2∗s
2∗s
,

where cs is the embedding constant of (8). It follows that

Jλ(u) :=
1

2
G

( ∫
RN

∣∣(−∆)s/2u
∣∣2 dx

)
+

1

2

∫
RN

λV (x)|u|2 dx

− λ

2∗s

∫
RN

|u|2
∗
s dx− λ

∫
RN

H(x, u) dx
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> min

{
Σα0

2
,

1

2

}
‖u‖2λ − λδ|u|22 − λCδ|u|

2∗s
2∗s

>
1

2
min

{
Σα0

2
,

1

2

}
‖u‖2λ − λCδ|u|

2∗s
2∗s

>
1

2
min

{
Σα0

2
,

1

2

}
‖u‖2λ − λCδµ

2∗s
2∗s
‖u‖2

∗
s

λ .

Since 2∗s > 2, we know that the conclusion of Lemma 5 holds. This completes the proof
of Lemma 5.

Lemma 6. Under the assumption of Lemma 5, for any finite dimensional subspace F ⊂E,

Jλ(u)→ −∞ as u ∈ F, ‖u‖λ →∞.

Proof. On the one hand, by integrating (g2), we obtain

G(t) 6
G(t0)

t
1/Σ
0

t1/Σ = C0t
1/Σ (22)

for all t > t0 > 0. Using conditions (V ) and (h1)–(h3), we can get

Jλ(u) 6
C0

2
‖u‖2/Σλ +

1

2
‖u‖2λ −

λ

p∗
|u|2

∗
s

2∗s
− λl0|u|rr

for all u ∈ F . Since all norms in a finite-dimensional space are equivalent and 2/Σ < 2∗s ,
2 < 2∗s . This completes the proof of Lemma 6.

Since Jλ(u) does not satisfy condition (PSc) for all c > 0, in the following, we
will find a special finite-dimensional subspaces by which we construct sufficiently small
minimax levels.

Recall that assumption (V ) implies that there exists x0 ∈ RN such that V (x0) =
minx∈RN V (x) = 0. Without loss of generality, we assume from now on that x0 = 0.

Observe that, by (h3),

λ

2∗s

∫
RN

K(x)|u|2
∗
s dxλ

∫
RN

H(x, u) dx > l0λ

∫
RN

|u|r dx.

Define the function Iλ ∈ C1(E,R) by

Iλ(u) :=
1

2
G

( ∫
RN

∣∣(−∆)s/2u
∣∣2 dx

)
+

1

2

∫
RN

λV (x)|u|2 dx− l0λ
∫
RN

|u|r dx.

Then Jλ(u) 6 Iλ(u) for all u ∈ E, and it suffices to construct small minimax levels
for Iλ.

Nonlinear Anal. Model. Control, 22(5):614–635



630 Z. Piao et al.

Note that

inf

{ ∫
RN

∣∣(−∆)s/2φ
∣∣2 dx: φ ∈ C∞0

(
RN
)
, |φ|r = 1

}
= 0.

For any 1 > ζ > 0, one can choose φζ ∈ C∞0 (RN ) with |φζ |r = 1 and suppφζ ⊂ Brζ (0)

so that |(−∆)s/2φζ |22 < ζ. Set

fλ = φζ(λ
1/(2s)x), (23)

then
supp fλ ⊂ Bλ−1/(2s)rζ (0).

Observe that

Iλ(tfλ) 6
C0

2
t2/Σ

( ∫
RN

∣∣(−∆)s/2fλ
∣∣2 dx

)1/Σ

+
t2

2

∫
RN

λV (x)|fλ|2 dx

− trl0λ
∫
RN

|fλ|r dx

= λ1−N/(2s)
[
C0

2
t2/Σ

(
λ1−N/(2s)

)1/Σ−1( ∫
RN

∣∣(−∆)s/2φζ
∣∣2 dx

)1/Σ

+
t2

2

∫
RN

V
(
λ−1/(2s)x

)
|φδ|p dx− trl0

∫
RN

|φδ|r dx

]

6 λ1−N/(2s)
[
C0

2
t2/Σ

( ∫
RN

∣∣(−∆)s/2φζ
∣∣2 dx

)1/Σ

+
t2

2

∫
RN

V
(
λ−1/(2s)x

)
|φδ|2 dx− trl0

∫
RN

|φδ|r dx

]
= λ1−N/(2s)Ψλ(tφζ),

where Ψλ ∈ C1(E,R) is defined by

Ψλ(u) :=
C0

2

( ∫
RN

∣∣(−∆)s/2u
∣∣2 dx

)1/Σ

+
1

2

∫
RN

V
(
λ−1/(2s)x

)
|u|2 dx− l0

∫
RN

|u|r dx.
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Since s > 2/Σ, there exists finite number t0 ∈ [0,+∞) such that

max
t>0

Ψλ(tφζ) =
C0

2
t
2/Σ
0

( ∫
RN

∣∣(−∆)s/2φζ
∣∣2 dx

)1/Σ

+
t20
2

∫
RN

V
(
λ−1/(2s)x

)
|φζ |2 dx

− tr0l0
∫
RN

|φζ |r dx

6
C0

2
t
2/Σ
0

( ∫
RN

∣∣(−∆)s/2φζ
∣∣2 dx

)1/Σ

+
t20
2

∫
RN

V
(
λ−1/(2s)x

)
|φζ |2 dx.

On the one hand, since V (0) = 0 and note that suppφζ ⊂ Brζ (0), there is Λζ > 0 such
that

V
(
λ−1/(2s)x

)
6

ζ

|φδ|22
for all |x| 6 rζ and λ > Λζ .

This implies that

max
t>0

Ψλ(tφδ) 6
C0

2
t
2/Σ
0 ζ1/Σ +

t20
2
ζ 6 T ∗ζ, (24)

where T ∗ := (C0t
2/Σ
0 + t20)/2. Therefore, for all λ > Λζ ,

max
t>0

Jλ(tφδ) 6 T ∗ζλ1−N/(2s). (25)

Thus, we have the following lemma.

Lemma 7. Under the assumption of Lemma 5, for any κ > 0, there exists Λκ > 0 such
that for each λ > Λκ, there is f̂λ ∈ E with ‖f̂λ‖ > ρλ, Jλ(f̂λ) 6 0, and

max
t∈[0,1]

Jλ(tf̂λ) 6 κλ1−N/(2s). (26)

Proof. Choose ζ > 0 so small that T ∗ζ 6 κ. Let fλ ∈ E be the function defined by (23).
Taking Λκ = Λδ . Let t̂λ > 0 be such that t̂λ‖fλ‖λ > ρλ and Jλ(tfλ) 6 0 for all t > t̂λ.
Let f̂λ = t̂λfλ, the conclusion of Lemma 7 holds by (25).

For any m∗ ∈ N, one can choose m∗ functions φiζ ∈ C∞0 (RN ) such that suppφiζ ∩
suppφkζ = ∅, i 6= k, |φiζ |s = 1, and |(−∆)s/2φiζ |22 < ζ. Let rm

∗

ζ > 0 be such that
suppφiζ ⊂ Birζ (0) for i = 1, 2, . . . ,m∗. Set

f iλ(x) = φiζ
(
λ1/(2s)x

)
for i = 1, 2, . . . ,m∗ (27)

and
Hm∗

λζ = span
{
f1λ, f

2
λ, . . . , f

m∗

λ

}
.
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Observe that for each u =
∑m∗

i=1 cif
i
λ ∈ Hm∗

λζ , we have

∫
RN

∣∣(−∆)s/2u
∣∣2 dx 6 C

m∗∑
i=1

|ci|2
∫
RN

∣∣(−∆)s/2f iλ
∣∣2 dx

for some constant C > 0,∫
RN

V (x)|u|2 dx =

m∗∑
i=1

|ci|2
∫
RN

V (x)
∣∣f iλ∣∣2 dx,

and
1

2∗(s)

∫
RN

|u|2
∗(s) dx+

∫
RN

H(x, u) dx

=

m∗∑
i=1

(
1

2∗(s)

∫
RN

∣∣cif iλ∣∣2∗(s) dx+

∫
RN

H
(
x, cif

i
λ

)
dx

)
.

Therefore,

Jλ(u) 6 C

m∗∑
i=1

Jλ
(
cif

i
λ

)
for some constant C > 0. By a similar argument as the one before, we know that

Jλ
(
cif

i
λ

)
6 λ1−N/(2s)Ψ

(
|ci|f iλ

)
.

Set
βζ := max

{∣∣φiζ∣∣22: j = 1, 2, . . . ,m∗
}

and choose Λm∗δ > 0 so that

V
(
λ−1/(2s)x

)
6

ζ

βζ
for all |x| 6 rm

∗

ζ and λ > Λm∗ζ .

As before, we can obtain the following:

max
u∈Hm∗

λδ

Jλ(u) 6 Cm∗T ∗ζλ1−N/(2s) (28)

for all λ > Λm∗ζ and some constant C > 0.
Using this estimate we have the following.

Lemma 8. Under the assumptions of Lemma 5, for any m∗ ∈ N and κ > 0, there exists
Λm∗κ > 0 such that for each λ > Λm∗κ, there exists an m∗-dimensional subspace Fλm∗

satisfying
max

u∈Fλm∗
Jλ(u) 6 κλ1−N/(2s).

https://www.mii.vu.lt/NA



Solutions of stationary Kirchhoff equations involving nonlocal operators 633

Proof. Choose ζ > 0 so small that Cm∗T ∗ζ 6 κ. Taking Fλm∗ = Hm∗

λζ = span{f1λ,
f2λ, . . . , f

m∗

λ }, where f iλ(x) = φiδ(λ
1/(2s)x) for i = 1, 2, . . . ,m∗ are given by (27).

From (28) we know that the conclusion of Lemma 8 holds.

We now establish the existence and multiplicity results.

Proof of Theorem 3. (i) For any 0 < κ < Σ0, by Lemma 4, we choose ΛΣ > 0 and, for
λ > ΛΣ , define the minimax value

cλ := inf
γ∈Γλ

max
t∈[0,1]

Jλ(tf̂λ),

where
Γλ :=

{
γ ∈ C

(
[0, 1], E

)
: γ(0) = 0 and γ(1) = f̂λ

}
.

By Lemma 5, we have αλ 6 cλ 6 κλ1−N/(2s). In virtue of Lemma 4, we get that (PScλ )
condition holds for Jλ at cλ. Thus, there is uλ such that J ′λ(uλ) = 0 and Jλ(uλ) = cλ.
Then uλ is a nontrivial solution of (7). Moreover, it is well known that a mountain pass
solution is a state solution of (7).

Because uλ is a critical point of Jλ, for ρ ∈ [2, 2∗s],

κλ1−N/(2s) > Jλ(uλ) = Jλ(uλ)− 1

ρ
J ′λ(uλ)uλ

=
1

2
G

( ∫
RN

∣∣(−∆)s/2uλ
∣∣2 dx

)

− 1

ρ
g

( ∫
RN

∣∣(−∆)s/2uλ
∣∣2 dx

) ∫
RN

∣∣(−∆)s/2uλ
∣∣2 dx

+

(
1

2
− 1

ρ

)
λ

∫
RN

V (x)|uλ|2 dx+

(
1

ρ
− 1

2∗s

)
λ

∫
RN

|uλ|2
∗
s dx

+ λ

∫
RN

[
1

ρ
h(x, uλ)uλ −H(x, uλ)

]
dx

>

(
Σ

2
− 1

ρ

)
α0

∫
RN

∣∣(−∆)s/2uλ
∣∣2 dx+

(
1

2
− 1

ρ

)
λ

∫
RN

V (x)|uλ|2 dx

+

(
1

ρ
− 1

2∗s

)
λ

∫
RN

|uλ|2
∗
s dx+

(
µ

ρ
− 1

)
λ

∫
RN

H(x, uλ) dx. (29)

Taking ρ = 2/Σ, we obtain estimate (9), and taking ρ = µ, we obtain estimate (10). This
completes the proof of Theorem 3(i).

(ii) Denote the set of all symmetric (in the sense that −Z = Z) and closed subsets
of E by Σ for each Z ∈ Σ. Let gen(Z) be the Krasnoselkski genus and

j(Z) := min
ι∈Γm∗

gen
(
ι(Z) ∩ ∂Bρλ

)
,
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where Γm∗ is the set of all odd homeomorphisms ι ∈ C(E,E), and ρλ is the number
from Lemma 5. Then j is a version of Benci’s pseudoindex [5]. Let

cλi := inf
j(Z)>i

sup
u∈Z

Jλ(u), 1 6 i 6 m∗.

Since Jλ(u) > αλ for all u ∈ ∂B+
ρλ and since j(Fλm∗) = dimFλm∗ = m∗,

αλ 6 cλ1 6 · · · 6 cλm∗ 6 sup
u∈Hλm∗

Jλ(u) 6 κλ1−N/(2s).

It follows from Lemma 4 that Jλ satisfies (PScλ ) condition at all levels c < Σ0λ
1−N/2s.

By the usual critical point theory, all cλi are critical levels, and Jλ has at least m∗ pairs of
nontrivial critical points satisfying

αλ 6 Jλ(uλ) 6 κλ1−N/(2s).

Hence, problem (7) has at least m∗ pairs of solutions. In the end, as in the proof of
Theorem 3(i), we see that these solutions satisfy estimates (9) and (10).
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