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Abstract. In this paper, we construct Dulac functions for a family of planar differential equations.
We provide some conditions on the components of a vector field, which ensure the existence
of Dulac functions for such vector field. We also present some applications and examples in
biomathematical models to illustrate our results.
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1 Introduction

In the study of ordinary differential equations, the analysis of periodic solutions is an
important goal. But deciding whether an arbitrary differential equation has periodic or-
bits or not is a difficult question that remains open. For the two-dimensional case, the
Bendixson–Dulac criterion gives a sufficient condition for the non-existence of periodic
orbits. However, the Bendixson–Dulac criterion requires an auxiliary function with spe-
cific properties at Dulac function. Various techniques have been proposed to construct
Dulac functions, which range from algebraic methods for special systems, methods for
the construction of Lyapunov functions to techniques involving the solutions of certain
partial differential equations (see [3, 4, 6, 10, 13]). The Bendixson–Dulac criterion also
discards existence of polycycles making it useful in establishing global stability for certain
systems.
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For convenience, we recall the Bendixson–Dulac criterion, see [5, p. 137].

Theorem 1 [Bendixson–Dulac criterion]. Let fi(x1, x2), i ∈ 1, 2, and h(x1, x2) be
functionsC1 in a simply connected domainΩ ⊂ R2 such that ∂(f1h)/∂x1+∂(f2h)/∂x2
does not change sign in Ω and vanishes at most on a set of measure zero. Then system

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2), (x1, x2) ∈ Ω, (1)

does not have periodic orbits in Ω.

The h function in the theorem is called a Dulac function. Even though Dulac functions
are an important tool in many issues of differential equations, their determination is
a difficult task. Dulac functions can be used to discard the existence of limit cycles or
to estimate the number of limit cycles in some regions.

In this paper, we investigate the existence and construction of Dulac functions of
planar vector fields. We give, as far as we known, some new conditions on the components
of vector fields, which imply the existence of Dulac functions of these vector fields.
Our methods are constructive. We give some consequences and examples to illustrate
applications of these results.

2 Results

Consider the vector field F (x1, x2) = (f1(x1, x2), f2(x1, x2)), then system (1) can be
rewritten in the form

ẋ = F (x), x = (x1, x2) ∈ Ω.

As usual, the divergence of the vector field F is defined by

divF = div(f1, f2) =
∂f1
∂x1

+
∂f2
∂x2

.

We consider C0(Ω,R) the set of continuous functions and define the set

FΩ =
{
f ∈ C0(Ω,R): f does not change sign

and vanishes only on a measure zero set
}
.

Also for the simply connected region Ω, we introduce the sets

D+
Ω(F ) =

{
h ∈ C1(Ω,R): k :=

∂(hf1)

∂x1
+
∂(hf2)

∂x2
> 0, k ∈ FΩ

}
and

D−Ω(F ) =
{
h ∈ C1(Ω,R): k :=

∂(hf1)

∂x1
+
∂(hf2)

∂x2
6 0, k ∈ FΩ

}
.

A Dulac function in system (1) of the Bendixson–Dulac theorem is an element in the set

DΩ(F ) := D+
Ω(F ) ∪ D

−
Ω(F ).
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Our results are established with the help of the techniques developed in [10] and [11], let
us recall the following result.

Theorem 2. (See [10].) If there exist c ∈ FΩ such that h is a solution of the system

f1
∂h

∂x1
+ f2

∂h

∂x2
= h

(
c(x1, x2)− divF

)
(2)

with h ∈ FΩ , then h is a Dulac function for system (1) on Ω.

In the next theorem, we obtain Dulac functions considering special cases such that
(2) can be reduced to an ordinary differential equation, which can be solved explicitly.

Theorem 3. Let Ω be a simply connected open set. Suppose a vector field

F = f1
∂

∂x1
+ f2

∂

∂x2
∈ C1

(
Ω,R2

)
.

If there is c ∈ FΩ such that any of the following conditions holds, then DΩ(F ) 6= ∅:

(a) The function γ := (c−divF )/(f1g2g
′
1+f2g1g

′
2) depends on z := g1(x1)g2(x2)

and is continuous in Ω;
(b) The function η := (c− divF )/(f1g1 + f2g2) depends on z := k1(x1) + k2(x2)

(with k′i(xi) = gi(xi) for i = 1, 2) and is continuous Ω;
(c) The function σ := (c − divF )/(f1∂z/∂x1 + f2∂z/∂x2) depends on z :=

z(x1, x2) and is continuous Ω.

Proof. We consider case (a), the others are analogous. We seek a Dulac function using
the associated equation (2).

First, assume that h depends only on z := g1(x1)g2(x2). Thus, equation (2) re-
duces to

f1(x1, x2)g2(x2)g
′
1(x1)

∂h

∂z
+ f2(x1, x2)g1(x1)g

′
2(x2)

∂h

∂z

= h(z)
(
c(x1, x2)− divF

)
,

which is rewritten as
∂ log h

∂z
=

c− divF

f1g2g′1 + f2g1g′2
= γ(z).

From our hypothesis h := exp(
∫ z
γ(s) ds is a solution of the previous equation. Now,

it is easy to verify that h = exp(
∫ z
γ(s) ds) is indeed a Dulac function. The proof is

complete.

Note that, by the continuity of the functions in the proof of the previous theorem, the
constructed Dulac function is everywhere different from zero and can be represented by
means of the exponential function, but this does not mean that the constructed Dulac func-
tion is an exponential function. The following result is a direct consequence of Theorem 3
and mainly gives some particular cases.
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Corollary 1. Under the conditions of Theorem 3, if there exist a c ∈ FΩ such that any of
the following conditions holds, then DΩ(F ) 6= ∅:

(i) The function αi := (c− divF )/fi depends only on xi for some i ∈ {1, 2} and is
continuous;

(ii) The function β := (c − divF )/(x2f1 + x1f2) depends on z := x1x2 and is
continuous;

(iii) The function δ := (c − divF )/(f1 + f2) depends on z := x1 + x2 and is
continuous;

(iv) The function ε := (c− divF )/(c1f1 + c2f2) depends on z := c1x1 + c2x2 and
is continuous;

(v) The function κ := x2[c(x1, x2) − divF ]/(f1(x1, x2) − (x1/x2)f2(x1, x2)) de-
pends on z := x1/x2 and is continuous.

3 Applications and examples

In this section, we shall construct Dulac functions to some biomathematical models.
We present these results through propositions, and immediately we present examples
illustrating this fact.

We propose a family of epidemic systems that supports a Dulac function. This fact is
proved in the following proposition.

Proposition 1. Let ω : R2
+ → R+ be continuous functions, then the planar system

ẋ1 = λ1 − µ1x1 − ω(x1, x2) + τ2x2,

ẋ2 = λ2 + ω(x1, x2)− τ1x2

with ∂ω(x1, x2)/∂x1 > 0, (∂/∂x2)(ω(x1, x2)/x2) < 0 and all parameters are positive,
except τ2, which can have either sign, then the above system supports a Dulac function
on R2

+ := {(x1, x2) ∈ R2: x1 > 0, x2 > 0}.

Proof. Denote by F = (f1, f2) the vector field associated to the equation, we get

−div(f1, f2) = µ1 +
∂ω(x1, x2)

∂x1
− ∂ω(x1, x2)

∂x2
+ (µ2 + τ1).

We choose

c(x1, x2) = −µ1 −
∂ω(x1, x2)

∂x1
+
∂ω(x1, x2)

∂x2
− ω(x1, x2)

x2
− λ2
x2

= −µ1 −
∂ω(x1, x2)

∂x1
+ x2

∂

∂x2

ω(x1, x2)

x2
− λ2
x2

< 0.

We can write

α2 :=
c− divF

f2
=
−λ2

x2
− ω(x1,x2)

x2
+ (µ2 + τ1)

x2[
λ2

x2
+ ω(x1,x2)

x2
− (µ2 + τ1)]

= − 1

x2
,
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which is continuous and depends on z := x2. Therefore by (i) of Corollary 1 we get
DR2

+
(F ) 6= ∅. In fact, a direct calculation gives us that

h(x2) = exp

( z∫
α2(s) ds

)
= exp

(
−

x2∫
1

s
ds

)
=

1

x2

is a Dulac function for the system.

We present some examples that illustrate the Proposition 1.

Example 1. We consider the classic SIS epidemic model with nonmonotone incidence
function and disease-induced death

ẋ1 = λ− µ1x1 −
β1x1x2
1 + x22

+ τx2,

ẋ2 =
β1x1x2
1 + x22

− µ2x2 − τx2,

where x1 and x2 are the population of susceptible and infectious, respectively. The non-
monotone incidence function ω(x1, x2) = β1x1x2/(1+x

2
2) is proposed in [14]. Note that

SIS model satisfies the conditions of Proposition 1, therefore supports a Dulac function.

Example 2. We consider a polynomial differential system of degree n in biochemical
reactions [9]

ẋ1 = k1x0 − k2x1 − k3xp1x
q
2,

ẋ2 = k3x
p
1x
q
2 − k4x2,

where x0, x1 and x2 denote the concentrations of chemical species. The kinetic constants
ki, i = 1, . . . , 4, are positive, and p+q = n ∈ N. If q = 1, the conditions of Proposition 1
are satisfied, therefore the above planar system supports a Dulac function.

Example 3. We consider an SIRS epidemic model with constant population

ẋ1 = µ− µx1 − ω(x1, x2) + τx3,

ẋ2 = ω(x1, x2)− (µ+ σ)x2,

ẋ3 = σx2 − (µ+ τ)x3,

(3)

where x1, x2 and x3 are the population of susceptible, infectious and recovered, respec-
tively. System (3) is subject to the restriction x1(t) + x2(t) + x3(t) = 1, and using
x3 = 1−x1−x2 in the system, we can eliminate x3 from the equations. This substitution
gives the simpler model:

ẋ1 = µ+ τ − (µ+ τ)x1 − ω(x1, x2)− τx2,
ẋ2 = ω(x1, x2)− (µ+ σ)x2.

(4)

The feasible region of planar system (4) is given by {(x1, x2) ∈ R2
+: x1 > 0, x2 > 0,

x1 + x2 6 1}. Note that SIRS model satisfies the conditions of Proposition 1, therefore
supports a Dulac function.
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Now, we analyze a family of population dynamics models with generalized harvest
function that supports a Dulac function. We obtain the following proposition.

Proposition 2. Let gi : R+ → R+ be continuous functions and ai ∈ R+ for i = 1, 2,

ẋ1 = x1
(
a1 − x1g1(x2)

)
− k(x1, x2),

ẋ2 = x2
(
a2 − x2g2(x1)

)
with a2 > a1 and ∂k(x1, x2)/∂x1 > 0, then the above system supports a Dulac function
on R2

+ := {(x1, x2) ∈ R2: x1 > 0, x2 > 0}.

Proof. We assume a2 > a1 and taking c(x1, x2) := −(a2−a1)−2x1g1(x2)−∂k(x1, x2)/
∂x1 < 0 on R2

+, then condition (i) of Corollary 1 is written as

α2 =
c− divF

f2
= − 2a2 − 2x2g2(x1)

x2(a2 − x2g2(x1))
= − 2

x2
,

which is continuous and depends on z := x2, therefore by (i) of Corollary 1 we get that

h(x2) = exp

(
−2

x2∫
1

s
ds

)
=

1

x22

is a Dulac function on R2
+.

We present the following example that illustrate the previous proposition.

Example 4. We include the sigmoid harvest function to two-species mutualism model [1]

ẋ1 = x1

(
a1 −

x1
K1 + a12x2

)
− bx21
h+ x21

,

ẋ2 = x2

(
a2 −

x2
K2 + a21x1

)
.

Note that mutualistic model satisfies the conditions of Proposition 2, therefore supports
a Dulac function.

In the following proposition, we study a family of two–species cooperative systems
that supports a Dulac function.

Proposition 3. Let gi : R+ → R+ be continuous functions and ai ∈ R+ for i = 1, 2,
then the planar system

ẋ1 = x1
(
g1(x2)− a1x1

)
,

ẋ2 = x2
(
g2(x1)− a2x2

)
supports a Dulac function on R2

+ := {(x1, x2) ∈ R2: x1 > 0, x2 > 0}.

Proof. We verified that the conditions of Corollary 1(i) are satisfied, in effect

−divF = −g1(x2) + 2a1x1 − g2(x1) + 2a2x2,
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and taking c = −(a1x1 + a2x2) < 0, then

β :=
c− divF

x2f1 + x1f2
= − 1

x1x2
.

Integrating this function, we get that

h(x1, x2) = exp

( z∫
β(s) ds

)
=

1

x1x2

is a Dulac function on R2
+.

Example 5. The following system is a model for mutualism [8]:

ẋ1 = x1
[(
r1 + (r11 − r1)

(
1− e−k1x2

))
− a1x1

]
,

ẋ2 = x2
[(
r2 + (r22 − r2)

(
1− e−k2x1

))
− a2x2

]
,

where ri, rii, ki, ai ∈ R+ are constants and rii > ri, i = 1, 2. Note that mutualistic
model satisfies the conditions of Proposition 3, therefore supports a Dulac function.

Example 6. Gopalsamy [7] had proposed the following model to describe the mutualism
mechanism:

ẋ1 = r1x1

[
k1 + a1x2
1 + x2

− x1
]
, ẋ2 = r2x2

[
k2 + a2x1
1 + x1

− x2
]
,

where ri, ki, ai ∈ R+ are constants and ai > ki, i = 1, 2. Depending on the nature of
ki, i = 1, 2, previous system can be classified as facultative, obligate or a combination of
both, so by Proposition 3, therefore supports a Dulac function.

We analyze a polynomial planar system of type Lotka–Volterra that supports a Dulac
function. This fact is proved in the following proposition.

Proposition 4. We consider the planar system of differential equations

ẋ1 = (α1x1 + α2x2)
(
β1 + β2x

n
2 + σ1x

2p+1
1

)
,

ẋ2 = (α1x1 + α2x2)
(
β3 + β4x

m
1 + σ2x

2q+1
2

)
.

If α1α2 > 0 and σ1σ2 > 0 with σ1, σ2 are not both zero; and n, m, p and q are non-
negative integers, then the above planar system supports a Dulac function on R2

+.

Proof. Denote by F = (f1, f2) the vector field associated to the equation, we get

−divF = −α1

(
β1 + β2x

n
2 + σ1x

2p+1
1

)
− σ1(2p+ 1)x2p1 (α1x1 + α2x2)

− α2

(
β3 + β4x

m
1 + σ2x

2q+1
2

)
− σ2(2q + 1)x2q1 (α1x1 + α2x2).

Nonlinear Anal. Model. Control, 22(4):431–440
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Taking c(x1, x2) := (σ1(2p+ 1)x2p1 + σ2(2q + 1)x2q1 )(α1x1 + α2x2), we can write

ε : =
c− divF

α1f1 + α2f2

=
−α1(β1 + β2x

n
2 + σ1x

2p+1
1 )− α2(β3 + β4x

m
1 + σ2x

2q+1
2 )

(α1x1 + α2x2)(α1(β1 + β2xn2 + σ1x
2p+1
1 ) + α2(β3 + β4xm1 + σ2x

2q+1
2 ))

=
−1

α1x1 + α2x2
,

which is continuous and depends on z := α1x1 + α2x2, therefore by (iv) of Corollary 1
we have that h(x1, x2) = 1/(α1x1 + α2x2) is a Dulac function.

In the following two examples, we study ecological models that support a Dulac
function.

Example 7. We consider following phytoplankton–zooplankton system with instanta-
neous toxin liberation (see [12]):

ẋ1 = rx1

[
1− x1

K

]
− aw(x1)x2,

ẋ2 = bw(x1)x2 − sx2 − dh(x1)x2,

where x1 is the density of phytoplankton population and x2 is the density of zooplankton
population at any instant of time t. The parameters r, K, a, b, a and s are positive con-
stants. The functions arew(x1) > 0, h(x1) > 0 andw(x1)(rx1(1−x1/K)/w(x1))

′ < 0.
We get

−div(f1, f2) = −r + 2x1
r

K
+ aw′(x1)x2 − bfw(x1) + s+ dh(x1).

We verified that condition (a) of Theorem 3 with z = w(x1)x2 is satisfied and choose

c(x1, x2) = w(x1)

(
rx1(1− x1

K )

w(x1)

)′
= r − 2x1

r

K
− rx1

(
1− x1

K

)
w′(x1)

w(x1)
,

then

γ =
c− div(f1, f2)

w′(x1)x2f1 + w(x1)f2

=
−rx1(1− x1

K )w
′(x1)
w(x1)

+ ax2w
′(x1)− bw(x1) + s+ dh(x1)

w(x1)x2[rx1(1− x1

K )w
′(x1)
w(x1)

− ax2w′(x1) + bw(x1)− s− dh(x1)]

= − 1

w(x1)x2
,

therefore the system supports the Dulac function h(x1, x2) = 1/(w(x1)x2).
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Example 8. We propose a modified Leslie–Gower-type predator–prey model with Hassell–
Varley-type functional response

ẋ1 = r1x1

[
1− x1

K1

]
− ax1x2

x1 +mxφ2
, ẋ2 = r2x2

[
1− x2

τx1 + d

]
,

where r1, K1, a, m, φ, r2, τ and d are positive constants, and 0 6 φ 6 1. When φ = 0,
the above system reduces to the predator–prey model with modified Leslie–Gower and
Holling-type II schemes [2]. We consider R2

+ = {(x1, x2) ∈ R2: x1 > 0, x2 > 0}. Note
that

−divF = −r1 + 2
r1
K1

x1 +
amxφ+1

2

(x1 +mxφ2 )
2
− r2 +

2r2x2
τx1 + d

.

If r2 > r1, then

c(x1, x2) = −
r2(1− φ)mxφ2
x1 +mxφ2

− r2mφx
φ+1
2

(x1 +mxφ2 )(τx1 + d)

− x1

x1 +mxφ2

(
r1m

K1
xφ2 + 2

r1
K1

x1 + r2 − r1
)
< 0.

We can write
σ :=

c− divF

f1
∂z
∂x1

+ f2
∂z
∂x2

=
−Θ
x1x2

2

x1+mx
φ
2

Θ
= − 1

x1x2
2

x1+mx
φ
2

,

where

Θ : =
r1mx

φ
2

x1 +mxφ2
− r1mx1x

φ
2

K1(x1 +mxφ2 )
− amxφ+1

2

(x1 +mxφ2 )
2
+ 2r2

− 2r2x2
τx1 + d

− r2mφx
φ
2

x1 +mxφ2
+

r2mφx
φ+1
2

(x1 +mxφ2 )(τx1 + d)
.

σ is continuous and depends on z := z(x1, x2), therefore by (c) of Theorem 3 we get that
h(x1, x2) = (x1 +mxφ2 )/(x1x

2
2) is a Dulac function.

4 Concluding remarks

We extended the techniques for the construction of Dulac functions. In particular, we
apply this technique to some types of biomathematical models. By using Bendixson–
Dulac criterion, we can establish the non-existence of limit cycles in these models. It
is important to note that the non-periodicity in epidemiological and ecological models
reveals the non-recurrence outbreaks epidemic in a population and the absence of cyclical
variations of animal populations, respectively.

Finally, the results of this work indicate that our method of Dulac functions construc-
tion can be especially useful to two-dimensional biological systems.
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