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Abstract. This paper addresses Wu–Zhang system to study dispersive long waves. The extended
trial equation method extracts solitary waves, shock waves, and singular solitary waves solutions.
Subsequently, Lie group formalism is also applied to derive symmetries of the Wu–Zhang system,
and the derived ordinary differential equations are further analyzed to retrieve exact solutions are
obtained. Finally, implementation of mapping method secures additional exact solutions.
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1 Introduction

The study of nonlinear evolution equations (NLEEs) forms the basic fabric for various
areas of mathematical physics and engineering. There are various forms of NLEEs that
are studied for this purpose [1–31]. The nonlinear Schrödinger’s equation, for example,
is studied in nonlinear optics. In the context of plasma physics, Zakharov–Kuznetsov
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equation as well as complex-valued Korteweg–de Vries (KdV) equation are addressed.
Also, for fluid dynamics, particularly for shallow water wave dynamics, KdV equation,
Kawahara equation, Boussinesq equation, and other such models are analyzed. This paper
will study one such NLEE that appears in dispersive long wave dynamics. This is the Wu-
Zhang model [29]. The focus is on its integrability aspect.

Many powerful methods for obtaining the exact solutions of NLEEs have been pre-
sented in the literature [1–4, 6–8, 10, 11, 15, 23, 27, 28, 30]. The powerful and effective
method for finding exact solutions of PDEs has been proposed by Liu and hence called the
Liu method [17]. This method is one of the most direct and effective algebraic methods
for finding exact solutions of NLEEs. The most complete description of this method is
given in [19]. The successful application of this method to NLEEs has been performed in
several works [9,18,20–22,25]. The Liu’s method [9,17–22,25] can be used to construct
the exact solutions for fractional NLEEs. The present paper is motivated by the desire
to extend the extended trial equation method to obtain generalized solutions of the Wu–
Zhang system [29, 31]. An additional integration tool developed in this context is the Lie
symmetry analysis. Finally, the mapping method has been employed to obtain periodic
wave solutions in terms of Jacobi elliptic functions (JEFs) and their infinite period coun-
terparts have also been deduced [12–14, 16, 26].

2 Extended trial equation method

In this section, we describe the extended trial equation method for finding traveling wave
solutions of NLEEs and subsequently will apply it to solve the Wu–Zhang system. We
suppose that the given nonlinear PDE for u(x, t) is in the form

P (u, ut, ux, uxx, uxt, utt, . . . ) = 0, (1)

where P is a polynomial. The essence of the extended trial equation method can be
presented in the following steps:

Step 1. To find the traveling wave solutions of Eq. (1), we introduce the new wave
variable

u(x, t) = U(ξ), ξ = kx− vt, (2)

where k and v are constants to be determined later.
Substituting Eq. (2) into Eq. (1), we obtain the following ordinary differential equa-

tions (ODEs):
Q(U,U ′, U ′′, . . . ) = 0. (3)

Step 2. Take transformation and trial equation as follows:

U =

ς∑
i=0

τiΨ
i, (4)

where

(Ψ ′)2 = Λ(Ψ) =
Φ(Ψ)

Υ (Ψ)
=
µσΨ

σ + · · ·+ µ1Ψ + µ0

ζρΨρ + · · ·+ ζ1Ψ + ζ0
. (5)
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Using relations (4) and (5), we can find

(U ′)2 =
Φ(Ψ)

Υ (Ψ)

(
ς∑
i=0

iτiΨ
i−1

)2

,

U ′′ =
Φ′(Ψ)Υ (Ψ)− Φ(Ψ)Υ ′(Ψ)

2Υ 2(Ψ)

ς∑
i=0

iτiΨ
i−1 +

Φ(Ψ)

Υ (Ψ)

ς∑
i=0

i(i− 1)τiΨ
i−2, (6)

where Φ(Ψ) and Υ (Ψ) are polynomials. Substituting these terms into Eq. (3) yields an
equation of polynomial Ω(Ψ) of Ψ

Ω(Ψ) = %sΨ
s + · · ·+ %1Ψ + %0 = 0.

According to the balance principle, we can determine a relation of ρ, σ, and ς . We can
take some values of ρ, σ, and ς .

Step 3. Let the coefficients of Ω(Ψ) all be zero will yield an algebraic equations
system

%i = 0, i = 0, . . . , s. (7)

Solving this equations system (7), we will determine the values of ζ0, . . . , ζρ, µ0, . . . , µσ ,
and τ0, . . . , τς .

Step 4. Reduce Eq. (5) to the elementary integral form

± (ξ − ξ0) =
∫

dΨ√
Λ(Ψ)

=

∫ √
Υ (Ψ)

Φ(Ψ)
dΨ. (8)

Using a complete discrimination system for polynomial to classify the roots of Φ(Ψ), we
solve the infinite integral (8) and obtain the exact solutions to Eq. (3). Furthermore, we
can write the exact traveling wave solutions to Eq. (1), respectively.

2.1 Application to the Wu–Zhang system

In this section, we apply the extended trial equation method for finding exact solutions of
the Wu–Zhang system [29, 31] in the form

ut = −u
∂u

∂x
− ∂v

∂x
,

vt = −v
∂u

∂x
− u∂v

∂x
− 1

3

∂3u

∂x3
.

(9)

For our purpose, we introduce the following transformations:

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x− lt, (10)
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where l is a constant to be determined later. Substituting Eq. (10) into Eq. (9), integrating
once the resulting equation with respect to ξ, and choosing constant of integration to zero,
we obtain

V = lU − 1

2
U2, (11)

lV = UV +
1

3
U ′′. (12)

Inserting Eq. (11) into Eq. (12), we get ODEs as follows:

3l2U − 9

2
lU2 +

3

2
U3 − U ′′ = 0. (13)

Substituting Eqs. (4) and (6) into Eq. (13) and using the balance principle, we find

σ = ρ+ 2ς + 2. (14)

If we take σ = 4, ρ = 0, and ς = 1 in Eq. (14), then

U = τ0 + τ1Ψ, (15)

(U ′)2 =
τ21 (µ4Ψ

4 + µ3Ψ
3 + µ2Ψ

2 + µ1Ψ + µ0)

ζ0
,

U ′′ =
τ1(4µ4Ψ

3 + 3µ3Ψ
2 + 2µ2Ψ + µ1)

2ζ0
, (16)

where µ4 6= 0, ζ0 6= 0. Substituting Eqs. (15) and (16) into Eq. (13), collecting the
coefficients of Ψ , and solving the resulting algebraic equations system, we obtain

µ1 =
µ3τ0(2µ3 − 3ζ0τ0τ1)

3ζ0τ31
, µ2 =

µ2
3

3ζ0τ21
+
µ3τ0
τ1
− 3ζ0τ

2
0

2
, µ4 =

3ζ0τ
2
1

4
,

µ0 = µ0, µ3 = µ3, ζ0 = ζ0, τ0 = τ0, τ1 = τ1, l = τ0 −
µ3

3ζ0τ1
.

Substituting these results into Eqs. (5) and (8), we get

±(ξ − ξ0) =W

∫
dΨ√
Λ(Ψ)

, (17)

where

Λ(Ψ) = Ψ4 +
µ3

µ4
Ψ3 +

µ2

µ4
Ψ2 +

µ1

µ4
Ψ +

µ0

µ4
, W =

2√
3τ21

.

Integrating Eq. (17), we obtain the solutions to Eq. (13) as follows.
When Λ(Ψ) = (Ψ − λ1)4, we obtain

± (ξ − ξ0) = −
W

Ψ − λ1
. (18)
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When Λ(Ψ) = (Ψ − λ1)3(Ψ − λ2) and λ2 > λ1, we obtain

± (ξ − ξ0) =
2W

λ1 − λ2

√
Ψ − λ2
Ψ − λ1

. (19)

When Λ(Ψ) = (Ψ − λ1)2(Ψ − λ2)2, we obtain

± (ξ − ξ0) =
W

λ1 − λ2
ln

∣∣∣∣Ψ − λ1Ψ − λ2

∣∣∣∣. (20)

When Λ(Ψ) = (Ψ − λ1)2(Ψ − λ2)(Ψ − λ3) and λ1 > λ2 > λ3, we obtain

±(ξ − ξ0) =
W√

(λ1 − λ2)(λ1 − λ3)

× ln

∣∣∣∣
√
(Ψ − λ2)(λ1 − λ3)−

√
(Ψ − λ3)(λ1 − λ2)√

(Ψ − λ2)(λ1 − λ3) +
√
(Ψ − λ3)(λ1 − λ2)

∣∣∣∣. (21)

If Λ(Ψ) = (Ψ − λ1)(Ψ − λ2)(Ψ − λ3)(Ψ − λ4) and λ1 > λ2 > λ3 > λ4, then we
obtain

±(ξ − ξ0) =
2W√

(λ1 − λ3)(λ2 − λ4)
F (ϕ, k), (22)

where

F (ϕ, k) =

ϕ∫
0

dψ√
1− k2 sin2 ψ

,

ϕ = arcsin

√
(Ψ − λ1)(λ2 − λ4)
(Ψ − λ2)(λ1 − λ4)

, k2 =
(λ2 − λ3)(λ1 − λ4)
(λ1 − λ3)(λ2 − λ4)

.

Also λ1, λ2, λ3, and λ4 are the roots of the polynomial equation

Λ(Ψ) = 0.

Substituting solutions (18)–(22) into (15), we achieve the exact solutions to Eq. (13),
respectively. Then we can write the traveling wave solutions to the Wu–Zhang system (9)
as:

u(x, t) = τ0 + τ1λ1 ±
τ1W

x− (τ0 − µ3

3ζ0τ1
)t− ξ0

, (23)

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)[
τ0 + τ1λ1 ±

τ1W

x− (τ0 − µ3

3ζ0τ1
)t− ξ0

]
− 1

2

[
τ0 + τ1λ1 ±

τ1W

x− (τ0 − µ3

3ζ0τ1
)t− ξ0

]2
, (24)
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u(x, t) = τ0 + τ1λ1 +
4W 2(λ2 − λ1)τ1

4W 2 − [(λ1 − λ2){x− (τ0 − µ3

3ζ0τ1
)t− ξ0}]2

, (25)

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)
×
[
τ0 + τ1λ1 +

4W 2(λ2 − λ1)τ1
4W 2 − [(λ1 − λ2){x− (τ0 − µ3

3ζ0τ1
)t− ξ0}]2

]
− 1

2

[
τ0 + τ1λ1 +

4W 2(λ2 − λ1)τ1
4W 2 − [(λ1 − λ2){x− (τ0 − µ3

3ζ0τ1
)t− ξ0}]2

]2
, (26)

u(x, t) = τ0 + τ1λ2 +
(λ2 − λ1)τ1

exp[λ1−λ2

W {x− (τ0 − µ3

3ζ0τ1
)t− ξ0}]− 1

, (27)

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)
×
[
τ0 + τ1λ2 +

(λ2 − λ1)τ1
exp[λ1−λ2

W {x− (τ0 − µ3

3ζ0τ1
)t− ξ0}]− 1

]

− 1

2

[
τ0 + τ1λ2 +

(λ2 − λ1)τ1
exp[λ1−λ2

W {x− (τ0 − µ3

3ζ0τ1
)t− ξ0}]− 1

]2
, (28)

u(x, t) = τ0 + τ1λ1 +
(λ1 − λ2)τ1

exp[λ1−λ2

W {x− (τ0 − µ3

3ζ0τ1
)t− ξ0}]− 1

, (29)

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)
×
[
τ0 + τ1λ1 +

(λ1 − λ2)τ1
exp[λ1−λ2

W {x− (τ0 − µ3

3ζ0τ1
)t− ξ0}]− 1

]

− 1

2

[
τ0 + τ1λ1 +

(λ1 − λ2)τ1
exp[λ1−λ2

W {x− (τ0 − µ3

3ζ0τ1
)t− ξ0}]− 1

]2
, (30)

u(x, t) = τ0 + τ1λ1 −
2(λ1 − λ2)(λ1 − λ3)τ1

2λ1 − λ2 − λ3 + (λ3 − λ2) cosh(B{x− (τ0 − µ3

3ζ0τ1
)t})

, (31)

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)
×
[
τ0 + τ1λ1 −

2(λ1 − λ2)(λ1 − λ3)τ1
2λ1 − λ2 − λ3 + (λ3 − λ2) cosh(B{x− (τ0 − µ3

3ζ0τ1
)t})

]
− 1

2

[
τ0 + τ1λ1

− 2(λ1 − λ2)(λ1 − λ3)τ1
2λ1 − λ2 − λ3 + (λ3 − λ2) cosh(B{x− (τ0 − µ3

3ζ0τ1
)t})

]2
, (32)
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and

u(x, t) = τ0 + τ1λ2

+
τ1(λ1 − λ2)(λ4 − λ2)

λ4 − λ2 + (λ1 − λ4) sn2[Bj{x− (τ0 − µ3

3ζ0τ1
)t− ξ0}, k]

, (33)

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)
×
[
τ0+τ1λ2+

τ1(λ1−λ2)(λ4−λ2)
λ4−λ2+(λ1−λ4) sn2[Bj{x−(τ0− µ3

3ζ0τ1
)t−ξ0}, k]

]
− 1

2

[
τ0+τ1λ2+

τ1(λ1−λ2)(λ4−λ2)
λ4−λ2+(λ1−λ4) sn2[Bj{x−(τ0− µ3

3ζ0τ1
)t−ξ0}, k]

]2
. (34)

Here, B and Bj are given by

B =

√
(λ1 − λ2)(λ1 − λ3)

W
, Bj =

(−1)j
√
(λ1 − λ3)(λ2 − λ4)

2W
, j = 1, 2.

If we take τ0 = −τ1λ1 and ξ0 = 0, then solutions (23)–(32) can reduce to rational
function solutions

u(x, t) = ± τ1W

x− l̃t
,

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)[
± τ1W

x− l̃t

]
− 1

2

[
± τ1W

x− l̃t

]2
,

u(x, t) =
4W 2(λ2 − λ1)τ1

4W 2 − [(λ1 − λ2)(x− l̃t)]2
,

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)[
4W 2(λ2 − λ1)τ1

4W 2 − [(λ1 − λ2)(x− l̃t)]2

]
− 1

2

[
4W 2(λ2 − λ1)τ1

4W 2 − [(λ1 − λ2)(x− l̃t)]2

]2
,

singular solitary wave solutions

u(x, t) =
(λ2 − λ1)τ1

2

{
1∓ coth

[
λ1 − λ2
2W

(x− l̃t)
]}
,

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)[
(λ2 − λ1)τ1

2

{
1∓ coth

[
λ1 − λ2
2W

(x− l̃t)
]}]

− 1

2

[
(λ2 − λ1)τ1

2

{
1∓ coth

[
λ1 − λ2
2W

(x− l̃t)
]}]2

,
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and solitary wave solutions

u(x, t) =
A

C + cosh[B(x− l̃t)]
,

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)[
A

C + cosh[B(x− l̃t)]

]
− 1

2

[
A

C + cosh[B(x− l̃t)]

]2
,

where

A =
2(λ1 − λ2)(λ1 − λ3)τ1

λ3 − λ2
, C =

2λ1 − λ2 − λ3
λ3 − λ2

, l̃ = τ0 −
µ3

3ζ0τ1
.

Here, A and l̃ are respectively the amplitude and velocity of the soliton, while B is
the inverse width of the soliton. Thus, we can say that the solitons exist for τ1 < 0.
Furthermore, if we take τ0 = −τ1λ2 and ξ0 = 0, the Jacobi elliptic function solutions (33)
and (34) can be written as

u(x, t) =
A1

C1 + sn2[Bi(x− l̃t), (λ2−λ3)(λ1−λ4)
(λ1−λ3)(λ2−λ4)

]
, (35)

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)[
A1

C1 + sn2[Bi(x− l̃t), (λ2−λ3)(λ1−λ4)
(λ1−λ3)(λ2−λ4)

]

]

− 1

2

[
A1

C1 + sn2[Bi(x− l̃t), (λ2−λ3)(λ1−λ4)
(λ1−λ3)(λ2−λ4)

]

]2
, (36)

where

A1 =
τ1(λ1 − λ2)(λ4 − λ2)

λ1 − λ4
, C1 =

λ4 − λ2
λ1 − λ4

.

Remark 1. When the modulus k → 1, then solutions (35) and (36) can be reduced to
singular solitary wave solutions

u(x, t) =
A1

C1 + tanh2[Bi(x− l̃t)]
,

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)[
A1

C1 + tanh2[Bi(x− l̃t)]

]
− 1

2

[
A1

C1 + tanh2[Bi(x− l̃t)]

]2
,

where λ3 = λ4.
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Remark 2. When the modulus k → 0, then solutions (35) and (36) can be turned to
periodic-singular wave solutions

u(x, t) =
A1

C1 + sin2[Bi(x− l̃t)]
,

v(x, t) =

(
τ0 −

µ3

3ζ0τ1

)[
A1

C1 + sin2[Bi(x− l̃t)]

]
− 1

2

[
A1

C1 + sin2[Bi(x− l̃t)]

]2
,

where λ2 = λ3.

3 Lie symmetry analysis

In this section, we will perform Lie classical method [5, 13, 24] on system of Eqs. (9).
Let us consider one parameter Lie group of transformation

u∗ −→ u+ εη1(x, t, u, v), v∗ −→ v + εη2(x, t, u, v),

x∗ −→ x+ εξ(x, t, u, v), t∗ −→ t+ ετ(x, t, u, v)

with small parameter ε� 1.
The associated vector field can be written as

V = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ η1(x, t, u, v)

∂

∂u
+ η2(x, t, u, v)

∂

∂v
.

Now, applying the second prolongation pr2V of V to system of Eq. (9), we find that the
coefficient functions ξ, τ , η1, and η2 must satisfy the invariance condition

ηt1 + η1ux + uηx1 + ηx2 = 0,

ηt2 + η2ux + vηx1 + η1vx + uηx2 +
1

3
ηxxx1 = 0,

(37)

where ηt1, ηx1 , ηx2 , ηt2, and ηxxx1 are extended infinitesimals.
Substituting the infinitesimals ηt1, ηx1 , ηx2 , ηt2, and ηxxx1 into Eqs. (37), then using the

system of equations (9), and equating the coefficients of the various derivative terms, we
obtain a system of NLEEs. Solving this system, we obtain following form of infinitesi-
mals:

ξ =
x

2
c1 + tc3 + c4, τ = tc1 + c2, η1 = c3 −

u

2
c1, η2 = −vc1,

where c1, c2, c3, and c4 are arbitrary real constants.
Corresponding vector fields are

V1 =
x

2

∂

∂x
+ t

∂

∂t
− u

2

∂

∂u
− v ∂

∂v
, V2 =

∂

∂t
,

V3 = t
∂

∂x
+

∂

∂u
, V4 =

∂

∂x
.

(38)
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Commutator table for vector fields (38) is as follows:

V1 V2 V3 V4

V1 0 −V2
V3
2

−V4
2

V2 V2 0 V4 0

V3 −V3
2

−V4 0 0

V4
V4
2

0 0 0

For the reduction of system of equations (9), let us consider following vector fields:

(i) V1, (iii) V2 + λV4,

(ii) V3 + µV2, (iv) V3.

where µ and λ are arbitrary constants.
For each case, one can get the similarity variables using characteristic equations:

dx

ξ
=

dt

τ
=

du

η1
=

dv

η2
. (39)

Vector field V1

Using (39), we obtain similarity variables are as follows:

σ =
x2

t
, u(x, t) =

F (σ)

x
, v(x, t) =

G(σ)

t
, (40)

where σ is new independent variable, and F , G are new dependent variable.
Substituting the similarity variables (40) into system of equations (9), we obtain

following system of ODEs

−σ2F ′ − F 2 + 2σFF ′ + 2σ2G′ = 0

−σ2G− σ3G′ − σGF + 2σ2GF ′ + 2σ2FG′ − 2F + 2σF ′ +
8

3
σ3F ′′′ = 0,

(41)

where ′ denotes derivatives with respect to σ.
Integrating the first equation of (41), we obtain

− F +
F 2

σ
+ 2G− C1 = 0, (42)

where C1 is arbitrary constant.
Using (42) into second equation of (41), we have

−3
(
σ2F + σF 2 + C1σ

2
)
− 3σ3F ′ + 18σ2FF ′ + 9F 3 − 3C1σF − 18σF 2F ′

+ 6C1σ
2F ′ − 12F + 12σF ′ + 16σ4F ′′′ = 0. (43)
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We obtain following solutions of Eq. (43):

(i) F = ±2
√
3

3
+

2

3
σ with C1 = ±2

√
3

3
,

(ii) F = ±2
√
3

3
+ σ with C1 = ±4

√
3

3
,

(iii) F = σ with arbitrary C1,

(iv) F = ±2
√
3

3
with C1 = ∓2

√
3

3
.

(44)

Using (44) and (42) in (40), we obtain following solutions of main system of equa-
tions (9):

(i) u(x, t) =
2

3

√
3t+ x2

xt
, v(x, t) =

2
√
3tx2 + x4 − 6t2

9t2x2
,

(ii) u(x, t) =
3x2 ± 2

√
3t

3xt
, v(x, t) = −

√
3(2
√
3t± 3x2)

9tx2
,

(iii) u(x, t) =
x

t
, v(x, t) =

C1

2t
,

(iv) u(x, t) = ±2
√
3

3x
, v(x, t) = − 2

3x2
.

Vector field V3 + µV2

Corresponding similarity variable are

ζ = µx− t2

2
, u =

t

µ
+H(ζ), v = J(ζ), (45)

where ζ is new independent variable, and H , J are new dependent variables.
Using (45) in (9), we obtain the following system of ODEs:

1 + µ2HH ′ + µ2J ′ = 0,

3(HJ)′ + µ2H ′′′ = 0,
(46)

where ′ denotes derivatives with respect to ζ.
Integrating first equation of system (46), we have

J =
1

µ2

(
C1 − ζ −

µ2

2
H2

)
, (47)

where C1 is constant of integration.
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Integrating second equation of system (46) and using (47) in that, we have

(ζ − C1)H + 3µ2H3 − 2µ4H ′′ − 2C2µ
2 = 0, (48)

where C2 is constant of integration.
Solving Eq. (48), we obtain following solutions:

(i) H = +
2
√
3µ

3ζ
with C1 = 0, C2 = +

2
√
3

µ
,

(ii) H = −2
√
3µ

3ζ
with C1 = 0, C2 = −2

√
3

µ
,

(iii) H = 0 with C2 = 0.

Corresponding solutions of main system of equations (9) are as follows:

(i) u(x, t) =
t

µ
+

2
√
3µ

3µx− t2

2

,

v(x, t) = −24µ3x3 − 36µ2x2t2 + 18µxt4 − 3t6 + 16µ4

6µ2(2µx− t2)2
,

(ii) u(x, t) =
t

µ
− 2

√
3µ

3µx− t2

2

,

v(x, t) = − 1

6µ2(2µx− t2)2
(
−24C2µ

2x2 + 24C2µxt
2 − 6C2t

4,

+ 24µ3x3 − 36µ2x2t2 + 18µxt4 − 3t6 + 16µ4
)
,

(iii) u(x, t) =
t

µ
, v(x, t) = −−2C2 + 2µx− t2

2µ2
.

Vector field V2 + λV4

Corresponding similarity variables are

ρ = x− λt, u = P (ρ), v = Q(ρ), (49)

where ρ and P , Q are new independent and dependent variables, respectively.
Substituting (49) in (9), we have

−λP ′ + PP ′ +Q′ = 0,

−λQ′ + (PQ)′ +
1

3
P ′′′ = 0,

(50)

where ′ denotes derivatives with respect to ρ.
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Integrating first equation of (50), we have

− λP +
P 2

2
+Q+ C1 = 0, (51)

where C1 is constant of integration.
Now integrating the second of system (50) and using (51), we have

(P − λ)
(
λP − P 2

2
− C1

)
+
P ′′

3
+ C2 = 0, (52)

where C2 is constant of integration.
Solving the ODE (52), we obtain

(i) P = λ+
2
√
3

3ρ
with C1 =

λ2

2
, C2 = 0,

(ii) P = λ+

√
−12a23 + 18λ2

3
sn

(
a2 + a3ρ,

√
−4a23 + 6λ2

2a3

)
with C1 = C2 = 0,

(iii) P = λ+

√
12a23 + 18λ2

3
dn

(
a2 + a3ρ,

√
8a23 + 6λ2

2a3

)
with C1 = C2 = 0,

(iv) P = λ+ λ tanh

(
a1 +

√
3

2
λρ

)
with C1 = C2 = 0,

(v) P = λ+
√
2λ csc

(
a1 +

√
6

2
λρ

)
with C1 = C2 = 0,

(53)

where a1, a2, and a3 are arbitrary constants.
Now using (53) and (51), we have following solutions of system (9):

(i) u(x, t) = λ+
2
√
3

3(x− λt)
, v(x, t) = − 2

3(−x+ λt)2
,

(ii) u(x, t) = λ+

√
−12a23 + 18λ2

3
sn

(
a2 + a3(−x+ λt)

√
−4a23 + 6λ2

2a3

)
,

v(x, t) = −1

2

(
λ+

√
−12a23 + 18λ2

3
sn

(
a2 + a3(−x+ λt)

√
−4a23 + 6λ2

2a3

))2

+ λ

(
λ+

√
−12a23 + 18λ2

3
sn

(
a2 + a3(−x+ λt)

√
−4a23 + 6λ2

2a3

))
,
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(iii) u(x, t) = λ+

√
12a23 + 18λ2

3
dn

(
a2 + a3(−x+ λt),

√
8a23 + 6λ2

2a3

)
,

v(x, t) = −1

2

(
λ+

√
12a23 + 18λ2

3
dn

(
a2 + a3(−x+ λt),

√
8a23 + 6λ2

2a3

))2

+ λ

(
λ+

√
12a23 + 18λ2

3
dn

(
a2 + a3(−x+ λt),

√
8a23 + 6λ2

2a3

))
,

(iv) u(x, t) = λ+ λ tanh

(
a1 +

√
3

2
λ(−x+ λt)

)
,

v(x, t) = −1

2

(
λ+ λ tanh

(
a1 +

√
3

2
λ(−x+ λt)

))2

+ λ

(
λ+ λ tanh

(
a1 +

√
3

2
λ(−x+ λt)

))
,

(v) u(x, t) = λ+
√
2λ csc

(
a1 +

√
6

2
λ(−x+ λt)

)
v(x, t) = −1

2

(
λ+
√
2λ csc

(
a1 +

√
6

2
λ(−x+ λt)

))2

+ λ

(
λ+
√
2λ csc

(
a1 +

√
6

2
λ(−x+ λt)

))
,

where a1, a2, and a3 are arbitrary constants.

Vector field V3

Corresponding similarity variables are

θ = t, u(x, t) =
x

t
+R(θ), v(x, t) = S(θ), (54)

where θ is new independent variable, and R, S are new dependent variables.
Using (54) in (9), we obtain

θR′ +R = 0, θS′ + S = 0, (55)

where ′ denotes derivative with respect to θ.
Solution of Eqs. (55) is

R =
a1
t
, S =

a2
t
,

where a1, a2 are arbitrary constants.
Corresponding solution of system of equations (9) is

u(x, t) =
x

t
+
a1
t
, v(x, t) =

a2
t
.
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4 Mapping method

In this section, we give an analysis of the mapping method, which will be employed in
this paper.

Consider a nonlinear coupled PDE with two dependent variables u and v and two
independent variables x and t given by

F (u, v, ut, vt, ux, vx, uxxx, vxxx, . . . ) = 0, (56)

where subscripts denote partial derivatives with respect to the corresponding independent
variables, and F is a polynomial function of the indicated variables.

Step 1. Assume that Eq. (56) has a travelling wave solution (TWS) in the form

u(x, t) = u(ξ) =

l1∑
i=0

Aif
i(ξ), v(x, t) = v(ξ) =

l2∑
i=0

Bif
i(ξ), (57)

where ξ = x − ηt, Ai, Bi, and η are arbitrary constants, l1 and l2 are integers, and
f i represents integer powers of f .

The first derivative of f with respect to ξ denoted by f ′ can be expressed in powers
of f in the form

f ′2 = pf2 +
1

2
qf4 + r, (58)

where p, q, and r are arbitrary constants.
The motivation for Eq. (58) was that the squares of the first derivatives of JEFs can be

expressed in even powers of themselves.
Step 2. Substituting Eq. (57) into Eq. (56), the PDE reduces to an ODE. Balancing

the highest order derivative term and the highest order nonlinear term of the ODE, the
values of l1 and l2 can be found.

Step 3. Substituting for u and v and using Eq. (58), the ODE gives rise to a set of
algebraic equations by setting the coefficients of various powers of f to zero.

Step 4. From the values of the parameters Ai, Bi, p, q, and r, the solution of Eq. (56)
can be derived.

Thus, a mapping relation is established through Eq. (57) between the solution to
Eq. (58) and that of Eq. (56).

It is to be noted that if the values of l1 and l2 are integers, we can use the method
directly to get a variety of solutions in terms of hyperbolic functions or JEFs. If they
are non integers, the equation may still have solutions as rational expressions involving
hyperbolic functions or JEFs.

Applying this method to Eq. (13), we can assume the solution in the form

U = A0 +A1f(ξ). (59)

Substituting Eq. (59) into Eq. (13) and using Eq. (58), we arrive at a set of algebraic
equations by equating various powers of f to zero. From these equations, we obtain

A0 = l = ±
√
−2p

3
, A1 = ±

√
2q

3
.
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Case 1. If f = tanh(ξ), Eq. (58) gives p = −2, q = 2, r = 1. So, we getA0 = A1 =
±2/
√
3.

Therefore, the solutions of Eqs. (9) can be written as

u(x, t) = ± 2√
3

(
1 + tanh

(
x∓ 2√

3
t

))
, (60)

v(x, t) =
2

3

(
sech2

(
x∓ 2√

3
t

))
. (61)

These are shock waves and solitary waves, respectively.
Case 2. If f = sn ξ, Eq. (58) gives p = −(1 +m2), q = 2m2, r = 1. So, we get

A0 = ±
√

2(1 +m2)/3, A1 = ±2m/
√
3.

Therefore, the solutions of Eqs. (9) can be written, as

u(x, t) = ±
√

2(1 +m2)

3
± 2m√

3
sn

(
x∓

√
2(1 +m2)

3
t

)
, (62)

v(x, t) =
1

3
(1−m2) +

2m2

3
cn2
(
x∓

√
2(1 +m2)

3
t

)
. (63)

which represents cnoidal and snoidal waves. As m → 1, Eqs. (62) and (63) collapse to
shock waves and solitary wave solutions as indicated in Eqs. (60) and (61).

Case 3. If f = ns ξ, Eq. (58) gives p = −(1 + m2), q = 2, r = m2. So, we get
A0 = ±

√
2(1 +m2)/3, A1 = ±2/

√
3.

Therefore, the solutions of Eqs. (9) can be written as

u(x, t) = ±
√

2(1 +m2)

3
± 2√

3
ns

(
x∓

√
2(1 +m2)

3
t

)
, (64)

v(x, t) =
1

3

(
1 +m2

)
+

2m2

3
ns2
(
x∓

√
2(1 +m2)

3
t

)
. (65)

As m→ 1, Eqs. (64) and (65) will lead us to singular soliton solutions

u(x, t) = ± 2√
3

(
1 + coth

(
x∓ 2√

3
t

))
,

v(x, t) = −2

3
csch2

(
x∓ 2√

3
t

)
.

5 Conclusions

This paper is a sequel to previously reported results to Wu–Zhang system during 2012
[29]. The extended trial solution method, Lie symmetry analysis as well as mapping
methods obtained several forms of solutions to the model. These are shock waves, soli-
tary waves as well as singular solitary waves. Additional forms of solutions that these
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algorithms recover are periodic-singular solutions, cnoidal waves which, as a special
case, leads to solitary waves and shock wave solutions. The spectrum of solutions that
are reported in this paper will be of immense value in the context of dispersive long
waves. In future, there are additional avenues that will be explored. This model will
be studied with fractional temporal evolution, time-dependent coefficients as well as
stochastic coefficients. These modifications will lead to a closer to reality situations. The
results of those research will be disseminated elsewhere.
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