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Abstract. At the beginning, a class of fractional-order delayed neural networks were employed.
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1 Introduction

Fractional operators have been mentioned by Leibnitz in a letter to L’Hôspital in 1695.
Although it possess a long mathematical history, the applications of fractional calculus to
physics and engineering are only a recent focus of interest when referring to its unique
advantage.

Compared with the classical integer-order model, fractional-order system contains
infinite memory. Taking into account this fact, it is easy to see that the incorporation of
a memory term into a neural network is an extremely important improvement, which is
more suitable to describe the memory and hereditary properties of various materials and
processes, thus, a system described by fractional-order calculation is even more closely
to the real world problems. Admittedly, classical integer system fails in this aspect.

In the past few decades, a great progress in studying fractional evolution model has
been made. Indeed, fractional-order system plays a crucial role in many fields such as
physics, polymer rheology, regular variation in thermodynamics, biophysics, blood flow
phenomena, aerodynamics, electro-dynamics of complex medium, etc. Also, fractional
calculus has been successfully incorporated into the neural networks and some interesting
results have been reported in [1,5,9,10,21,26,29,30]. Among which, [9,10] pay attention
to the synchronization control of fractional-order neural networks, some stability analysis
are derived in [26, 29, 30].

Very recently, considerable efforts have been devoted to the analysis of neural net-
works due to its extensive applications in control, signal processing, pattern recognition,
image processing, and associative memory [3, 4, 6, 7, 12, 13, 19]. For most of these suc-
cessful applications, stability is usually a prerequisite, and fruitful results are available
in [14, 16, 18, 24, 25, 33, 35, 36]. Based on the free-matrix-based integral inequality, the
corresponding exponential stability of delayed neural networks is addressed in [14]. [16]
and [25] investigated the impulsive and Markov switching neural networks, respectively.
[33] addressed the Mittag–Leffler stability of fractional-order Hopfield system.

Time delays were first introduced by Marcus and Westervelt in 1989 [22]. Subse-
quently, it was found that time delays often occur in the neural networks due to the finite
switching speed of the neuron amplifiers as well as the finite speed of signal propagation.
Naturally, time delays are regarded as a main source of poor performance and instability of
dynamic systems. Thus, this contributed to the increased attention of the stability analysis
of neural networks.

Although significant successes have been derived for the stability analysis of de-
layed neural networks, what should be noteworthy is that, when tackle with the similar
problems, a basic assumption is frequently used, which require the neuron activation
functions subject to the strictness Lipschitz continuous, and/or monotonic increasing. It
is still unknown what will happen when the hypotheses on the activation functions are
replaced by an opposite one, the equilibrium point in this system will exist or not. In
consequence, this led to significant attraction of researchers, and some noticeable results
are delivered in [11,23,34]. Among which, the stability analysis for the Cohen–Grossberg
neural networks with inverse Lipschitz neuron activations are addressed in [23], and some
other dynamic behavior analysis of the model with inverse Lipschitz functions are based
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on the integer-order system, up to now, there are no existing works focus on the fractional-
order system that possess inverse Lipschitz functions, which still a challenging problem
from both a theoretical and practical point of view. Thus formulated the motivation of this
paper.

Motivated by the above discussion, the objective of this paper is to construct the
stability analysis of the fractional-order delayed neural networks. Based on the topological
degree theory, nonsmooth analysis approach, as well as nonlinear measure method,
several novel sufficient conditions are established towards the existence as well as the
uniqueness of the equilibrium point, which are delivered in the forms of LMI. What
should be emphasized is that the derived conclusions contains both the active functions
are Lipschitz as well as inverse Lipschitz continuous. Furthermore, the stability analysis
is also attached in the end.

The structure of this paper is outlined in the following manner. In Section 2, some
preliminaries are introduced. Section 3 contains several new sufficient conditions to check
the stability problems of delayed neural networks. In Section 4, one numerical example is
given to substantiate the theoretical results. Conclusions are drawn in Section 5.

For the readers’ convenience, some useful notations are recalled: R denotes the set of
real numbers, Rn denotes the n-dimensional Euclidean space. [·, ·] represents the interval.
For any matrix A, AT and A−1 stand for the transpose and inverse of A. Set LP(ε),
L(ε), G(ε) and GL(ε) implies locally partial ε-inverse Lipschitz functions, locally ε-in-
verse Lipschitz functions, globally ε-inverse Lipschitz functions and globally Lipschitz
functions, respectively. Denote the space of continuous functions mapping [−τ, 0] into Rn
by C. For a class of all continuous column vector function y(t), its norm is given by
‖y(t)‖ =

∑n
i=1 supt∈[0,T ]{e−t|yi(t)|}. Moreover, by 〈x, y〉 = xTy we mean the inner

product of x, y.

2 Problem formulation and preliminaries

Consider a class of fractional-order delayed neural networks given by

Dαxi(t) = −cixi(t) +

n∑
j=1

aijfj
(
xj(t)

)
+

n∑
j=1

bijfj
(
xj(t− τ)

)
+ Ii, i = 1, 2, . . . , n, (1)

where 0 < α < 1, Dα is chosen as the Caputo fractional derivative operator Dα
0,t,

n corresponds to the number of units in a system, xi(t) implies the state of the ith unit at
time t, ci > 0 stands for the self-regulating parameters of the neuron, aij and bij are the
connection strength of the jth neuron on the ith neuron, respectively; fj(·) denotes the
activation functions; Ii signifies the external bias on the ith neuron, and τ represents the
transmission delays.

The initial conditions of the given system (1) are listed as

x(s) = φ(s), s ∈ [−τ, 0]. (2)

Nonlinear Anal. Model. Control, 22(4):505–520
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In this paper, we need the following definitions.

Definition 1. The equilibrium point of system (1) is said to be stable if for any ε > 0,
there exists δ(t0, ε) > 0 such that ‖ψ − x∗‖ < δ implies ‖x(t) − x∗‖ < ε holds for any
solution with t > t0 > 0. It is uniformly stable if δ is independent of t0.

Definition 2. A continuous function h : R → R is said to be locally partial ε-inverse
Lipschitz if h is a monotonic increasing function and for any v ∈ R, there exist two
positive constants qv , rv that depend on v such that∣∣h(u)− h(v)

∣∣ > qv|u− v|ε ∀|u− v| 6 rv

holds, where ε > 0 is a positive constants.
If q and r are independent of v, i.e., for any v ∈ R, there have two fixed constants

q > 0, r > 0 such that ∣∣h(u)− h(v)
∣∣ > q|u− v|ε ∀|u− v| 6 r,

in this case, h(·) is said to be locally ε-inverse Lipschitz. Moreover, if r = +∞, then h(·)
is said to be globally ε-inverse Lipschitz.

Definition 3. A function h : R→ R is said to be globally Lipschitz if there has a constant
p > 0 such that ∣∣h(u)− h(v)

∣∣ 6 p|u− v|ε ∀u, v ∈ R.

Having given these useful definitions, we now return to the following two preliminary
assumptions, which will be frequently used in analyzing the existence and uniqueness of
the solution for system (1):

(H1) The activation functions fi(·) ∈ LP(ε) for i = 1, 2, . . . , n.
(H2) The activation functions fi(·) are all belong to G(1) ∩ GL, i = 1, 2, . . . , n,

which implies that there exist positive constants f ′i , f
′′
i such that

f ′i 6
fi(u)− fi(v)

u− v
6 f ′′i

holds for any u, v ∈ R, u 6= v.

We now attempt to give a basic understanding of nonsmooth analysis. Let F : Rn →
Rn be a class of locally Lipschitz continuous functions. Then, according to Rademacher’s
theorem [27], F is differentiable almost everywhere. Let DF signify the set of those
points, where F is differentiable and F ′(x) stand for the Jacobian of F at x ∈ DF . Then
the set DF is dense in Rn. In the following line, we will ready to introduce the definition
of generalized Jacobian [20, 31, 32].

Definition 4. For any x ∈ Rn, the generalized Jacobian ∂F (x) of a locally Lipschitz
function F : Rn → Rn is a set of matrices defined by

∂F (x) = co
{
W
∣∣∣ there exists a sequence

{
xk
}
⊂ DF with lim

xk→x
F ′
(
xk
)

= W
}
,

in which co(·) stand for the convex hull of a set.
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The generalized Jacobian is a natural generalization of the Jacobian for continuously
differential functions, at those points x, where F is continuously differentiable, ∂F (x)
reduces to a single matrix, which is the Jacobian of F , while at those points, where F
is not differential or not continuously differentiable, ∂F (x) may contain more than one
matrices.

Definition 5. (See [17].) Assume that Ξ is an open set, which belong to Rn, and G :
Ξ → Rn is an operator. mΞ(G) signifies the nonlinear measure of G on Ξ with the
following form:

mΞ(G) = sup
v1,v2∈Ξ
v1 6=v2

〈G(v1)−G(v2), v1 − v2〉
‖v1 − v2‖22

.

Lemma 1. (See [17].) G can be treated as an injective mapping on Ξ if it follows that
mΞ(G) < 0. Moreover, if Ξ is selected as Rn, then G is a homeomorphism of Rn.

Remark 1. From Lemma 1 we can easily conclude that the system G(x) = 0 has one
unique solution if we properly choose mΞ(G) < 0 and Ξ = Rn.

Lemma 2. (See [2].) Let scalar s > 0, x, y ∈ Rn, and Q ∈ Rn×n, then

2xTQy 6 sxTQQTx+ s−1yTy.

Lemma 3. (See [28].) If h(·) ∈ LP(ε) and h(0) = 0, then there exist constants q0 > 0
and r0 > 0 such that ∣∣h(s)

∣∣ > q0|s|ε ∀|s| 6 r0.

Moreover, ∣∣h(s)
∣∣ > q0r

ε
0 ∀|s| > r0.

SetΘ be a nonempty, bounded and open subset of Rn. The closure and boundary ofΘ
are denoted by Θ̄ and ∂Θ, respectively.

Lemma 4. (See [8].) LetH(λ, x) : [0, 1]×Θ̄ → Rn be a continuous homotopic mapping.
If H(λ, x) = y has no solutions in ∂Θ for λ ∈ [0, 1] and y ∈ Rn \ H(λ, ∂Θ), then the
topological degree deg(H(λ, x), Θ, y) of H(λ, x) is a constant, which is independent of
λ. In this case, deg(H(0, x), Θ, y) = deg(H(1, x), Θ, y).

Lemma 5. (See [8].) Let H(x) : Θ̄ → Rn be a continuous mapping. If deg(H(x),
Θ, y) 6= 0, then there exists at least one solution of H(x) = y in Θ.

Lemma 6. (See [15].) If x(t) ∈ Cn[0,∞) and n− 1 < α < n ∈ Z+, then

D−αD−βx(t) = D−(α+β)x(t), α, β > 0,

DαD−βx(t) = x(t), α = β > 0,

D−αDβx(t) = x(t)−
n−1∑
i=0

ti

i!
xi(0), α = β > 0.
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3 Main results

This section will furnish sufficient conditions for characterizing the existence and unique-
ness of the equilibrium point for a class of fractional-order delayed neural networks, the
stability properties of the target model is also attached. Then we will discuss our main
contributions to this problem in some details.

3.1 The uniqueness of equilibrium point

Theorem 1. Under assumptions (H1), if there exist an arbitrary positive constant σ and
a diagonal matrix P = diag{p1, . . . , pn} > 0 such that(

PA+ (PA)T + σI PB
∗ −σI

)
< 0 (3)

holds, then the neural networks (1) has a unique equilibrium point.

Proof. If x∗ is an equilibrium point of (1) with x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T, then one can

read that

− cix∗i +

n∑
j=1

aijfj(x
∗
j ) +

n∑
j=1

bijfj(x
∗
j ) + Ii = 0, i = 1, 2, . . . , n. (4)

Defining the following map associated with model (1):

F (x) = Cx− (A+B)f(x)− I, (5)
where

x = (x1, x2, . . . , xn)T, I = (I1, I2, . . . , In)T,

C = diag(c1, c2, . . . , cn), A = (aij)n×n,

B = (bij)n×n, f(x) =
(
f1(x), f2(x), . . . , fn(x)

)T
.

Obviously, the equilibrium point of model (1) is the solution of the equation F (x) = 0. It
follows from the definition of the mapping F presented in (5) that

F (x)− F (0) = Cx− (A+B)
(
f(x)− f(0)

)
,

which then yields that

F (x) = Cx− (A+B)f̂(x) + F (0) (6)

with
f̂(x) = f(x)− f(0).

Furthermore, referring to assumption (H1) and its definitions, one can read that f̂i ∈
LP(ε) with f̂i(0) = 0, f̂i(xi)xi > 0 (xi 6= 0).
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Set

Θ =
{

(x1, . . . , xn)T: |xi| < R, i = 1, 2, . . . , n
}
, R > 0,

and
H(λ, x) = Cx− λ(A+B)f̂(x) + λF (0), (7)

where x ∈ Θ̄ = {(x1, . . . , xn)T: |xi| 6 R, i = 1, 2, . . . , n} and λ ∈ [0, 1].
Referring to Lemma 2 and the assumptions that injecting to the active functions, one

has

f̂T(x)PH(λ, x) = f̂T(x)P
(
Cx− λ(A+B)f̂(x) + λF (0)

)
> f̂T(x)PCx+ λf̂T(x)PF (0)

− λf̂T(x)

{
PA+ATP

2
+

(PB)(PB)T

2σ
+
σ

2
I

}
f̂(x)

> f̂T(x)PCx+ λf̂T(x)PF (0)

>
n∑
i=1

[∣∣f̂i(xi)∣∣pici|xi| − ∣∣f̂i(xi)∣∣pi∣∣Fi(0)
∣∣]

=

n∑
i=1

∣∣f̂i(xi)∣∣pici[|xi| − |Fi(0)|
ci

]
. (8)

On the strength of Lemma 3, we know that there exist some positive constants qk and rk,
k = 1, 2, . . . , n, such that∣∣f̂i(xi)∣∣ > qir

ε
i ∀|xi| > ri, i = 1, 2, . . . , n. (9)

Define r = max16k6n{rk}, u = max{max16i6n |Fi(0)|/ci}, Nk = {n1, n2, . . . , nk} ⊂
{1, 2, . . . , n} for all n > k. Moreover, selecting

ΘNk
=
{
x ∈ Rk: |xi| 6 u, i ∈ Nk

}
,

as well as
hNk

(x) =
∑
i∈Nk

pici
∣∣f̂i(xi)∣∣(|xi| − u).

Realizing that ΘNk
is a compact subset of Rk, hNk

(x) is continuous on ΘNk
. Thus, ΘNk

can reach its minimum value min(x)∈ΘNk
hNk

(x) on ΘNk
.

Set ζ = min16i6n{piciqirεi},MNk
= minx∈ΘNk

hNk
(x),M = min{MNk

: Nk ⊂
{1, 2, . . . , n}} andR > max{

√
n(u−M/ζ),

√
nr}, x ∈ ∂Θ. Then there exist two index

sets N1, N̄1 render
|xi| 6 u, i ∈ N1, |xi| > u, i ∈ N̄1,

where N1

⋃
N̄1 = {1, 2, . . . , n}. Without loss of generality, we presuming that N̄1 6= ∅,

namely, there possess an index i0 ∈ N̄1 such that

|xi0 | >
R√
n
> max{u, r}. (10)

Nonlinear Anal. Model. Control, 22(4):505–520
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From (8) along with (10), for any x ∈ ∂Θ and λ ∈ [0, 1], one can read that

f̂T(x)PH(λ, x) >
∑
i∈N1

∣∣f̂i(xi)∣∣pici[|xi| − u]+
∑
i∈N̄1

∣∣f̂i(xi)∣∣pici[|xi| − u]
>M+ qi0r

ε
i0pi0ci0

(
|xi0 | − u

)
> qi0r

ε
i0pi0ci0

(
|xi0 | − u+

M
ζ

)
> qi0r

ε
i0pi0ci0

(
R√
n
− u+

M
ζ

)
> 0. (11)

Now, one can safely conclude that H(λ, x) 6= 0 holds for all x ∈ ∂Θ and λ ∈ [0, 1].
Thus, an immediate consequence from Lemma 4 reads

deg
(
H(0, x), Θ, 0

)
= deg

(
H(1, x), Θ, 0

)
,

which also contains that

deg
(
F (x), Θ, 0

)
= deg(Cx,Θ, 0) =

n∏
i=1

ci 6= 0.

By now, all the conditions in Lemma 4 are satisfied, so we can confidently assert that
F (x) = 0 has at least one solution in Θ, which implies that (1) contains at least one
equilibrium point. This concludes the first part of the proof.

For what regards the second part of the proof, i.e., the uniqueness of the equilibrium
point, we will employ the technique of contradiction to test this fact.

Presuming that x∗1 and x∗2 are two different equilibrium points of system (1), which
then leads to

C(x∗2 − x∗1) = (A+B)
(
f(x∗2)− f(x∗1)

)
. (12)

Once again applying Lemma 2, the following estimation is true on considering the LMI
conditions that derived in (3):

0 <
(
f(x∗2)− f(x∗1)

)T
PC
(
x∗2 − x∗1

)
=
(
f(x∗2)− f(x∗1)

)T
P (A+B)

(
f(x∗2)− f(x∗1)

)
6

1

2

(
f(x∗2)− f(x∗1)

)T(PA+ATP

2
+

(PB)(PB)T

2σ
+
σ

2
I

)(
f(x∗2)− f(x∗1)

)
< 0. (13)

Obviously, this possess a contradiction. Thus, system (1) has a uniqueness equilibrium
point.

Before concluding the discussion on the inverse Lipschitz conditions case, some ad-
ditional works are required on the system that possess Lipschitz active functions, which
is reported by the following statement.

https://www.mii.vu.lt/NA
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Theorem 2. Suppose that the active functions subjected to assumption (H2) if there exist
positive definite matrices Q > 0 and two positive definite diagonal matrices R1, R2 such
that 

−C QA QB LR1 LR2

∗ −2R1 0 0 0
∗ ∗ −2R2 0 0
∗ ∗ ∗ −2R1 0
∗ ∗ ∗ ∗ −2R2

 < 0 (14)

holds, where
L = diag(l1, l2, . . . , ln), li = max

{
|f ′i |, |f ′′i |

}
.

Then the neural networks modeled by (1) has a unique equilibrium point.

Proof. The statement will be proven by using the technique of nonlinear measure. To this
end, define the operator ω as

ω(α) = −Cα+Af(α) +Bf(α) + I

and then construct a differential system, which given below

dα(t)

dt
= Qω

(
α(t)

)
. (15)

Considering that the matrix Q is invertible, thus, systems (1) and (15) sharing the same
equilibrium points sets.

If we want to testify that system (1) has a unique equilibrium point, then mRn(ω) < 0
must be hold, while it is convenient to drop the dependency on Definition 5, from which
we can safely reached that 〈ω(α)− ω(β), α− β〉 < 0 can guarantee mRn(ω) < 0. Here,
attention will be focused on the fact that 〈ω(α)− ω(β), α− β〉 < 0 holds.

By taking advantage of the definition of inner product, it can be shown that〈
Qω(α)−Qω(β), α− β

〉
= (α− β)TQ

(
ω(α)− ω(β)

)
= −(α− β)TQC(α− β) + (α− β)TQA

(
f(α)− f(β)

)
+ (α− β)TQB

(
f(α)− f(β)

)
6 −(α− β)TQC(α− β) +

1

2
(α− β)TQAR−1

1 ATQ(α− β)

+
1

2
(α− β)TLR1L(α− β) +

1

2
(α− β)TQBR−1

2 BTQ(α− β)

+
1

2
(α− β)TLR2L(α− β)

= (α− β)T

(
−C +

1

2
QAR−1

1 ATQ+
1

2
LR1L+

1

2
QBR−1

2 BTQ+
1

2
LR2L

)
× (α− β). (16)

Nonlinear Anal. Model. Control, 22(4):505–520
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As an immediate consequence of Schur complement lemma, we can conclude that (14)
can guarantee −C + QAR−1

1 ATQ/2 + LR1L/2 + QBR−1
2 BTQ/2 + LR2L/2 < 0.

Considering the fact that α 6= β, one has (α− β)TQ(ω(α)− ω(β)) < 0.
Now, we can safely draw a conclusion that system (15) or system (1) has a unique

equilibrium point. We now drop the main result again for compactness and continue with
our discussion.

3.2 Stability analysis

The main contribution in the following line is to prove the stability analysis for a fractional-
order system in form (1). Defining that x∗i is the uniqueness equilibrium point of (1), then
making a coordinate transformation yi(t) = xi(t) − x∗i , system (1) can be equivalently
modified as

Dαyi(t) = −ciyi(t) +

n∑
j=1

aijgj
(
yj(t)

)
+

n∑
j=1

bijgj
(
yj(t− τ)

)
, i = 1, 2, . . . , n, (17)

where gj(yj(t)) = fj(xj(t))− fj(x∗j ).
The initial conditions of the given system (17) is given by

x(s) = ψ(s), s ∈ [−τ, 0]. (18)

Thus, to investigate the stability analysis of (1), we can turn to study its equivalent
system (17). Then we have the following conclusion.

Theorem 3. On the basis of Theorem 2, the unique equilibrium point of neural net-
works (1) is uniformly stable if the following inequality holds:

1−

(
max
i

(ci) +

n∑
i=1

max
j

(
|aij |lj

)
+

n∑
i=1

max
j

(
|bij |lj

))
> 0. (19)

Proof. By taking advantage of Lemma 6, one can read that

yi(t) = D−α
{
−ciyi(t) +

n∑
j=1

aijgj
(
yj(t)

)
+

n∑
j=1

bijgj
(
yj(t− τ)

)}

=
1

Γ(α)

t∫
0

(t− s)α−1

(
−ciyi(s) +

n∑
j=1

aijgj
(
yj(s)

)
+

n∑
j=1

bijgj
(
yj(s− τ)

))
ds. (20)

The future estimation can be deduced by multiplying e−t on both sides of equation (20):

e−tyi(t)

6
e−t

Γ(α)

t∫
0

(t− s)α−1

(
ci
∣∣yi(s)∣∣+

n∑
j=1

|aij |
∣∣gj(yj(s))∣∣+

n∑
j=1

|bij |
∣∣gj(yj(s− τ)

)∣∣)ds,
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e−tyi(t) 6 ci
1

Γ(α)

t∫
0

(t− s)α−1e−(t−s)e−s
∣∣yi(s)∣∣ds

+

n∑
j=1

|aij |lj
1

Γ(α)

t∫
0

(t− s)α−1e−(t−s)e−s
∣∣yj(s)∣∣ ds

+

n∑
j=1

|bij |lj
1

Γ(α)

τ∫
0

(t− s)α−1e−(t−s+τ)e−(s−τ)
∣∣ψj(s)∣∣ ds

+

n∑
j=1

|bij |lj
1

Γ(α)

t∫
τ

(t− s)α−1e−(t−s+τ)e−(s−τ)
∣∣yj(s)∣∣ ds

6 ci sup
t

(
e−t
∣∣yi(t)∣∣) 1

Γ(α)

t∫
0

uα−1e−u du

+ max
j

(
|aij |lj

) n∑
j=1

sup
t

(
e−t
∣∣yi(t)∣∣) 1

Γ(α)

t∫
0

uα−1e−u du

+ max
j

(
|bij |lj

) 1

Γ(α)

0∫
−τ

(t− ρ− τ)α−1e−(t−ρ)e−ρ
∣∣ψj(ρ)

∣∣dρ
+ max

j

(
|bij |lj

) 1

Γ(α)

t−τ∫
0

(t− ρ− τ)α−1e−(t−ρ)e−ρ
∣∣yj(ρ)

∣∣ dρ
6 ci sup

t

(
e−t
∣∣yi(t)∣∣) 1

Γ(α)

t∫
0

uα−1e−u du

+ max
j

(
|aij |lj

) n∑
j=1

sup
t

(
e−t
∣∣yj(t)∣∣) 1

Γ(α)

t∫
0

uα−1e−u du

+ max
j

(
|bij |lj

) n∑
j=1

sup
t

(
e−t
∣∣ψj(t)∣∣)e−τ 1

Γ(α)

t∫
t−τ

ζα−1e−ζ dζ

+ max
j

(
|bij |lj

) n∑
j=1

sup
t

(
e−t
∣∣yj(t)∣∣)e−τ 1

Γ(α)

t∫
t−τ

ζα−1e−ζ dζ

6 ci sup
t

(
e−t
∣∣yi(t)∣∣)+ max

j

(
|aij |lj

) n∑
j=1

sup
t

(
e−t
∣∣yj(t)∣∣)
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+ max
j

(
|bij |lj

) n∑
j=1

sup
t

(
e−t
∣∣ψj(t)∣∣)e−τ

+ max
j

(
|bij |lj

) n∑
j=1

sup
t

(
e−t
∣∣yj(t)∣∣)e−τ

6 ci sup
t

(
e−t
∣∣yi(t)∣∣)+ max

j

(
|aij |lj

)∥∥y(t)
∥∥+ max

j

(
|bij |lj

)∥∥ψ(t)
∥∥

+ max
j

(
|bij |lj

)∥∥y(t)
∥∥, (21)

which develops further as

∥∥y(t)
∥∥ 6

(
max
i

(ci) +

n∑
i=1

max
j

(
|aij |lj

)
+ max

j

(
|bij |lj

))∥∥y(t)
∥∥

+

n∑
i=1

max
j

(
|bij |lj

)∥∥ψ(t)
∥∥, (22)

this implies that

‖y(t)‖ 6
∑n
i=1 maxj(|bij |lj)

1− (maxi(ci) +
∑n
i=1 maxj(|aij |lj) +

∑n
i=1 maxj(|bij |lj))

‖ψ(t)‖. (23)

Hence, resorting from the expression voiced in Definition 1, one can read that for all
ε > 0, there exist

δ =
1− (maxi(ci) +

∑n
i=1 maxj(|aij |lj) +

∑n
i=1 maxj(|bij |lj))∑n

i=1 maxj(|bij |lj)
ε > 0

such that when ‖ψ(t)‖ < δ, ‖y(t)‖ < ε is also true. Thus, the unique equilibrium point
of (1) is uniformly stable, which ends the proof.

Remark 2. If α = 1, then the given fractional-order delayed neural networks will turn
into an integer-order system. In analogy with the proof techniques that employed above,
its stability statement can also be obtained.

Remark 3. As a final note, in the derived results, the unique equilibrium point of a frac-
tional-order system with inverse Lipschitz active function is proposed, of equal impor-
tance is that the conclusions concentrated on the Lipschitz conditions are also considered.
Subsequently, the stability analysis of the system, which possesses Lipschitz functions, is
also considered, while, for a fractional-order system that contains inverse Lipschitz active
functions, its dynamic behaviors are an open problem.

4 Numerical examples

This section provides a relevant example of fractional-order delayed systems that fall into
the target system, which can well describe the merits of the proposed conditions.
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Example. To present our techniques, a three-dimension neural networks will be presented
in this section, the dynamics of individual nodes can be described by

Dαxi(t) = −cixi(t)+

3∑
i=1

aijfj
(
xj(t)

)
+

3∑
i=1

bijfj
(
xj(t−τ)

)
+Ii, i = 1, 2, 3. (24)

By carefully looking for the parameters for the above equation, the following initial values
are selected:

C =

0.02 0 0
0 0.09 0
0 0 0.09

 ,

A =

−0.1 0.5 0.3
−0.2 0.3 0.2
0.4 −0.2 −0.1

 , B =

 0.1 −0.1 −0.2
0.3 0.2 −0.1
−0.2 0.5 0.3

 .

Provided that the activation functions are taken as f(s) = 0.5 tanh s, the delays are
chosen as τ = 1. Thus, one can read that this functions meet with the restrictions appeared
in (H2) with lj = 0.5. Moreover, the α is taken by 0.5.

To inspect the uniqueness of equilibrium point, applying the above initial parameters
to the restrictions given in (14), one can arrive at the following feasible solutions:

Q =

 0.1360 −0.0102 0.0569
−0.0102 0.0298 −0.0302
0.0569 −0.0302 0.0727

 ,

R1 =

0.0669 0 0
0 0.0669 0
0 0 0.0669

 , R2 =

0.0640 0 0
0 0.0640 0
0 0 0.0640

 .

By now, all the restrictions that imposed on Theorem 2 are demonstrated, then one can
safely read that model (24) with the above imposed parameters have a unique equilibrium
point. The following lines are committed to test and verify the stability of the equilibrium
point. Via refereing to the design algorithm as introduced in (19), one can arrive at

1−

(
max
i

(ci) +

n∑
i=1

max
j

(
|aij |lj

)
+

n∑
i=1

max
j

(
|bij |lj

))
= 1− 0.09−

(
|0.5|+ |0.3|+ | − 0.2|

)
· 0.5−

(
| − 0.1|+ |0.2|+ |0.5|

)
· 0.5

= 0.01 > 0,

which indirect clarify that he unique equilibrium point of neural networks (24) is uni-
formly stable. To give a more acceptable way for our finds, the corresponding simulation
figures are performed in Figs. 1–4. Figure 1 depicts the phase portrait of the states in
its state space, the state trajectories of the target model are plotted in Figs. 2–4, from
which one can read that the unique equilibrium point is uniformly stable. Evidently, this
consequences are coincident with the results acquired in the above section.
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Figure 1. Phase portrait for the state variables
xi(t), i = 1, 2, 3, of the target model in (24).

Figure 2. Time response of the desired trajectories
x1(t) for α = 0.5 in (24).

Figure 3. Time response of the desired trajectories
x2(t) for α = 0.5 in (24).

Figure 4. Time response of the desired trajectories
x3(t) for α = 0.5 in (24).

5 Conclusion

This paper provides some sufficient conditions for characterizing the stability properties
of a class of fractional-order delayed neural networks. The main statements are divided
into two steps. In the first step, the existence and uniqueness of the equilibrium point
is verified. It should be pointed out that the active functions that possess both Lipschitz
continuous and inverse Lipschitz restrictions are all considered, in which, by using the
arguments of the topological degree theory and nonsmooth analysis approach, the criteria
that ensure the uniqueness of the equilibrium point for the target model that possess
inverse Lipschitz functions are derived. When the functions are restricted by Lipschitz
conditions, the nonlinear measure method is employed. Subsequently, the stability analy-
sis of the fractional-order system contains Lipschitz continuous are also derived. Thanks
to these conclusions, one can simply check some analytical properties of the dynamic
system, which can be automatically rewarded with a suitable selection of parameters.
Finally, the simulation results are listed to confirm these facts.
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