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Abstract. In this paper, we prove some fixed point results for T -contraction mappings in partially
ordered b-metric spaces that generalize the main results of [H. Huang, S. Radenović, J. Vujaković,
On some recent coincidence and immediate consequences in partially ordered b-metric spaces,
Fixed Point Theory Appl., 2015, Paper No. 63]. As an application, we discuss the existence for
a solution of a nonlinear integral equation.

Keywords: b-metric, T -contraction, fixed point, integral equation.

1 Introduction and preliminaries

The Banach contraction principle is one of the most important results in mathematical
analysis. It is the most widely applied fixed point result in many branches of mathematics
and it was also generalized in many different directions.

In 1989, Bakhtin [6] introduced the concept of a b-metric space as a generalization
of a metric space. In 1993, Czerwik [7] extended many results related to the b-metric
spaces. Fixed point results in partially ordered metric spaces were firstly obtained by
Ran and Reurings (see [18]) and then by Nieto and López (see [15, 16]). Subsequently,
many authors presented numerous interesting and significant results in ordered metric and
ordered b-metric spaces (see [2–5, 10, 17, 20–22]). In 2010, S. Moradi and M. Omid [13]
proposed the concept of a T -contraction and obtained some fixed point results in metric
spaces. After that several interesting results of the existence of fixed points for T -Kannan
and T -Chatterjea contractive mappings are introduced (see [9, 14, 19]).
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The purpose of this paper is to state some fixed point results for T -contractive map-
pings in partially ordered b-metric spaces that generalize the main results of [10]. As an
application, we discuss the existence for a solution of a nonlinear integral equation.

First, we recall some notions and properties that will be needed throughout the paper.

Definition 1. (See [8].) Let X be a nonempty set, s > 1 be a real number, and let
d : X ×X → [0,∞) be a function such that for all x, y, z ∈ X ,

(i) d(x, y) = 0 if only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, z) 6 s[d(x, y) + d(y, z)].

Then d is called a b-metric onX , and (X, d, s) is called a b-metric space. If (X,4) is still
a partially ordered set, then (X, d, s,4) is called a partially ordered b-metric space.

Obviously, for s = 1, b-metric space is a metric space.

Otherwise, for more concepts such as b-convergence, b-Cauchy sequence, b-comp-
leteness, b-closed set in b-metric spaces, a regular b-metric space, etc., we refer the reader
to [2–5, 10, 17, 20–22] and the references mentioned therein.

Following is an example of a b-metric space.

Example 1. (See [11].) Let X = R and d : X ×X → R+ be defined by

d(x, y) = |x− y|2 for any x, y ∈ X.

Then (X, d, s) is a b-metric space with the coefficient s = 2.

Lemma 1. (See [12].) Let (X, d, s) be a b-metric space and {xn} be a sequence such
that

d(xn, xn+1) 6 αd(xn−1, xn) for all n > 1,

where α ∈ (0, 1/s). Then {xn} is b-Cauchy sequence in X .

Lemma 2. (See [3].) Let (X, d, s) be a b-metric space with s > 1 and suppose that {xn}
and {yn} are b-convergent to x and y, respectively. Then we have

1

s2
d(x, y) 6 lim inf

x→∞
d(xn, yn) 6 lim sup

x→∞
d(xn, yn) 6 s2d(x, y).

In particular, if x = y, then we have limx→∞ d(xn, yn) = 0. Moreover, for each z ∈ X ,
we have

1

s
d(x, z) 6 lim inf

x→∞
d(xn, z) 6 lim sup

x→∞
d(xn, z) 6 sd(x, y).

Now we shall give some notions used in the next section. These notions are general-
izations of notions introduced in [10].

Definition 2. Let (X,4) be a partially ordered set and f, g, h, k : X → X be four
mappings such that hf(X) ∪ hg(X) ⊆ k(X). Then
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(i) The pair (f, g) is called h-compatible if limn→∞ d(fhgxn, ghfxn) = 0 when-
ever {xn} is a sequence in X such that limn→∞ hfxn = limn→∞ hgxn = t
for some t ∈ X . If we choose hx = x for all x ∈ X , then the pair (f, g) is
called compatible [10]. If we choose gx = x for all x ∈ X , then f is called
h-compatible.

(ii) The pair (f, g) is called h-weakly compatible if fhgx = ghfx whenever hgx =
hfx. If we choose hx = x for all x ∈ X , then the pair (f, g) is called weakly
compatible [10]. If we choose gx = x for all x ∈ X , then f is called h-weakly
compatible.

(iii) The pair (f, g) is called h-weakly increasing with respect to k if, for all x ∈ X ,
hfx 4 hgy for all y ∈ (hk)−1(hfx) and hgx 4 hfy for all y ∈ (hk)−1(hgx). If
we choose hx = x for all x ∈ X , then the pair (f, g) is called weakly increasing
with respect to k [10]. If we choose kx = x for all x ∈ X , then the pair (f, g) is
called h-weakly increasing.

(iv) The pair (f, g) is called h-partially weakly increasing with respect to k if hfx 4
hgy for all y ∈ (hk)−1(hfx). If we choose hx = x for all x ∈ X , then the pair
(f, g) is called partially weakly increasing with respect to k [10]. If we choose
kx = x for all x ∈ X , then the pair (f, g) is called h-partially weakly increasing.

(v) f is called monotone g-non-decreasing with respect to (h,4) if hgx 4 hgy
implies hfx 4 hfy. If we choose hx = x for all x ∈ X , then f is called
monotone g-non-decreasing with respect to “4” [10]. If we choose gx = x for
all x ∈ X , then f is called monotone non-decreasing with respect to (h,4).

(vi) If fx = gx = kx = hx, then x is called the coincidence point of f, g, k, h.

Recall that, for f and g, there are two self-mappings on a nonempty set X . If w =
fx = gx for some x in X , then x is called a coincidence point of the pair (f, g), and w is
called a point of coincidence of the pair (f, g) (see, e.g., [1]).

In [10], authors introduced and proved the results as follows.

Theorem 1. (See [10].) Let (X, d, s,4) be a partially ordered complete b-metric space
with s > 1 and f, g, S,R : X → X be four mappings satisfying the following:

(i) f(X) ⊆ R(X) and g(X) ⊆ S(X).
(ii) For every two elements x, y ∈ X such that Sx,Ry are comparable, we have

sid(fx, gy) 6Ms(x, y), (1)

where i > 1 is a constant and

Ms(x, y) = max

{
d(Sx,Ry), d(Sx, fx), d(Ry, gy),

d(Sx, gy) + d(Ry, fx)

2s

}
.

(iii) f , g, R and S are continuous.
(iv) The pairs (f, S) and (g,R) are compatible.
(v) The pairs (f, g) and (g, f) are partially weakly increasing with respect to R

and S, respectively.
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Then the pairs (f, S) and (g,R) have a coincidence point z in X . Moreover, if Rz and
Sz are comparable, then z is a coincidence point of f , g, R and S.

In the following theorem, the authors omit the assumption of continuity of f , g, R, S
by adding the regularity of the space (X, d, s,4) and replace the compatibility of the pairs
(f, S) and (g,R) by the weak compatibility of these pairs.

Theorem 2. (See [10].) Let (X, d, s,4) be a regular partially ordered complete b-metric
space with s > 1 and f, g, S,R : X → X be four mappings satisfying the following:

(i) f(X) ⊆ R(X) and g(X) ⊆ S(X).
(ii) For every two elements x, y ∈ X such that Sx,Ry are comparable, we have

sid(fx, gy) 6Ms(x, y), (2)

where i > 1 is a constant and

Ms(x, y) = max

{
d(Sx,Ry), d(Sx, fx), d(Ry, gy),

d(Sx, gy) + d(Ry, fx)

2s

}
.

(iii) R(X) and S(X) are b-closed subsets of X .
(iv) The pairs (f, S) and (g,R) are weakly compatible.
(v) The pairs (f, g) and (g, f) are partially weakly increasing with respect to R

and S, respectively.

Then the pairs (f, S) and (g,R) have a coincidence point z in X . Moreover, if Rz and
Sz are comparable, then z is a coincidence point of f , g, R and S.

By choosing Rx = Sx = x for all x ∈ X in Theorems 1 and 2, the authors obtained
result.

Corollary 1. (See [10].) Let (X, d, s,4) be a partially ordered complete b-metric space
with s > 1 and f, g : X → X be two mappings satisfying the following:

(i) For every two comparable elements x, y ∈ X , we have

sid(fx, gy) 6Ms(x, y), (3)

where i > 1 is a constant and

Ms(x, y) = max

{
d(x, y), d(x, fx), d(y, gy),

d(x, gy) + d(y, fx)

2s

}
.

(ii) The pair (f, g) is partially weakly increasing.
(iii) f and g are continuous, or (X, d,4) is regular.

Then the pair (f, g) has a common fixed point z in X .
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2 Main results

First, we present the notion of a T -contraction on partially ordered b-metric spaces. Same
as in [13], by replacing the metric space by a b-metric space we have

Definition 3. Let (X, d, s) be a b-metric space with s > 1 and T, S : X → X be two
mappings. Then S is called a T -contraction if there exists k ∈ [0, 1) such that, for all
x, y ∈ X ,

d(TSx, TSy) 6 kd(Tx, Ty). (4)

If we choose Tx = x for all x ∈ X , then S is a Banach contraction. The following
example gives a T -contraction, but not a Banach contraction.

Example 2. LetX = [1,∞) be endowed with the b-metric d(x, y) = |x−y|2 with s = 2.
Define T, S : X → X such that Tx = 2− 1/x and Sx = 4x, then S is not a contractive
mapping. But, for all x, y ∈ X , we have

d(TSx, TSy) =

∣∣∣∣2− 1

4x
− 2 +

1

4y

∣∣∣∣2 =
1

16

∣∣∣∣(2− 1

x

)
−
(
2− 1

y

)∣∣∣∣2
=

1

16
d(Tx, Ty).

So, S is a T -contraction.

Now, we establish some results.

Theorem 3. Let (X, d, s,4) be a partially ordered complete b-metric space with s > 1
and T, f, g, S,R : X → X be five mappings satisfying the following:

(i) f(X) ⊆ R(X) and g(X) ⊆ S(X).
(ii) T is one-to-one.

(iii) For every two elements x, y ∈ X such that TSx, TRy are comparable, we have

sid
(
Tfx, Tgy)

)
6MT

s (x, y), (5)

where i > 1 is a constant and

MT
s (x, y) = max

{
d(TSx, TRy), d(TSx, Tfx), d(TRy, Tgy),

d(TSx, Tgy) + d(TRy, Tfx)

2s

}
.

(iv) f , g, R and S are continuous.
(v) The pairs (f, S) and (g,R) are T -compatible.

(vi) The pairs (f, g) and (g, f) are T -partially weakly increasing with respect to R
and S, respectively.

Then the pairs (f, S) and (g,R) have a coincidence point z in X . Moreover, if TRz and
TSz are comparable, then z is a coincidence point of f , g, R and S.

Nonlinear Anal. Model. Control, 22(4):545–565
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Proof. Let x0 be an arbitrary point of X . Since f(X) ⊆ R(X) and g(X) ⊆ S(X),
we have Tf(X) ⊆ TR(X) and Tg(X) ⊆ TS(X). Now, we can define x1 ∈ X such
that fx0 = Rx1 and x2 ∈ X such that gx1 = Sx2. It implies that Tfx0 = TRx1 and
Tgx1 = TSx2. Continuing this way, we construct a sequence {zn} defined by:

z2n+1 = TRx2n+1 = Tfx2n and z2n+2 = TSx2n+2 = Tgx2n+1 for all n ∈ N.

As x1 ∈ (TR)−1(Tfx0) and x2 ∈ (TS)−1(Tgx1), and the pairs (f, g) and (g, f) are
T -partially weakly increasing with respect to R and S, respectively, so we have

z1 = TRx1 = Tfx0 4 Tgx1 = z2 = TSx2 4 Tfx2 = TRx3 = z3.

Repeating this process, we obtain zn 4 zn+1 for all n > 1.
First, we prove that

d(zn+1, zn+2) 6 λd(zn, zn+1) for all n > 1, (6)

where λ ∈ [0, 1/s). We consider two cases.
Case 1. Assume that zn 6= zn+1 for all n > 1. Since TSx2n = z2n and TRx2n−1 =

z2n−1 are comparable, by (5) we have

sid(z2n+1, z2n)

= sid(Tfx2n, T gx2n−1)

6 max

{
d(TSx2n, TRx2n−1), d(TSx2n, T fx2n), d(TRx2n−1, T gx2n−1),

d(TSx2n, T gx2n−1) + d(TRx2n−1, Tfx2n)

2s

}
= max

{
d(z2n, z2n−1), d(z2n, z2n+1),

d(z2n−1, z2n+1)

2s

}
6 max

{
d(z2n, z2n−1), d(z2n, z2n+1),

s[d(z2n−1, z2n) + d(z2n, z2n+1)]

2s

}
= max

{
d(z2n, z2n−1), d(z2n, z2n+1)

}
.

Therefore, we have

sid(z2n+1, z2n) 6 max
{
d(z2n, z2n−1), d(z2n, z2n+1)

}
. (7)

If d(z2n, z2n+1) > d(z2n−1, z2n) > 0 for some n > 1, then from (7) we have

sid(z2n, z2n+1) 6 d(z2n, z2n+1).

This is a contradiction because si > 1. Thus, from (7) it follows that

sid(z2n, z2n+1) 6 d(z2n−1, z2n) for all n > 1. (8)
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Since TSx2n = z2n and TRx2n+1 = z2n+1 are comparable, by (5) we have

sid(z2n+1, z2n+2)

= sid(Tfx2n, T gx2n+1)

6 max

{
d(TSx2n, TRx2n+1), d(TSx2n, Tfx2n), d(TRx2n+1, T gx2n+1),

d(TSx2n, T gx2n+1) + d(TRx2n+1, T fx2n)

2s

}
= max

{
d(z2n, z2n+1), d(z2n+1, z2n+2),

d(z2n, z2n+2)

2s

}
6 max

{
d(z2n, z2n+1), d(z2n+1, z2n+2),

s[d(z2n, z2n+1) + d(z2n+1, z2n+2)]

2s

}
= max

{
d(z2n, z2n+1), d(z2n+1, z2n+2)

}
.

Therefore, we have

sid(z2n+1, z2n+2) 6 max
{
d(z2n, z2n+1), d(z2n+1, z2n+2)

}
. (9)

If d(z2n+1, z2n+2) > d(z2n, z2n+1) > 0 for some n > 1, then from (9) we have

sid(z2n+1, z2n+2) 6 d(z2n+1, z2n+2).

This is a contradiction because si > 1. Thus, from (9) it follows that

sid(z2n+1, z2n+2) 6 d(z2n, z2n+1) for all n > 1. (10)

Now, by combining (8) with (10) we get (6), where λ = 1/si ∈ [0, 1/s).

Case 2. Assume now that zn0
= zn0+1 for some n0 > 1. If n0 = 2k − 1, then

z2k−1 = z2k follows that z2k = z2k+1. Indeed, since TSx2k = z2k and TRx2k−1 =
z2k−1 are comparable, by (7) we have

sid(z2k+1, z2k) 6 max
{
d(z2k, z2k−1), d(z2k, z2k+1)

}
= max

{
0, d(z2k, z2k+1)

}
,

which establishes that d(z2k, z2k+1) = 0, that is, z2k = z2k+1. If n0 = 2k, then z2k =
z2k+1 gives that z2k+1 = z2k+2. Actually, since TSx2k = z2k and TRx2k+1 = z2k+1

are comparable, then by (9) we have that

sid(z2k+2, z2k+1) 6 max
{
d(z2k+1, z2k), d(z2k+1, z2k+2)

}
= max

{
0, d(z2k+1, z2k+2)

}
.

This implies that d(z2k+1, z2k+2) = 0, that is, z2k+1 = z2k+2. Consequently, the
sequence {zn} in both cases becomes constant for n > n0, and hence (6) holds for
n > n0.
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So, by making the most of (6) and Lemma 1 we obtain that {zn} is a b-Cauchy
sequence in X . Since (X, d, s,4) is a complete b-metric space, then there exists z ∈ X
such that limn→∞ zn = z. Therefore,

lim
n→∞

Tfx2n = lim
n→∞

z2n+1 = z and lim
n→∞

TSx2n+2 = lim
n→∞

z2n+2 = z.

By the continuity of f and S we have

lim
n→∞

STfx2n = Sz, lim
n→∞

fTSx2n = fz. (11)

Since (f, S) is T -compatible, we have

lim
n→∞

d(STfxn, fTSxn) = 0. (12)

Now, we have

d(Sz, fz) 6 sd(Sz, STfx2n) + sd(STfx2n, fz)

6 sd(Sz, STfx2n) + s2
[
d(STfx2n, fTSx2n) + d(fTSx2n, fz)

]
. (13)

Letting n → ∞ in (13), from (11) and (12) we get d(Sz, fz) = 0, that is, Sz = fz.
By similar arguments we obtain gz = Rz. Thus, the pairs (f, S) and (g,R) have a
coincidence point z in X .

Now, if TSz and TRz are comparable, then by (5) we have

sid(Tfz, Tgz) 6 max

{
d(TSz, TRz), d(TSz, Tfz), d(TRz, Tgz),

d(TSz, Tgz) + d(TRz, Tfz)

2s

}
= max

{
d(TSz, TRz), d(TSz, TSz), d(TRz, TRz),

d(TSz, TRz) + d(TRz, TSz)

2s

}
= d(TSz, TRz) = d(Tfz, Tgz).

Because si > 1, this implies that Tfz = Tgz. Since T is one-to-one, we have that
fz = gz. From the above, we have fz = gz = Sz = Rz. So, z is a coincidence point of
f, g,R, S.

If we choose Tx = x for all x ∈ X in Theorem 3, then we have Theorem 1.
The following example shows that Theorem 3 is a proper generalization of Theorem 1.

Example 3. Let X = [0, 1] with d(x, y) = |x− y|2 for all x, y ∈ X and order “4” on X
as follows:

x 4 y if and only if x > y for all x, y ∈ X.
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Define mappings g, S, f,R : X → X by

Sx = Rx =
x√
2

and fx = gx =
x√

2i+1/2
for all x ∈ X, i > 1.

Then

(i) (X, d, 2,4) is a partially ordered complete b-metric space.
(ii) f(X) ⊆ R(X), g(X) ⊆ S(X).

(iii) S, g, f, R are continuous.
(iv) The pairs (f, S) and (g,R) are compatible.
(v) The pairs (f, g) and (g, f) are partially weakly increasing with respect to R and

S, respectively.
(vi) Theorem 1 is not applicable to S, g, f and R.

(vii) There exists T : X → X such that T , f , g, R, S satisfy for all conditions of
Theorem 3.

Proof. It is easy to check that conclusions (i)–(iii) hold.
(iv) We prove that (f, S) is compatible. Indeed, let {xn} be a sequence in X such

that for some t ∈ X , limn→∞ d(fxn, t) = limn→∞ d(Sxn, t) = 0. Then we have

lim
n→∞

|fxn − t|2 = lim
n→∞

|Sxn − t|2 = 0.

It is equivalent to

lim
n→∞

∣∣∣∣ xn√
2i+1/2

− t
∣∣∣∣2 = lim

n→∞

∣∣∣∣ xn√2 − t
∣∣∣∣2 = 0.

That is,

lim
n→∞

∣∣∣∣xn − t√2i+1/2

∣∣∣∣2 = lim
n→∞

∣∣∣∣xn − t√2∣∣∣∣2 = 0.

The uniqueness of the limit gives that t
√
2i+1/2 = t

√
2. This implies that t = 0. By the

continuity of f and S we have

lim
n→∞

Sfxn = St = S0 = 0, lim
n→∞

fSxn = ft = f0 = 0.

So, from Lemma 2 we get that limn→∞ d(Sfxn, fSxn) = 0.
Similarly, we have that (g,R) is compatible.
(v) Let x, y ∈ X such that y ∈ R−1fx, that is, Ry = fx. By the definition of f and

R we have
y√
2
=

x√
2i+1/2

or y =
x
√
2√

2i+1/2
.

It implies that

gy = g

(
x
√
2√

2i+1/2

)
=

x
√
2

2i+1/2
6

x√
2i+1/2

= fx.

Nonlinear Anal. Model. Control, 22(4):545–565
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Therefore, fx 4 gy. Hence, (f, g) is partially weakly increasing with respect to R.
Similarly, we have that (g, f) is partially weakly increasing with respect to S.

(vi) Let x ∈ (0, 1] and y = 0. Then

2id(fx, g0) = 2id

(
x√

2i+1/2
, 0

)
= 2i

∣∣∣∣ x√
2i+1/2

− 0

∣∣∣∣2 =
x2√
2

and

M2(x, 0) = max

{
d(Sx,R0), d(Sx, fx), d(R0, g0),

d(Sx, g0) + d(R0, fx)

4

}
= max

{
d

(
x√
2
, 0

)
, d

(
x√
2
,

x√
2i+1/2

)
, 0,

d( x√
2
, 0) + d(0, x√

2i+1/2
)

4

}
= d

(
x√
2
, 0

)
=
x2

2
.

So, we have 2id(fx, g0) > M2(x, 0). Therefore, Theorem 1 is not applicable to S, g, f
and R.

(vii) Now, let Tx = x3 for all x ∈ X . We shall show that g, S,R, f, T satisfy all
assumptions of Theorem 3.

First, we prove that (f, S) is T -compatible. Indeed, let {xn} be a sequence in X such
that for some t ∈ X , limn→∞ d(Tfxn, t) = limn→∞ d(TSxn, t) = 0. Then we have

lim
n→∞

|Tfxn − t|2 = lim
n→∞

|TSxn − t|2 = 0.

This is equivalent to

lim
n→∞

∣∣∣∣( xn√
2i+1/2

)3

− t
∣∣∣∣2 = lim

n→∞

∣∣∣∣( xn√2
)3

− t
∣∣∣∣2 = 0.

That is,

lim
n→∞

∣∣∣∣x3n − t(√2i+1/2

)3∣∣∣∣2 = lim
n→∞

∣∣∣∣x3n − t(√2)3∣∣∣∣2 = 0.

The uniqueness of the limit gives that t(
√
2i+1/2)3 = t(

√
2)3. This implies that t = 0.

By the continuity of f and S we have

lim
n→∞

STfxn = St = S0 = 0, lim
n→∞

fTSxn = ft = f0 = 0.

So, from Lemma 2 we obtain that limn→∞ d(STfxn, fTSxn) = 0.
Similarly, we have that (g,R) is T -compatible.
Next, we prove that (f, g) is T -partially weakly increasing with respect to R. Let

x, y ∈ X such that y ∈ (TR)−1(Tfx), that is, TRy = Tfx or Ry = fx. By the
definition of f and R, we have

y√
2
=

x√
2i+1/2

or y =
x
√
2√

2i+1/2
.
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It implies that

Tgy = Tg

(
x
√
2√

2i+1/2

)
=

(
x
√
2

2i+1/2

)3

6

(
x√

2i+1/2

)3

= Tfx.

It is equivalent to Tfx 4 Tgy. Hence, (f, g) is T -partially weakly increasing with
respect to R. Similarly, we get that (g, f) is T -partially weakly increasing with respect
to S.

Next, we consider the following cases.

Case 1. x = y ∈ [0, 1]. Then 2id(Tfx, Tgy) = 0 6MT
2 (x, y).

Case 2. x, y ∈ [0, 1] and x 6= y. Then

2id(Tfx, Tgy) = 2i
∣∣∣∣( x√

2i+1/2

)3

−
(

y√
2i+1/2

)3∣∣∣∣2 =
(x3 − y3)2

23i+3/2

and

MT
2 (x, y) > d(TSx, TRy) = d

(
T

(
x√
2

)
, T

(
y√
2

))
=

∣∣∣∣ x323/2
− y3

23/2

∣∣∣∣2
=

(x3 − y3)2

23
>

(x3 − y3)2

23i+3/2
= 2id(Tfx, Tgy),

It follows that (5) is satisfied for all x, y ∈ X . Therefore, all assumptions of Theorem 3
are satisfied.

Now, if we choose Rx = Sx = x and gx = fx for all x ∈ X in Theorem 3, then we
obtain the following result.

Corollary 2. Let (X, d, s,4) be a partially ordered complete b-metric space with s > 1
and T, g : X → X be two mappings satisfying the following:

(i) T is one-to-one.
(ii) For every two elements x, y ∈ X such that Tx, Ty are comparable, we have

sid(Tgx, Tgy) 6MT
s (x, y), (14)

where i > 1 is a constant and

MT
s (x, y) = max

{
d(Tx, Ty), d(Tx, Tgx), d(Ty, Tgy),

d(Tx, Tgy) + d(Ty, Tgx)

2s

}
.

(iii) g is continuous.
(iv) g is T -compatible.
(v) The pair (g, g) is T -partially weakly increasing.

Then g have a fixed point z in X .
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Supposing “g and T are commute” instead of “g is T -compatible” in Corollary 2, we
obtain that

Corollary 3. Let (X, d, s,4) be a partially ordered complete b-metric space with s > 1
and T, g : X → X be two mappings satisfying the following:

(i) T is one-to-one.
(ii) For every two elements x, y ∈ X such that Tx, Ty are comparable, we have

sid(Tgx, Tgy) 6MT
s (x, y), (15)

where i > 1 is a constant and

MT
s (x, y) = max

{
d(Tx, Ty), d(Tx, Tgx), d(Ty, Tgy),

d(Tx, Tgy) + d(Ty, Tgx)

2s

}
.

(iii) g is continuous.
(iv) g and T are commute.
(v) The pair (g, g) is T -partially weakly increasing.

Then g have a fixed point z in X .

Now, replacing “the pair (g, g) is T -partially weakly increasing” by “g is monotone
non-decreasing with respect to (T,4), and there exists x0 ∈ X such that Tx0 4 Tgx0”
and the contractive condition “sid(Tgx, Tgy) 6 MT

s (x, y)” by “sid(Tgx, Tgy) 6
d(Tx, Ty)” in Corollary 3, we get

Theorem 4. Let (X, d, s,4) be a partially ordered complete b-metric space with s > 1,
and T, g : X → X be two mappings satisfying the following:

(i) T is one-to-one.
(ii) For every two elements x, y ∈ X such that Tx, Ty are comparable, we have

sid(Tgx, Tgy) 6 d(Tx, Ty), (16)

where i > 1 is a constant.
(iii) g is continuous.
(iv) g and T are commute.
(v) g is monotone non-decreasing with respect to (T,4).

(vi) There exists x0 ∈ X such that Tx0 4 Tgx0.

Then g have a fixed point z in X .

Proof. By the given assumptions there exists x0 ∈ X such that Tx0 4 Tgx0. Putting
xn = gxn−1, for every n > 1, we construct the sequence {xn} ⊂ X . Since g is mono-
tone non-decreasing with respect to (T,4), we get a sequence {Txn} ⊂ X such that
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Txn+1 = Tgxn for n = 0, 1, 2, . . . and

Tx0 4 Tx1 4 Tx2 4 · · · 4 Txn+1 4 · · · .

If there exists k0 ∈ N such that Txk0+1 = Txk0 , then Tgxk0 = Txk0 . Since T
is one-to-one, we have gxk0

= xk0
, that is, xk0

is a fixed point of g, and the proof is
finished. If Txn+1 6= Txn for all n ∈ N, then from (16) we have

sid(Txn+1, Txn) = sid(Tgxn, T gxn−1) 6 d(Txn, Txn−1).

Since si > 1, we obtain d(Txn+1, Txn) 6 λd(Txn, Txn−1), where λ = 1/si ∈ (0, 1).
So, from Lemma 1 we get that {Txn} is a b-Cauchy sequence in X . Since (X, d, s,4)
is a complete b-metric space, there exists z ∈ X such that limn→∞ Txn = z. By the
continuity of g we have limn→∞ gTxn = gz. Since g and T are commute, we have

lim
n→∞

gTxn = lim
n→∞

Tgxn = lim
n→∞

Txn+1 = z.

The uniqueness of the limit gives that gz = z.

In the following theorem, we omit the assumption of continuity of f , g, R, S by
adding the regularity of the space (X, d, s,4) and replace the compatibility of the pairs
(f, S) and (g,R) by the weak compatibility of these pairs.

Theorem 5. Let (X, d, s,4) be a regular partially ordered complete b-metric space with
s > 1 and T, f, g, S,R : X → X be five mappings satisfying the following:

(i) f(X) ⊆ R(X) and g(X) ⊆ S(X).
(ii) T is one-to-one.

(iii) For every two elements x, y ∈ X such that TSx, TRy are comparable, we have

sid(Tfx, Tgy) 6MT
s (x, y), (17)

where i > 1 is a constant and

MT
s (x, y) = max

{
d(TSx, TRy), d(TSx, Tfx), d(TRy, Tgy),

d(TSx, Tgy) + d(TRy, Tfx)

2s

}
.

(iv) TR(X) and TS(X) are b-closed subsets of X .
(v) The pairs (f, S) and (g,R) are T -weakly compatible.

(vi) The pairs (f, g) and (g, f) are T -partially weakly increasing with respect to R
and S, respectively.

Then the pairs (f, S) and (g,R) have a coincidence point z in X . Moreover, if TRz and
TSz are comparable, then z is a coincidence point of f , g, R and S.
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Proof. Similar to the proof of Theorem 3, we can construct the sequence {zn} defined by

z2n+1 = TRx2n+1 = Tfx2n and z2n+2 = TSx2n+2 = Tgx2n+1

and obtain that there exists z ∈ X such that limn→∞ zn = z. Since TR(X) and TS(X)
are b-closed, {z2n+1} ⊆ TR(X) and {z2n+2} ⊆ TS(X), then there exist u, v ∈ X such
that z = TRu, z = TSv and

lim
n→∞

TRx2n+1 = lim
n→∞

Tfx2n = lim
n→∞

z2n+1 = z = TSv,

lim
n→∞

TSx2n+2 = lim
n→∞

Tgx2n+1 = lim
n→∞

z2n+2 = z = TSv.

We now prove that z is a coincidence point of the pair (f, S).
By using limn→∞ TRx2n+1 = TSv and the regularity of (X, d, s,4) it follows that

TRx2n+1 4 TSv. As a consequence, by (17) we get that

d(Tfv, Tgx2n+1) 6
1

si
MT

s (v, x2n+1)

and we have

1

s
d(TSv, Tfv) 6 d(TSv, Tgx2n+1) + d(Tgx2n+1, T fv)

6 d(TSv, Tgx2n+1) +
1

si
MT

s (v, x2n+1)

= d(TSv, Tgx2n+1) +
1

si
max

{
d(TSv, TRx2n+1), d(TSv, Tfv),

d(TRx2n+1, T gx2n+1),
d(TSv, Tgx2n+1) + d(TRx2n+1, T fv)

2s

}
6 d(TSv, Tgx2n+1) +

1

si
max

{
d(TSv, TRx2n+1), d(TSv, Tfv),

s
[
d(TRx2n+1, TSv) + d(TSv, Tgx2n+1)

]
,

d(TSv, Tgx2n+1)

2s
+
d(TRx2n+1, TSv) + d(TSv, Tfv)

2

}
. (18)

Letting n→∞ in (18), we arrive at

1

s
d(TSv, Tfv) 6

1

si
d(TSv, Tfv).

Because si > s > 1, we have d(TSv, Tfv) = 0, that is, Tfv = TSv = z. Since the
pair (f, S) is T -weakly compatible, we have that fz = fTSv = STfv = Sz. So, z is
a coincidence point of the pair (f, S). Similarly, it can be shown that z is a coincidence
point of the pair (g,R).

Now, suppose that TSz and TRz are comparable. Since fz = Sz and gz = Rz, we
have that

Tfz = TSz and Tgz = TRz. (19)
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Therefore, by (17) and (19), we obtain that

sid(TSz, TRz) = sid(Tfz, Tgz)

6 max

{
d(TSz, TRz), d(TSz, Tfz), d(TRz, Tgz),

d(TSz, Tgz) + d(TRz, Tfz)

2s

}
= max

{
d(TSz, TRz), 0, 0,

d(TSz, TRz)

s

}
= d(TSz, TRz).

Because si > 1, this implies that d(TSz, TRz) = 0, that is, TSz = TRz. Since T is
one-to-one, we get Sz = Rz. Therefore, Sz = Rz = fz = gz. So, z is a coincidence
point of f, g,R, S.

If we choose Tx = x for all x ∈ X in Theorem 5, then we have Theorem 2.
The following example shows that Theorem 5 is a proper generalization of Theorem 2.

Example 4. In Example 3, if {xn} is a increasing sequence in X , then we have xn 4
xn+1 for all n ∈ N. This is equivalent to xn > xn+1 for all n ∈ N. Therefore, if {xn} is
a increasing sequence and limn→∞ xn = x, then xn > x for all n ∈ N, that is, xn 4 x for
all n ∈ N. Similarly, if {yn} is a decreasing sequence and limn→∞ yn = y, then yn � y
for all n ∈ N. Hence, we have that (X, d, s,4) is a regular partially ordered complete
b-metric space with s = 2. It is easy to check thatR(X), S(X) are b-closed subsets ofX ,
the pairs (f, S) and (g,R) are weakly compatible, the pairs (f, g) and (g, f) are partially
weakly increasing with respect to R and S, respectively. Similar to the proof of Example
3, if we choose x ∈ (0, 1] and y = 0, then condition (2) in Theorem 2 is not true. Thus,
Theorem 2 is not applicable to S, g, f and R. However, if we choose Tx = x3 for all
x ∈ X , then T , f , g, R, S satisfy all assumptions of Theorem 5. Therefore, Theorem 5 is
applicable to T , f , g, S and R.

If we choose Rx = Sx = Tx = x for all x ∈ X in Theorems 3 and 5, then we have
Corollary 1, and if we choose Rx = Sx = x and fx = gx for all x ∈ X in Theorem 5,
we obtain that

Corollary 4. Let (X, d, s,4) be a regular partially ordered complete b-metric space with
s > 1 and T, g : X → X be two mappings satisfying the following:

(i) T is one-to-one.
(ii) For every two elements x, y ∈ X such that Tx, Ty are comparable, we have

sid(Tgx, Tgy) 6MT
s (x, y), i = const > 1, (20)

MT
s (x, y) = max

{
d(Tx, Ty), d(Tx, Tgx), d(Ty, Tgy),

d(Tx, Tgy) + d(Ty, Tgx)

2s

}
.
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(iii) T (X) is b-closed subset of X .
(iv) g is T -weakly compatible.
(v) The pair (g, g) is T -partially weakly increasing.

Then g have a fixed point z in X .

3 Application to integral equations

In this section, we apply Theorem 4 to study the existence of a solution to the integral
equation

x(t) = η(t) + λ

e−t∫
0

K(t, r)f
(
r, x(r)

)
dr, (21)

where t ∈ I = [0, 1] and λ > 0. Let Γ be the family of all functions γ : [0,∞)→ [0,∞)
satisfying the following conditions:

(i) γ is non-decreasing and (γ(t))p 6 γ(tp) for all p > 1.
(ii) γ(t) 6 t for all t ∈ [0,∞).

For example, γ1(t) = kt, where 0 6 k < 1, and γ2(t) = t/(t+ 1) belong to Γ . We
will analyze equation (21) under the following assumptions:

(A1) η : I → R is continuous function.
(A2) f : I ×R→ R is continuous and there exist a constant L > 0 and γ belongs to

Γ such that, for all t ∈ I , for all u, v ∈ R with u > v,∣∣f(t, u)− f(t, v)∣∣ 6 Lγ(u− v).

(A3) f(t, x) is monotone non-decreasing with respect to “6” in x, that is, for all
x1, x2 ∈ R with x1 6 x2, then we have f(t, x1) 6 f(t, x2) for all t ∈ I .

(A4) K : I × I → R+ is continuous on I × I and

e−t∫
0

K(t, r) dr 6 A for all t ∈ I.

(A5) There exists a map T : C(I) → C(I) such that T is one-to-one, and for all
x ∈ C(I), t ∈ I , we have

T

(
η(t) + λ

e−t∫
0

K(t, r)f
(
r, x(r)

)
dr

)

= η(t) + λ

e−t∫
0

K(t, r)f
(
r, Tx(r)

)
dr, (22)
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and there exists x0 ∈ C(I) such that

T

(
η(t) + λ

e−t∫
0

K(t, r)f
(
r, x0(r)

)
dr

)
6 Tx0(t) for all t ∈ I. (23)

(A6) (λAL)p 6 1/2i(p−1).

Consider the space X = C(I) of all continuous functions defined on I = [0, 1] with
the standard metric given by

ρ(x, y) = sup
t∈I

∣∣x(t)− y(t)∣∣ for all x, y ∈ X.

This space can also be equipped with a partial order given by

x, y ∈ X, x 4 y if and only if x(t) > y(t) for all t ∈ I.

Now, for p > 1, we define

d(x, y) =
(
ρ(x, y)

)p
=
(
sup
t∈I

∣∣x(t)− y(t)∣∣)p = sup
t∈I

∣∣x(t)− y(t)∣∣p
for all x, y ∈ X .

It is easy to see that (X, d) is a complete b-metric space with s = 2p−1 [3]. Now, we
will prove the following result.

Theorem 6. Under assumptions (A1)–(A6), equation (21) has a solution in X .

Proof. Let g : X → X defined by

gx(t) = η(t) + λ

e−t∫
0

K(t, r)f
(
r, x(r)

)
dr

and T : X → X satisfy condition (A5).
(i) It is easy to see that (X, d, s,4) is a partially ordered complete b-metric space.

By virtue of our assumptions, T and g are well defined (this means that if x ∈ X , then
Tx, gx ∈ X) and T is one-to-one.

(ii) By (22) it implies that g and T are commute.
(iii) Now, for any x, y ∈ X with Tx 4 Ty, this implies that Tx(t) > Ty(t) for all

t ∈ I . Then, by the condition (A2), we get∣∣Tgx(t)− Tgy(t)∣∣ = ∣∣gTx(t)− gTy(t)∣∣
=

∣∣∣∣∣λ
e−t∫
0

K(t, r)
[
f
(
r, Tx(r)

)
− f

(
r, Ty(r)

)]
dr

∣∣∣∣∣
6 λ

e−t∫
0

K(t, r)
∣∣Lγ(Tx(r)− Ty(r))∣∣dr.
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Since the function γ is non-decreasing, we have

γ
(
Tx(r)− Ty(r)

)
6 γ

(
sup
r∈I

∣∣Tx(r)− Ty(r)∣∣) = γ
(
ρ(Tx, Ty)

)
.

It follows that∣∣Tgx(t)− Tgy(t)∣∣
6 λ

e−t∫
0

K(t, r)Lγ
(
ρ(Tx, Ty)

)
dr 6 λALγ

(
ρ(Tx, Ty)

)
.

Hence, we have

2i(p−1)d(Tgx, Tgy)

= 2i(p−1) sup
t∈I

∣∣Tgx(t)− Tgy(t)∣∣p 6 2i(p−1)(λAL)p
(
γ
(
ρ(Tx, Ty)

))p
6 2i(p−1)(λAL)p

(
γ
(
ρ(Tx, Ty)

)p)
= 2i(p−1)(λAL)pγ

(
d(Tx, Ty)

)
6 2i(p−1)(λAL)pd(Tx, Ty) 6 2i(p−1)

1

2i(p−1)
d(Tx, Ty)

= d(Tx, Ty).

(iv) Let x1, x2 ∈ X such that Tx1(t) 4 Tx2(t) for all t ∈ I , that is, Tx1(t) >
Tx2(t) for all t ∈ I . Then, by the conditions (A3) and (A4), we have

Tgx1(t)− Tgx2(t) = gTx1(t)− gTx2(t)

= λ

e−t∫
0

K(t, r)
[
f
(
r, Tx1(r)

)
− f

(
r, Tx2(r)

)]
dr > 0.

This implies that Tgx1(t) 4 Tgx2(t). Therefore, g is monotone non-decreasing with
respect to (T,4).

(v) By (23) it implies that there exists x0 ∈ X such that Tx0 4 Tgx0.
From the above, all assumptions of Theorem 4 hold. Therefore, there exists x ∈ C(I),

and x is a fixed point of g. Hence, the integral equation (21) has a solution x ∈ C(I).

The following example guarantees the existence of the functions T , K, g, f that
satisfy all assumptions of Theorem 6.

Example 5. Let X = C(I) be the set of all continuous functions on I = [0, 1], the
b-metric with s = 2 defined by d(x, y) = supt∈I |x(t) − y(t)|2 for all x, y ∈ X , and
the partial order “4” given by x 4 y if x(t) > y(t) for all t ∈ I . Consider the integral
equation

x(t) =

(
t2 − t2e−4t

5.2i

)
+

1

2i+1

e−t∫
0

t2etr2
(
x(r) + r2

)
dr.

https://www.mii.vu.lt/NA



Some coincidence point results for T -contraction mappings 563

Put

gx(t) =

(
t2 − t2e−4t

5.2i

)
+

1

2i+1

e−t∫
0

t2etr2
(
x(r) + r2

)
dr,

f(t, x) = t
(
x+ t2

)
,

K(t, r) = t2etr and Tx(t) = −t2 + 2x(t) for all x ∈ X, r, t ∈ I.

Then
(i) The functions g and f are continuous, and the function T is one-to-one.
(ii) Let L = 2 and γ(t) = t/2 for all t ∈ I , then for every t ∈ I and for every pair

x, y ∈ R satisfying x > y, we have∣∣f(t, x)− f(t, y)∣∣ = ∣∣t(x+ t2 − y − t2
)∣∣ = ∣∣t(x− y)∣∣

6 |x− y| = 2
1

2
(x− y) = Lγ(x− y).

(iii) K(t, r) is continuous on I × I , and for all t ∈ I , we have

0 6

e−t∫
0

K(t, r) dr =

e−t∫
0

t2etr dr 6
1

2
.

(iv) For any pair x1, x2 ∈ R satisfying x1 6 x2, we have t(x1 + t2) 6 t(x2 + t2)
for all t ∈ I . This implies that f(t, x1) 6 f(t, x2) for all t ∈ I . So, f(t, x) is monotone
non-decreasing with respect to “6” in x.

(v) Let x ∈ X and for any t, r ∈ I , we have

gTx(t) =

(
t2 − t2e−4t

5.2i

)
+

1

2i+1

e−t∫
0

t2etr2
(
Tx(r) + r2

)
dr

=

(
t2 − t2e−4t

5.2i

)
+

1

2i+1

e−t∫
0

t2etr2
(
− r2 + 2x(r) + r2

)
dr

=

(
t2 − t2e−4t

5.2i

)
+

1

2i+1

e−t∫
0

t2etr22x(r) dr

= 2

[(
t2 − t2e−4t

5.2i

)
+

1

2i+1

e−t∫
0

t2etr2
(
x(r) + r2

)
dr

]
= −t2 + 2gx(t) = Tgx(t).
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It implies that g and T are commute.
(vi) Put x0(t) = 3t2 for all t ∈ I . Since

−t2 + 2

[(
t2 − t2e−4t

5.2i

)
+

1

2i+1

e−t∫
0

t2etr2
(
3r2 + r2

)]
6 5t2,

we get that

T

(
η(t) + λ

e−t∫
0

K(t, r)f
(
r, x0(r)

)
dr

)
6 Tx0(t).

(vii) We have

(λAL)p =

(
1

2i+1
· 1
2
· 2
)p

=

(
1

2i+1

)p

=
1

2(i+1)p
<

1

2i(p−1)
.

From the above, all assumptions to T , K, g, f in Theorem 6 are satisfied. In fact, it is
easy to see that x(t) = t2 for all t ∈ [0, 1] is a solution of the equation

x(t) =

(
t2 − t2e−4t

5.2i

)
+

1

2i+1

e−t∫
0

t2etr2
(
x(r) + r2

)
dr.
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