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Abstract. We investigate a class of Riemann–Liouville’s fractional differential equation with
infinite-point boundary conditions. We give some new properties of the Green’s function associated
with the fractional differential equation boundary value problem. Based upon these new properties
and by using Schauder’s fixed point theorem, we establish some existence results on positive
solutions for the boundary value problem. Further, by using a fixed point theorem of general concave
operators, we also present an existence and uniqueness result on positive solutions for the boundary
value problem.
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1 Introduction

Recently, there are several researchers who studied fractional differential equation with
infinite-point boundary conditions, see [2, 4–7, 19, 21] and some references therein. In
these papers, the existence of positive solutions was considered by using different meth-
ods, which include the fixed point theorem of cone expansion-compression, Avery–Peter-
son’s fixed point theorem, Leggett–Williams’s fixed point theorem, Leray–Schauder’s
nonlinear alternative, Leray–Schauder degree theory, and so on. However, we can see
that the results on the infinite-point boundary value problems for fractional differential
equations are still very few, and the uniqueness results on positive solutions for this type of
boundary value problem are seldom obtained. So, this type of boundary value problem is
worthwhile to discuss. In this article, we investigate the following boundary value problem

∗This paper was supported financially by the Youth Science Foundation of China (11201272), Shanxi
Province Science Foundation (2015011005), and 131 Talents Project of Shanxi Province (2015).

1Corresponding author.

c© Vilnius University, 2017

mailto:cbzhai@sxu.edu.cn


Positive solutions for a fractional differential equation with infinite-point boundary conditions 567

of fractional differential equation with a boundary condition involving infinite points:

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(i)(1) =

∞∑
j=1

αju(ξj),

(1)

where α > 2, n − 1 < α 6 n, i ∈ [1, n − 2] is an integer, αj > 0, 0 < ξ1 < ξ2 <
· · · < ξj−1 < ξj < · · · < 1 (j = 1, 2, . . .), and Dα

0+ is Riemann–Liouville’s fractional
derivative of order α, i.e.,

Dα
0+y(t) =

1

Γ(k − α)

dk

dtk

t∫
0

y(s)

(t− s)α+1−k ds, k = [α] + 1.

[α] is the integer part of the number α. A function u ∈ C[0, 1] is said to be a positive
solution of problem (1) if u(t) > 0 on (0, 1) and u satisfies (1) on [0, 1]. Set

∆ = (α− 1)(α− 2) · · · (α− i),

p(s) = ∆−
∑
s6ξj

αj

(
ξj − s
1− s

)α−1
(1− s)i.

Throughout this paper, we always assume ∆ >
∑∞
j=1 αjξ

α−1
j and f : [0, 1]×R+ → R+

is continuous, here R+ = [0,+∞). From [19] we know that the Green’s function of
problem (1) is

G(t, s) =
1

p(0)Γ(α)

{
tα−1p(s)(1− s)α−1−i − p(0)(t− s)α−1, 0 6 s 6 t 6 1,

tα−1p(s)(1− s)α−1−i, 0 6 t 6 s 6 1.
(2)

Moreover,

G(1, s) =
1

p(0)Γ(α)

[
p(s)(1− s)α−1−i − p(0)(1− s)α−1

]
.

The paper [19] presents some important properties of G(t, s) and p(s).

Lemma 1. Some properties of the function G(t, s) are the following:

(i) G(t, s) is a continuous function on [0, 1]× [0, 1];
(ii) G(t, s) > 0, 0 < t, s < 1;

(iii) maxt∈[0,1]G(t, s) = G(1, s), 0 6 s 6 1;
(iv) G(t, s) > tα−1G(1, s), 0 6 t, s 6 1.

Lemma 2. p(s) > 0, s ∈ [0, 1], and p is nondecreasing on [0, 1].
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In our paper, we will give some new properties of the Green’s function G(t, s) and
use these new properties to study the existence, uniqueness of positive solutions for prob-
lem (1). By using Schauder’s fixed point theorem, we first establish some existence results
on positive solutions for problem (1). Second, we use a fixed point theorem of general
concave operators to obtain an existence and uniqueness result on positive solutions for
problem (1).

2 New properties of the Green’s function

In this section, we give some new properties of the Green’s function G(t, s). First, we
define a function g by

g(t) =
tα−2[(α− 1)(1− t) + it]

i
.

Lemma 3. The following inequality holds:

g(t) > tα−1, 0 6 t 6 1.

Proof. From α > 2 and Lemma 2 we have

tα−2
[
(α− 1)(1− t) + it

]
= tα−2(α− 1)(1− t) + itα−1 > itα−1, 0 6 t 6 1.

Note that i > 1, g(t) > tα−1 for 0 6 t 6 1.

Lemma 4. For 0 < t < s < 1, there are the following result:

G(1, s)g(t)−G(t, s) > 0.

Proof. Set m := 1 − t, l := 1 − s, µ := α − 1, then 0 < l < m < 1 and µ > i > 1.
Further,

G(1, s)g(t)−G(t, s)

=
1

p(0)Γ(α)

[
p(s)(1− s)α−1−i − p(0)(1− s)α−1

] tα−2[(α− 1)(1− t) + it]

i

− 1

p(0)Γ(α)
tα−1p(s)(1− s)α−1−i

=
p(s)tα−2(1− s)α−1−i

ip(0)Γ(α)

{[
1− p(0)

p(s)
(1− s)i

][
(α− 1)(1− t) + it

]
− it

}
>
p(s)tα−2(1− s)α−1−i

ip(0)Γ(α)

{[
1− (1− s)i

][
(α− 1)(1− t) + it

]
− it

}
=
p(s)tα−2(1− s)α−1−i

ip(0)Γ(α)

{(
1− li

)[
mµ+ i(1−m)

]
− i(1−m)

}
=
p(s)tα−2(1− s)α−1−i

ip(0)Γ(α)

[(
1− li

)
mµ− lii(1−m)

]
https://www.mii.vu.lt/NA
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=
p(s)tα−2(1− s)α−1−i

ip(0)Γ(α)
iliµm

(
1− li

ili
− 1−m

mµ

)
>
p(s)tα−2(1− s)α−1−i

p(0)Γ(α)
liµm

(
1− li

µli
− 1−m

mµ

)
=
p(s)tα−2(1− s)α−1−i

p(0)Γ(α)
lim

(
1− li

li
− 1−m

m

)
>
p(s)tα−2(1− s)α−1−i

p(0)Γ(α)
lim

(
1−mi

mi
− 1−m

m

)
=
p(s)tα−2(1− s)α−1−i

p(0)Γ(α)
lim

(
m−mi

mim

)
> 0.

So, the conclusion holds.

Lemma 5. For 0 < s < t < 1, the following conclusion holds:

G(1, s)g(t)−G(t, s) > 0.

Proof. Set l := 1 − s, m := 1 − t, µ := α − 1, w := 1/l, q := (1 − wm)/(1 −m).
It is clear to see 0 < m < l < 1, µ > n − 2 > i > 1, and 1 < w < 1/m. Because
0 < s < t < 1, we have

G(1, s)g(t)−G(t, s)

=
1

p(0)Γ(α)

[
p(s)(1− s)α−1−i − p(0)(1− s)α−1

] tα−2[(α− 1)(1− t) + it]

i

− 1

p(0)Γ(α)

[
tα−1p(s)(1− s)α−1−i − p(0)(t− s)α−1

]
=

1

iΓ(α)

[
p(s)

p(0)
(1− s)α−1−i − (1− s)α−1

]
tα−2

[
(α− 1)(1− t) + it

]
− 1

iΓ(α)

[
p(s)

p(0)
itα−1(1− s)α−1−i − i(t− s)α−1

]
=

1

iΓ(α)

[
p(s)

p(0)
(1− s)α−1−i − (1− s)α−1

]
tα−2(α− 1)(1− t)

+
1

iΓ(α)
itα−1

[
p(s)

p(0)
(1− s)α−1−i − (1− s)α−1

]
− 1

iΓ(α)

p(s)

p(0)
itα−1(1− s)α−1−i +

1

iΓ(α)
i(t− s)α−1

=
1

iΓ(α)

{[
p(s)

p(0)
(1− s)α−1−i − (1− s)α−1

]
tα−2(α− 1)(1− t)

− itα−1(1− s)α−1
}

+
1

iΓ(α)
i(t− s)α−1
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>
1

iΓ(α)

{[
(1− s)α−1−i − (1− s)α−1

]
tα−2(α− 1)(1− t)

− itα−1(1− s)α−1
}

+
1

iΓ(α)
i(t− s)α−1

=
1

iΓ(α)

[(
lα−1−i − lα−1

)
(1−m)α−2(α− 1)m

− i(1−m)α−1lα−1 + i(l −m)α−1
]

=
1

iΓ(α)

[(
lµ−i − lµ

)
(1−m)µ−1µm− i(1−m)µlµ + i(l −m)µ

]
=

lµ

iΓ(α)

[(
l−i − 1

)
(1−m)µ−1µm− i(1−m)µ + i

(
1− m

l

)µ]
=
lµ(1−m)µ

iΓ(α)

[
l−i − 1

1−m
µm− i+ i

(
1−m/l
1−m

)µ]
=
lµ(1−m)µ

iΓ(α)

[
wi − 1

1−m
µm− i+ i

(
1− wm
1−m

)µ]
=
lµ(1−m)µµ

Γ(α)

[
wi − 1

i

m

1−m
− 1− qµ

µ

]
>
lµ(1−m)µµ

Γ(α)

[
(w − 1)

m

1−m
− 1− qµ

µ

]
>
lµ(1−m)µµ

Γ(α)

[
(w − 1)

m

1−m
− (1− q)

]
= 0.

Hence, the proof is finished.

From Lemmas 4 and 5 we can easily obtain the following result.

Theorem 1. For t, s ∈ [0, 1], the following inequality holds:

G(t, s) 6 G(1, s)g(t).

Further, from Lemma 1 and Theorem 1 we can also obtain the following conclusion.

Theorem 2. For t, s ∈ [0, 1], the following inequality holds:

G(1, s)tα−1 6 G(t, s) 6 G(1, s)g(t).

Theorem 3. Assume u ∈ C[0, 1] and satisfies problem (1), then

tα−1u(1) 6 u(t) 6 u(1)g(t), 0 6 t 6 1.

Proof. From [19] the solution u(t) of problem (1) can be expressed by

u(t) =

1∫
0

G(t, s)f
(
s, u(s)

)
ds.
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By Theorem 2,

u(t) > tα−1
1∫

0

G(1, s)f
(
s, u(s)

)
ds = tα−1u(1),

u(t) 6 g(t)

1∫
0

G(1, s)f
(
s, u(s)

)
ds = g(t)u(1).

3 Existence of positive solutions for problem (1)

In the following, we use Theorem 2 to obtain several existence results for problem (1).
Let E = C[0, 1] a Banach space, the norm is the standard maximum norm, i.e., ‖u‖ =
maxt∈[0,1] |u(t)| for any u ∈ E.

First, we present a condition:

(H1) there are two constants τ2 > τ1 > 0 such that

inf
u∈Ω

1∫
0

G(1, s)f
(
s, u(s)

)
ds > τ1, sup

u∈Ω

1∫
0

G(1, s)f
(
s, u(s)

)
ds 6 τ2,

where Ω = {u ∈ E: τ1t
α−1 6 u(t) 6 τ2g(t), t ∈ [0, 1]}.

Theorem 4. Let condition (H1) be satisfied. Then problem (1) has at least one positive
solution in Ω.

Proof. Define an operator A : E → E by

Au(t) =

1∫
0

G(t, s)f
(
s, u(s)

)
ds.

From [19] we know that u is a solution of problem (1) if and only if u is a fixed point
of A. For every u ∈ S, by Theorem 2 and (H1),

Au(t) > tα−1
1∫

0

G(1, s)f
(
s, u(s)

)
ds > τ1t

α−1

and

Au(t) 6 g(t)

∫ 1

0

G(1, s)f
(
s, u(s)

)
ds 6 τ2g(t).

Hence, A(Ω) ⊆ Ω. Further, it follows from the continuity of G(t, s) and f(t, u) that
A : Ω → Ω is completely continuous. Therefore, A has a fixed point u∗ in S by using
Schauder’s fixed point theorem. By Theorem 3, u∗(t) > τ1t

α−1 > 0, t ∈ [0, 1], so, we
claim that u∗(t) is a positive solution.

Nonlinear Anal. Model. Control, 22(4):566–577
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From Theorem 4 we can easily obtain the following corollaries.

Corollary 1. Suppose that there are τ2 > τ1 > 0 such that f(t, ·) is increasing on
[0, τ2g

∗] for fixed t ∈ [0, 1], and
1∫

0

G(1, s)f
(
s, τ1s

α−1)ds > τ1,

1∫
0

G(1, s)f
(
s, τ2g(s)

)
ds 6 τ2,

where g∗ = maxt∈[0,1] g(t). Then problem (1) has at least one positive solution in Ω.

Corollary 2. Suppose that there are τ2 > τ1 > 0 such that f(t, ·) is decreasing on
[0, τ2g

∗] for fixed t ∈ [0, 1], and
1∫

0

G(1, s)f
(
s, τ2g(s)

)
ds > τ1,

1∫
0

G(1, s)f
(
s, τ1s

α−1)ds 6 τ2,

where g∗ = maxt∈[0,1] g(t). Then problem (1) has at least one positive solution in Ω.

Example 1. Consider the following infinite-point boundary value problem

D
7/2
0+ u(t) + t2

√
u(t) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′(1) =

∞∑
j=1

2

j2
u

(
1

j

)
,

(3)

From this example we see that α = 7/2, n = 4, i = 1, αj = 2/j2, ξj = 1/j, ∆ = 2.5,
f(t, u) = t2

√
u. By a simple calculation,

∑∞
j=1 αjξ

α−1
j =

∑∞
j=1(2/j2)(1/j)5/2 ≈

2.109 < ∆, Γ(α) = Γ(7/2) ≈ 3.3234, p(0) ≈ 0.391. It is easily to see that f(t, u) is
continuous and is increasing in u ∈ [0,+∞). Take

0 < τ1 6

(∫ 1

0
[(1− s)3/2 − (1− s)5/2]s13/4 ds

Γ(7/2)

)2

≈ 2.116 · 10−5,

τ2 >

(
2.5

p(0)Γ(7/2)

(
7

2

)1/2
1∫

0

(1− s)3/2s11/4 ds

)2

≈ 1.31 · 10−2.

Then τ1 < τ2. Moreover, g(t) = t3/2[(5/2)(1− t) + t]. From (2) and Lemma 2,
1∫

0

G(1, s)f
(
s, τ1s

α−1) ds

=

1∫
0

G(1, s)s2
(
τ1s

5/2
)1/2

ds

=
τ1

1/2

p(0)Γ(7/2)

1∫
0

[
p(s)(1− s)α−1−i − p(0)(1− s)α−1

]
s13/4 ds

https://www.mii.vu.lt/NA
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>
τ1

1/2

p(0)Γ( 7
2 )

1∫
0

[
p(0)(1− s)3/2 − p(0)(1− s)5/2

]
s13/4 ds

=
τ1

1/2

Γ( 7
2 )

1∫
0

[
(1− s)3/2 − (1− s)5/2

]
s13/4 ds > τ1,

1∫
0

G(1, s)f
(
s, τ2g(s)

)
ds

=

1∫
0

G(1, s)s2
(
τ2g(s)

)1/2
ds

6
τ2

1/2

p(0)Γ( 7
2 )

1∫
0

p(s)(1− s)α−1−is2
[
sα−2

(
(α− 1)(1− s) + s

)]1/2
ds

6
τ2

1/2

p(0)Γ( 7
2 )

1∫
0

∆(1− s)α−1−isα/2+1
[
(α− 1) + 1

]1/2
ds

=
2.5τ2

1/2

p(0)Γ( 7
2 )

(
7

2

)1/2
1∫

0

(1− s)3/2s11/4 ds 6 τ2.

Then, by using Corollary 1, problem (3) has at least one positive solution in Ω.

Example 2. In problem (3), we replace f(t, u) by

f(t, u) = t2

{
16−1, u ∈ [0, 4],

u−2, u ∈ (4,+∞).

Similar to Example 1, we can also easily prove that all the assumptions of Corollary 2
are satisfied.

4 Uniqueness of positive solutions for problem (1)

Let (E, ‖ · ‖) be a real Banach space. θ is the zero element of E, and P ⊂ E is a cone.
Then E is partially ordered by cone P , i.e., x 6 y if and only if y − x ∈ P . P is
called normal if there exists a constant K > 0 such that, for x, y ∈ E with θ 6 x 6 y,
‖x‖ 6 K‖y‖. For x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0
such that λx 6 y 6 µx. Clearly, ∼ is an equivalence relation. For h > θ (i.e., h > θ and
h 6= θ), we denote by Ph the set Ph = {x ∈ E | x ∼ h}.

Lemma 6. (See Lemma 2.1 and Theorem 2.1 in [18].) Let h > θ and P be a normal
cone. Assume:

Nonlinear Anal. Model. Control, 22(4):566–577
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(D1) A : P → P is increasing, and Ah ∈ Ph;
(D2) for x ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1) such that A(tx) > ϕ(t)Ax.

Then:

(i) there are u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 6 u0 < v0, u0 6 Au0 6
Av0 6 v0;

(ii) operator equation x = Ax has a unique solution in Ph.

Remark 1. An operator A is said to be generalized concave if it satisfies condition (D2).

Let E = C[0, 1], P = {x ∈ C[0, 1] | x(t) > 0, t ∈ [0, 1]}, then P is a normal cone
in C[0, 1]. From (2) we can obtain

G(t, s) 6
1

p(0)Γ(α)
tα−1p(s)(1− s)α−1−i, 0 6 t, s 6 1. (4)

Theorem 5. Let h(t) = tα−1, t ∈ [0, 1] and suppose that:

(H2) f(t, u) is increasing in u for each t ∈ [0, 1] with f(t, 0) 6≡ 0;
(H3) for r ∈ (0, 1), there is ϕ(r) ∈ (r, 1) such that

f(t, ru) > ϕ(r)f(t, u), t ∈ [0, 1], u ∈ [0,+∞).

Then, the following conclusions hold:

(i) there exist u0, v0 ∈ Ph such that

u0(t) 6

1∫
0

G(t, s)f
(
s, u0(s)

)
ds, v0(t) >

1∫
0

G(t, s)f
(
s, v0(s)

)
ds, t ∈ [0, 1];

(ii) problem (1) has a unique positive solution u∗ in Ph.

Remark 2. In Theorem 5, Ph = {x∈C[0, 1] | ∃λ(x, h), µ(x, h) > 0: λtα−1 = λh(t) 6
x(t) 6 µh(t) = µtα−1, t ∈ [0, 1]}, we can see that λ, µ are not constants and depend on
x, h. In Ω, τ1, τ2 are two constants. So, Ω 6= Ph.

Proof of Theorem 5. We also consider the following operator:

Au(t) =

1∫
0

G(t, s)f
(
s, u(s)

)
ds.

Clearly, A :P → P . Further, from (H2) we can easily obtain that A :P → P is increas-
ing. Now we prove that A is generalized concave. For r ∈ (0, 1) and u ∈ P , from (H3),

A(ru)(t) =

1∫
0

G(t, s)f
(
s, ru(s)

)
ds > ϕ(r)

1∫
0

G(t, s)f
(
s, u(s)

)
ds

= ϕ(r)Au(t), t ∈ [0, 1].

Hence, A(ru) > ϕ(r)Au for all u ∈ P , r ∈ (0, 1).

https://www.mii.vu.lt/NA
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Next, we show Ah ∈ Ph. From Theorem 2, (H2), and Lemma 2,

Ah(t) =

1∫
0

G(t, s)f
(
s, h(s)

)
ds =

1∫
0

G(t, s)f
(
s, sα−1

)
ds

>

1∫
0

G(1, s)tα−1f(s, 0) ds

=
1

p(0)Γ(α)

1∫
0

[
p(s)(1− s)α−1−i − p(0)(1− s)α−1

]
f(s, 0) ds · tα−1

>
1

Γ(α)

1∫
0

[
(1− s)α−1−i − (1− s)α−1

]
f(s, 0) ds · tα−1, t ∈ [0, 1].

Also from (H2) and (4) we obtain

Ah(t) 6
1

p(0)Γ(α)

1∫
0

tα−1p(s)(1− s)α−1−if(s, 1) ds

=
1

p(0)Γ(α)

1∫
0

p(s)(1− s)α−1−if(s, 1) ds · tα−1, t ∈ [0, 1].

Put

r1 =
1

Γ(α)

1∫
0

[
(1− s)α−1−i − (1− s)α−1

]
f(s, 0) ds,

r2 =
1

p(0)Γ(α)

1∫
0

p(s)(1− s)α−1−if(s, 1) ds.

Note that f is continuous and f(t, 0) 6≡ 0, we can get 0 < r1 6 r2 by using Lemma 2
and (H2). So, we get

Ah(t) > r1h(t), Ah(t) 6 r2h(t), t ∈ [0, 1].

Consequently, r1h 6 Ah 6 r2h and thus Ah ∈ Ph. Finally, by Lemma 6, there are
u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 6 u0 < v0, u0 6 Au0 6 Av0 6 v0; and we can
claim that A has a unique fixed point in Ph. That is,

u0(t) 6

1∫
0

G(t, s)f
(
s, u0(s)

)
ds, v0(t) >

1∫
0

G(t, s)f
(
s, v0(s)

)
ds, t ∈ [0, 1];

and problem (1) has a unique positive solution u∗ in Ph.
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Example 3. Consider the following infinite-point boundary value problem:

D
7/2
0+ u(t) +

(√
u(t) + 1

)
sinπt = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′(1) =

∞∑
j=1

2

j2
u

(
1

j

)
,

(5)

From this example we see that α = 7/2, n = 4, i = 1, αj = 2/j2, ξj = 1/j,
∆ = 2.5, f(t, u) = (

√
u + 1) sinπt. It is clear to see that f(t, u) is continuous and is

increasing in u ∈ [0,+∞). In addition, f(t, 0) = sinπt 6≡ 0. Take ϕ(t) =
√
t, t ∈ (0, 1).

Then ϕ(t) ∈ (t, 1) and, for r ∈ (0, 1),

f(t, ru) = (
√
ru+ 1) sinπt > (

√
ru+

√
r) sinπt

=
√
r(
√
u+ 1) sinπt = ϕ(r)f(t, u).

By using Theorem 5, problem (5) has a unique positive solution in Pt5/2 .

Remark 3. The uniqueness of positive solutions for fractional boundary value problems
appeared in many papers, see [1, 3, 8–17, 20] for example. However, to our knowledge,
there are very few unique results on fractional infinite-point boundary value problems.
So, our results are new and then complement previously known results.
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