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Abstract. This paper considers effects of a climate-induced range shift on outcomes of two
competitive species, which is modeled by a reaction-diffusion system with the increasing growth
rates of species along a shifting habitat gradient. Analytical conditions are established for the
coexistence or competitive exclusion of two-competitors under the climate change, which present
the control strategies to maintain the persistence of species.
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1 Introduction

In real ecological systems, issues of persistence of competing species and invasive spread
of one species is fundamental. Ecologically, an understanding of spreading speeds of
species can provide insights into invasion process [4, 22], for example, how quickly
an introduced species can move into a novel landscape or how rapidly an extirpated
species can recover to its previous range. Whether introduced purposely, accidentally or
by natural means, the invasion of new species can have serious economic and ecological
consequences.

There is an increasing acknowledgement that we are experiencing a period of rapid
climate change. Meanwhile, an increasing appreciation that ecosystem responses to cli-
mate change are complex and widespread has promoted a focus on understanding and
predicting biological impact [7, 9, 15, 18, 19, 26]. Whether populations and species will
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persist at the local and global scale, respectively, depends on their abilities to endure
future climate shifts. Thus, determining the rate of climate change that populations can
cope with, therefore, is urgently needed.

Mathematical modeling is a powerful approach to understand the ecological effects
of climate change. Early on, the issue of persistence in a changing landscape investigated
by a number of papers [1, 3, 16, 23, 29] has primarily focused on the established species
that exist at equilibrium distributions in a bounded domain prior to the onset of climate
change. Few studies have considered the spread or invasion of an introduced species and
how this might be impacted by shifts in habitat suitability. Recently, a number of studies
have used analytical approaches to address the potential for the population persistence in
asymmetric flow [8, 12–14, 25] or in the situation of changing climatic conditions, where
the medium is static, but appropriate habitat is shifting [2, 5, 21, 32].

To explore the issue of species spread in the context of climate change, Li et al. [11]
studied the spread of a single species over a region with varying habitat suitability, that is,
shifting in time taking the form of

∂u

∂t
= d

∂2u

∂x2
+ ur(x− ct)− u2. (1)

Here c > 0 and r(ξ) is continuous and nondecreasing and bounded with r(−∞) < 0 and
r(∞) > 0. Thus, r(x − ct) divides the spatial domain into two parts: the region with
the good-quality habitat suitable for growth (i.e., r(x− ct) > 0), and the region with the
poor-quality habitat unsuitable for growth (i.e., r(x − ct) < 0). The edge of the habitat
suitable for species is shifting at a speed c. Results in [11] have shown that the persistence
and spreading dynamics of (1) depend on c and c∗(∞), that is, determined by the maximal
linearized growth rate and the diffusion coefficient. More specifically, if c > c∗(∞), the
species will become extinct in the habitat; if c < c∗(∞), then the species will persist and
spread along the shifting habitat gradient at an asymptotic spreading speed c∗(∞). These
results can be interpreted as whether a species is able to persist depend on its ability to
outrun an encroaching boundary.

The purpose of the present paper is to extend the work in [11] to a two-competing
species model. We will analyze the influence of climate change on the competition out-
comes and characterize the spreading speeds of biological populations in response to
both biological competitions and the shifting habitat under the climate change. We derive
sufficient conditions for the coexistence of two species and show that there are switches
in competitive dominance induced by different speeds of the shifting habitat edge. More
precisely, if two species are initially restricted to and distributed over a band of suitable
habitat, persistence then requires that the two species keep pace with the movement of its
suitable habitat band. Indeed, we find that the interspecific competition slows the invasion
speed of invasive species. Moreover, if the shifting of climate change moves slower than
the minimum invasion rate of two species, coexistence of two species happens when the
competition is weak; replacement happens when the shifting rate of climate change is
medium; if the shifting rate of climate change is lager than the maximum invasion rate of
two species, both species will go extinct.
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The rest of this paper is organized as follows. In Section 2, we present our mathe-
matical model and analyze its spatial dynamics. In Section 3, we provide a number of
simulations to illustrate the results from Section 2. Section 4 gives a brief discussions.

2 Mathematical results

We consider the following competition model:

ut = d1uxx + u
(
r1(x− ct)− u− a1v

)
, (2a)

vt = d2vxx + v
(
r2(x− ct)− v − a2u

)
(2b)

with the initial conditions u(0, x) = u0(x), v(0, x) = v0(x). Here t ∈ R+, −∞ < x <
+∞; u := u(t, x), v := v(t, x) are the densities of two competing species respectively;
d1, d2 > 0 are their respective diffusion coefficients; a1, a2 > 0 are interspecific
competition coefficients; c > 0 is a speed at which the edge of the habitat suitable for
species growth is shifting. The per capita growth rates r1(x − ct) and r2(x − ct) satisfy
the following standing hypothesis:

Hypothesis 1. ri(x), i = 1, 2, are continuous, nondecreasing, and piecewise continu-
ously differentiable for −∞ < x <∞ with 0 < ri(∞) <∞ and −∞ < ri(−∞) < 0.

For 0 6 u1, u2 6 r1(∞), 0 6 v1, v2 6 r2(∞) with −∞ < x < ∞ and t > 0, it is
easy to examine∣∣u1(r1 − u1 − a1v1)− u2(r2 − u2 − a1v2)

∣∣ 6 ρ
(
|u1 − u2|+ |v1 − v2|

)
,∣∣v1(r2 − v1 − a2u1)− v2(r2 − v2 − a2u2)

∣∣ 6 ρ
(
|u1 − u2|+ |v1 − v2|

)
,

where

ρ = max
{

3r1(∞) + a1
(
r1(∞) + r2(∞)

)
, 3r2(∞) + a2

(
r1(∞) + r2(∞)

)}
.

Thus, the reaction terms in (2) are Lipschitz continuous in u, v. By adding dominant linear
terms ρu, ρv to both sides of (2a) and (2b) respectively, model (2) can be written as

ut + ρu = d1uxx + u
(
ρ+ r1(x− ct)− u− a1v

)
,

vt + ρv = d2vxx + v
(
ρ+ r2(x− ct)− v − a2u

)
.

Then u(ρ + r1(x − ct) − u − a1v) is nondecreasing in u for 0 6 u 6 r1(∞) and
v(ρ + r2(x − ct) − v − a2u) is nondecreasing in v for 0 6 v 6 r2(∞). It is clear that
(0, 0) and (r1(∞), r2(∞)) are a pair of lower and upper solutions of (2). It follows from
[17,20,24,27,31] that the initial problem of (2) with (u(0, x), v(0, x)) = (u0(x), v0(x)),
where u0(x), v0(x) are continuous and 0 6 u0(x) 6 r1(∞), 0 6 v0(x) 6 r2(∞) has
a unique classical solution, which satisfies 0 6 u(t, x) 6 r1(∞), 0 6 v(t, x) 6 r2(∞).
We will consider only these solutions in what follows.
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It is easily seen that a solution (u(t, x), v(t, x)) of (2) takes the form of

u(t, x) =

+∞∫
−∞

k1(t, x− y)u0(y) dy

+

t∫
0

+∞∫
−∞

k1(t− τ, x− y)u(τ, y)

×
[
ρ+ r1(y − cτ)− u(τ, y)− a1v(τ, y)

]
dy dτ,

v(t, x) =

+∞∫
−∞

k2(t, x− y)v0(y) dy

+

t∫
0

+∞∫
−∞

k2(t− τ, x− y)v(τ, y)

×
[
ρ+ r2(y − cτ)− v(τ, y)− a2u(τ, y)

]
dy dτ,

where

k1(s, y) =
e−ρs−y

2/(4πd1s)

√
4πd1s

, k2(s, y) =
e−ρs−y

2/(4πd2s)

√
4πd2s

.

To motivate our main results, we consider the homogeneous nonspatial case of sys-
tem (2):

ut = u(r1(∞)− u− a1v), vt = v(r2(∞)− v − a2u). (3)

There are four constant equilibria: the unpopulated state (0, 0); the first-species monocul-
ture state (r1(∞), 0); the second-species monoculture state (0, r2(∞)); and the coexis-
tence state (u∗, v∗), where

u∗ =
r1(∞)− a1r2(∞)

1− a1a2
, v∗ =

r2(∞)− a2r1(∞)

1− a1a2
. (4)

We summarize the well-known facts for the existence and stability of the equilibria in the
following:

1. (0, 0) always exists and is unstable.
2. (r1(∞), 0) always exists, and is stable if r2(∞) < a2r1(∞).
3. (0, r2(∞)) always exists, and is stable if r1(∞) < a1r2(∞).
4. (u∗, v∗) exists if and only if [r1(∞)− a1r2(∞)][r2(∞)− a2r1(∞)] > 0.

In this paper, we are particularly interested in the weak competition case. Thus, the
coexistence equilibrium (u∗, v∗) emerges and is stable if

0 < a1a2 < 1, 0 < a1 <
r1(∞)

r2(∞)
, 0 < a2 <

r2(∞)

r1(∞)
. (5)
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Furthermore, the coexistence state (u∗, v∗) disappears if

0 < a1a2 < 1, 0 < a1 <
r1(∞)

r2(∞)
, a2 >

r2(∞)

r1(∞)
. (6)

If v is the resident species and u is the invasive species, then (6) implies that the resident
species is excluded by the invasive species because positive solutions of (3) tend to
(r1(∞), 0) as t approaches∞. From (4), it is also easy to see that (u∗, v∗)→ (0, r2(∞))
if a1 → r1(∞)/r2(∞) and (u∗, v∗) → (r1(∞), 0) if a2 → r2(∞)/r1(∞) under the
condition that 0 < a1a2 < 1.

We now study how the outcomes of competing species u and v are affected by the
climate changes. For ri(x)− airj(∞) > 0, i 6= j, i, j = 1, 2, we define

c∗i (x) = 2
√
di
(
ri(x)− airj(∞)

)
.

It is easily seen that
c∗i (x) = inf

µ>0
φi(x;µ),

where

φi(x;µ) =
diµ

2 + ri(x)− airj(∞)

µ
.

The infimum occurs at µ∗i (x) =
√

(ri(x)− airj(∞))/di. We also define

ψi(µ) = 2diµ.

It is easily seen that φi(x;µ) > ψi(µ) for 0 < µ < µ∗i (x) and φi(x;µ∗i (x)) = ψi(µ
∗
i (x)) =

c∗i (x).
The main results of this paper are stated in the following theorem.

Theorem 1. Suppose that Hypothesis 1 is satisfied. Assume d1r1(∞) < d2r2(∞). Then
the following statements are valid:

(a) Let c ∈ (0, c∗1(∞)). If 0 < u(0, x) < u∗, v∗ < v(0, x) 6 r2(∞) on a closed
interval, and u(0, x) = v(0, x) ≡ 0 for all sufficiently large x, we have

(i) If (5) holds, then for 0 < ε < (c∗1(∞)− c)/2,

lim
t→∞

[
sup

t(c+ε)6x6t(c∗1(∞)−ε)

{∣∣u∗ − u(t, x)
∣∣+
∣∣v∗ − v(t, x)

∣∣}] = 0.

(ii) If (6) holds, then for 0 < ε < (c∗1(∞)− c)/2,

lim
t→∞

[
sup

t(c+ε)6x6t(c∗1(∞)−ε)

{∣∣r1(∞)− u(t, x)
∣∣+
∣∣v(t, x)

∣∣}] = 0.
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(b) Let c ∈ (2
√
d1r1(∞), 2

√
d2r2(∞)). If 0 6 u(0, x) 6 r1(∞), 0 6 v(0, x) 6

r2(∞), u(0, x), v(0, x) are zero for all sufficiently large x, v(0, x) > 0 for other
values of x, then for every ε > 0, there exists T > 0 such that the solution
(u(t, x), v(t, x)) of (2) satisfies

u(t, x) 6 ε for t > T, x ∈ (−∞,∞), (7)

lim
t→∞

[
sup

(c+ε)t6x6(2
√
d2r2(∞)−ε)t

∣∣r2(∞)− v(t, x)
∣∣] = 0. (8)

(c) Let c > 2
√
d2r2(∞). If 0 6 u(0, x) 6 r1(∞), 0 6 v(0, x) 6 r2(∞), and

u(0, x) = v(0, x) ≡ 0 for all sufficiently large x, then for every ε > 0, there
exists T > 0 such that for t > T , the solution (u(t, x), v(t, x)) of (2) satisfy
u(t, x) < ε and v(t, x) < ε for all x.

Before the proof of Theorem 1, we present a few preliminaries. The first one is an
auxiliary function proposed by Weinberger [28]. For γ > 0 and µ > 0, we define

w(µ;x) =

{
e−µx sin γx if 0 6 x 6 π

γ ,

0 elsewhere.
(9)

Clearly, w(µ;x) is a continuous function in x, and its second-order derivative in x ex-
ists and is continuous when x 6= 0, π/γ. The maximum of w(µ;x) occurs at σ(µ) =
(1/γ) tan−1(γ/µ), which is a strictly decreasing function of µ.

Secondly, we need to derive certain properties for a lower solution. Let (u(t, x),
v(t, x)) be a solution of (2) with (u(0, x), v(0, x)) = (u0(x), v0(x)) that satisfies 0 6
u0(x) 6 r1(∞) and 0 6 v0(x) 6 r2(∞). We denote by u(t, x) the solution of

ut = d1uxx + u
(
r1(x− ct)− u− a1r2(∞)

)
(10)

with u(0, x) = u0(x). Since 0 6 v(t, x) 6 r2(∞), which implies u(r1(x − ct) − u −
a1v) > u(r1(x− ct)− u− a1r2(∞)), it follows that u(t, x) satisfies

u(t, x) > u(t, x) for all (t, x) ∈ [0,∞)× R.

Similar to [11], we have the following useful lemma for (10).

Lemma 1. Assume that 0 6 c < c∗1(∞) = 2
√
d1(r1(∞)− a1r2(∞)). For any ε

satisfying 0 < ε < (c∗1(∞)−c)/3, let l be a positive number such that c∗1(l) = c∗1(∞)−ε.
Select 0 < µ1 < µ2 < µ∗1(l) with ψ1(µ1) = c+ε and ψ1(µ2) = c∗1(∞)−2ε. Then for any
µ ∈ [µ1, µ2], there exist a > 0 and γ > 0 sufficiently small such that aw(µ;x−l−ψ1(µ)t)
withw given by (9) is a continuous weak lower solution of (10) in the distributional sense,
i.e., for any T > 0 and any η ∈ C2,1((−∞,∞) × [0, T ]) with η > 0 and supp η(·, t)
being a bounded interval for all t ∈ [0, T ],

∞∫
−∞

ũ(µ; t, x)η(t, x) dx

∣∣∣∣t=T1

t=0

6

T1∫
0

∞∫
−∞

[
ũ(µ; s, x)(dηxx + ηt)(s, x) + η(s, x)ũ(µ; s, x)

×
(
r1(x− cs)− ũ(µ; s, x)− a1r2(∞)

)]
dxds,
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where ũ(µ; t, x) = aw(µ;x − l − ψ1(µ)t) and T1 ∈ [0, T ]. Furthermore, if u(0, x) >
aw(µ;x− l), then u(t, x) > aw(µ;x− l − ψ1(µ)t) for all t > 0, x ∈ R.

We are now able to present the proof of Theorem 1.

Proof of Theorem 1. Note that c∗1(∞) is well defined when either (5) or (6) holds. If c ∈
(0, c∗1(∞)), we choose a small constant ε with 0 < ε < min{(c∗1(∞)− c)/3, r1(∞)/3}
so that Lemma 1 applies. Then we select µ ∈ [µ1, µ2] and small α > 0 and γ > 0 such
that αw(µ; x− l − ψ1(µ)t)/w(µ;σ(µ)) with w given by (9) is a continuous weak lower
solution of (10).

Let u(t, x) > 0 be a solution of (10) with u(0, x) = u(0, x). Since u(0, x) > 0 and
u(0, x) 6≡ 0, it follows from the maximal principle that u(t, x) > 0 for all x and any
t > 0. Choose 0 < t0 < σ(µ1)/ψ1(µ1), and choose α and γ sufficiently small such that
u(t0, x) > α for x ∈ [l, l + 4π/γ]. Set

z(0, x) =



αw(µ1; x−l)
w(µ1;σ(µ1))

, l 6 x 6 l + σ(µ1),

α, l + σ(µ1) 6 x 6 l + 3π
γ + σ(µ2),

αw(µ2; x−l− 3π
γ )

w(µ2;σ(µ))
, l + 3π

γ + σ(µ2) 6 x 6 l + 4π
γ ,

0 elsewhere.

It is easily seen that for 0 6 s 6 2π/γ,

z(0, x) >
αw(µ1; x− l − s)
w(µ1;σ(µ1))

,

and

z(0, x) >
αw(µ2; x− l − 3π

γ + s)

w(µ2;σ(µ))
.

Since u(t0, x) > α for x ∈ [l, l + 4π/γ], Lemma 1 implies that for t > t0 and 0 6 s 6
2π/γ,

u(t, x) >
αw(µ1; x− l − ψ1(µ1)(t− t0)− s)

w(µ1;σ(µ1))
, (11)

and

u(t, x) >
αw(µ2; x− l − 3π

γ − ψ1(µ2) + s)

w(µ2;σ(µ))
. (12)

It follows from (11) that for t > t0,

u(t, x) >



αw(µ; x−l−ψ1(µ1)(t−t0))
w(µ1;σ(µ1))

, x > l + ψ1(µ1)(t− t0),

x 6 l + ψ1(µ1)(t− t0) + σ(µ1);

α, x > l + ψ1(µ1)(t− t0) + σ(µ1),

x 6 l + 2π
γ + ψ1(µ1)(t− t0) + σ(µ1);

0 elsewhere.

(13)
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On the other hand, (12) indicates that for t > t0,

u(t, x)

>



α, x > l + π
γ + ψ1(µ2)(t− t0) + σ(µ2),

x 6 l + 3π
γ + ψ1(µ2)(t− t0) + σ(µ2);

αw(µ2; x−l− 3π
γ −ψ1(µ2)(t−t0))

w(µ2;σ(µ2))
, x > l + 3π

γ + ψ1(µ2)(t− t0) + σ(µ2),

x 6 l + 4π
γ + ψ1(µ2)(t− t0);

0 elsewhere.

(14)

Let

h =

π
γ + σ(µ1)− σ(µ2)

ψ1(µ2)− ψ1(µ1)
.

Note that

l +
2π

γ
+ ψ1(µ1)(t− t0) + σ(µ1) > l +

π

γ
+ ψ1(µ2)(t− t0) + σ(µ2)

for t0 6 t 6 t0 + h. It follows from (13) and (14) that for t0 6 t 6 t0 + h, we have

u(t, x) > z(t− t0, x), (15)

where

z(t− t0, x)

=



αw(µ;x−l−ψ1(µ1)(t−t0))
w(µ1;σ(µ1))

, x > l + ψ1(µ1)(t− t0),

x 6 l + ψ1(µ1)(t− t0) + σ(µ1);

α, x > l + ψ1(µ1)(t− t0) + σ(µ1)

x 6 l + 3π
γ + ψ1(µ2)(t− t0) + σ(µ2);

αw(µ2;x−l− 3π
γ −ψ1(µ2)(t−t0))

w(µ2;σ(µ2))
, x > l + 3π

γ + ψ1(µ2)(t− t0) + σ(µ2),

x 6 l + 4π
γ + ψ1(µ2)(t− t0);

0 elsewhere.

(16)

By similar arguments to those in [11], we see that (15) is valid for all t > t0.
For the chosen ε > 0, we select L > 0 large enough such that

L∫
−L

1√
π

e−x
2

dx > 1− ε.

Note that for any s > 0,

L
√
4ds∫

−L
√
4ds

1√
4πds

e−x
2/(4ds) dx =

L∫
−L

1√
π

e−ξ
2

dξ.
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Let t1 > t0 be a sufficiently large number. For t > t1, the solution (u(t, x), v(t, x))
satisfies the integral equations

u(t, x) =

+∞∫
−∞

k1(t− t1, x− y)u(t1, y) dy

+

t∫
t1

+∞∫
−∞

k1(t− τ, x− y)u(τ, y)

×
[
ρ+ r1(y − cτ)− u(τ, y)− a1v(τ, y)

]
dy dτ, (17)

v(t, x) =

+∞∫
−∞

k2(t− t1, x− y)v(t1, y) dy

+

t∫
t1

+∞∫
−∞

k2(t− τ, x− y)v(τ, y)

×
[
ρ+ r2(y − cτ)− v(τ, y)− a2u(τ, y)

]
dy dτ. (18)

Since u(t, x) > u(t, x) for all t > 0 and all x, it follows from (17) and (15) that for
t > t1,

u(t, x) >

+∞∫
−∞

k1(t− t1, x− y)z(t1 − t0, y) dy

+

t∫
t1

+∞∫
−∞

k1(t− τ, x− y)z(τ − t0, y)

×
[
ρ+ r1(y − cτ)− z(τ − t0, y)− a1v(τ, y)

]
dy dτ.

For t > t1, x satisfying

l + σ(µ1) + ψ1(µ1)(t− t0) + L
√

4d1(t− t1)

6 x 6 l +
3π

γ
+ σ(µ2) + ψ1(µ2)(t− t0)− L

√
4d1(t− t1), (19)

and y satisfying
−L
√

4d1(t− t1) 6 y 6 L
√

4d1(t− t1),

we have

l + σ(µ1) + ψ1(µ1)(t− t0) 6 x− y 6 l +
3π

γ
+ σ(µ2) + ψ1(µ2)(t− t0),

and

x− y − ct > l + σ(µ1) + ψ1(µ1)(t− t0)− ct = l + εt+ σ(µ1)− ψ1(µ1)t0 > l.
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This, together with (16), implies that for x satisfying (19),
+∞∫
−∞

k1(t− t1, x− y)z(t1 − t0, y) dy

=

+∞∫
−∞

k1(t− t1, y)z(t1 − t0, x− y) dy

> e−ρ(t−t1)

L
√

4d1(t−t1)∫
−L
√

4d1(t−t1)

e−y
2/(4d1(t−t1))√

4πd1(t− t1)
z(t1 − t0, x− y) dy

> αe−ρ(t−t1)

L
√

4d1(t−t1)∫
−L
√

4d1(t−t1)

e−y
2/(4d1(t−t1))√

4πd1(t− t1)
dy

> (1− ε)αe−ρ(t−t1), (20)

and
t∫

t1

+∞∫
−∞

k1(t− τ, x− y)z(τ − t0, y)
[
ρ+ r1(y − cτ)− z(τ − t0, y)− a1v(τ, y)

]
dy dτ

> (1− ε)α
t∫

t1

e−ρ(t−τ)
[
ρ+ r1(∞)− ε− α− a1r2(∞)

]
dτ. (21)

It follows from (18) that for x satisfying (19),
t∫

t1

+∞∫
−∞

k2(t− τ, x− y)v(τ, y)
[
ρ+ r2(y − cτ)− v(τ, y)− a2u(τ, y)

]
dy dτ

6 r2(∞)

t∫
t1

e−ρ(t−τ)[ρ− a2α] dτ, (22)

and
+∞∫
−∞

k2(t− t1, x− y)v(t1, y) dy 6 r2(∞)e−ρ(t−t1). (23)

Here we use the simple fact that
+∞∫
−∞

k2(t, y) dy = e−ρt.
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It follows from (20), (21) and (22), (23) that for t > t1 and x satisfying (19),

u(t, x) > ũ(1)(t), v(t, x) 6 ṽ(1)(t),

where

ũ(1)(t) = (1− ε)αe−ρ(t−t1)

+ (1− ε)α
t∫

t1

e−ρ(t−τ)
[
ρ+ r1(∞)− ε− α− a1r2(∞)

]
dτ,

ṽ(1)(t) = r2(∞)e−ρ(t−t1) + r2(∞)

t∫
t1

e−ρ(t−τ)[ρ− a2α] dτ.

Equations (17) and (18) and induction arguments show that for t > t1 and x satisfying

l + σ(µ1) + ψ1(µ1)(t− t0) + nL
√

4d1(t− t1)

6 x 6 l +
3π

γ
+ σ(µ2) + ψ1(µ2)(t− t0)− nL

√
4d1(t− t1), (24)

we have
u(t, x) > ũ(n)(t), v(t, x) 6 ṽ(n)(t), (25)

where ũ(n)(t) and ṽ(n)(t) satisfy

ũ(n)(t) = (1− ε)αe−ρ(t−t1) + (1− ε)

×
t∫

t1

e−ρ(t−τ)ũ(n−1)(τ)
[
ρ+ r1(∞)− ε− ũ(n−1)(τ)− a1ṽ(n−1)(τ)

]
dτ,

ṽ(n)(t) = r2(∞)e−(t−t1)

+

t∫
t1

e−ρ(t−τ)ṽ(n−1)(τ)
[
ρ+ r2(∞)− ṽ(n−1)(τ)− a2ũ(n−1)(τ)

]
dτ.

Direct calculations and induction show that

ũ(n)(t) = fn + bn(t)e−ρ(t−t1), ṽ(n)(t) = gn + en(t)e−ρ(t−t1), (26)

where

fn =
(1− ε)fn−1(ρ+ r1(∞)− ε− fn−1 − a1gn−1)

ρ
,

f1 =
(1− ε)α(ρ+ r1(∞)− ε− α− a1r2(∞))

ρ
,

gn =
gn−1(ρ+ r2(∞)− gn−1 − a2fn−1)

ρ
,

g1 =
r2(∞)(ρ− a2α)

ρ
.

(27)

Nonlinear Anal. Model. Control, 22(3):285–302



296 Z. Zhang et al.

Furthermore, bn(t) and en(t) in (26) are the sums of polynomials, and products of polyno-
mials and exponential functions in the form of e−j(t−t1) with j a positive integer. Observe
that limt→∞ ũ(n)(t) = fn and limt→∞ ṽ(n)(t) = gn. Since fn is increasing and gn is
decreasing, it is easy to see that the limits of fn and gn as n→∞ exist. Taking the limits
to both sides of the first equation and third equation of (27) and setting limn→∞ fn = f∗,
limn→∞ gn = g∗, we get

f∗ =
(1− ε)f∗(ρ+ r1(∞)− ε− f∗ − a1g∗)

ρ
,

g∗ =
g∗(ρ+ r2(∞)− g∗ − a2f∗)

ρ
.

(28)

If (5) holds, since ε is sufficiently small, from (28) we get

fn →
r1(∞)− a1r2(∞)− ε− ερ

1−ε
1− a1a2

,

gn →
r2(∞)− a2r1(∞) + a2ε+ a2ερ

1−ε
1− a1a2

as n→∞. If (6) holds, we have r2(∞)−a2r1(∞) < 0. Note that the limit of gn can not
be negative due to the positivity of the solution (u(t, x), v(t, x)) for t > 0 and that ε > 0
is sufficiently small. It follows from (28) that

fn →
r1(∞)− (1 + ρ)ε

1− ε
, gn → 0

as n→∞. These and (26) indicate that there exist a positive integer N and t2 > t1 such
that for t > t2 and x satisfying (24) with n replaced by N , either

ũ(N)(t) >
r1(∞)− a1r2(∞)− ε− ερ

1−ε
1− a1a2

,

ṽ(N)(t) 6
r2(∞)− a2r1(∞) + a2ε+ a2ερ

1−ε
1− a1a2

if (5) holds, or

ũ(N)(t) >
r1(∞)− (1 + ρ)ε

1− ε
, ṽ(N)(t) 6 0

if (6) holds. We choose t1 sufficiently large such that for t > t1,

l + σ(µ1) + ψ1(µ1)(t− t0) +NL
√

4d1(t− t1)

6 x 6 l +
3π

γ
+ σ(µ2) + ψ1(µ2)(t− t0)−NL

√
4d1(t− t1). (29)

For any given ε with 0 < ε < (c∗1(∞) − c)/2, we choose ε sufficiently small such that
ε < ε/2. Since ψ1(µ1) = c+ ε and ψ1(µ2) = c∗1(∞)− 2ε, there exists t3 > t2 such that

https://www.mii.vu.lt/NA



Two competing species under a climate change 297

for t > t3, t(c+ ε) 6 x 6 t(c∗1(∞)− ε) is a subset of interval defined by (29). It follows
from (25) and (26) that either

lim
t→∞

[
inf

t(c+ε)6x6t(c∗1(∞)−ε)
u(t, x)

]
>
r1(∞)− a1r2(∞)− ε− ερ/(1− ε)

1− a1a2
,

lim
t→∞

[
sup

t(c+ε)6x6t(c∗1(∞)−ε)
v(t, x)

]
6
r2(∞)− a2r1(∞) + a2ε+ a2ερ

1−ε
1− a1a2

(30)

if (5) holds, or

lim
t→∞

[
inf

t(c+ε)6x6t(c∗1(∞)−ε)
u(t, x)

]
>
r1(∞)− (1 + ρ)ε

1− ε
,

lim
t→∞

[
sup

t(c+ε)6x6t(c∗1(∞)−ε)
v(t, x)

]
6 0 (31)

if (6) holds. Since ε is arbitrarily small, (30) and (31) show that statement (a) holds.
Let ū(t, x) with ū(0, x) = r1(∞) be the solution of

ut = d1uxx + u
(
r1(x− ct)− u

)
.

If c > 2
√
d1r1(∞), it follows from Theorem 2.1 in [11] that for every ε > 0, there exists

T > 0 such that for t > T , ū(t, x) < ε for all x. Since 0 6 u(0, x) 6 r1(∞) and

ut 6 d1uxx + u
(
r1(x− ct)− u

)
,

we get
u(t, x) 6 ū(t, x) < ε for t > T, x ∈ R.

As a consequence, (7) is verified. If c < 2
√
d2r2(∞), by similar discussions to those for

Theorem 2.2 in [11], we conclude that species v spreads at an asymptotic spreading speed
2
√
d2r2(∞) and (8) holds. This proves statement (b).
Statement (c) is clearly an application of [11, Thm. 2.1]. The proof is complete.

3 Simulations

In this section we present numerical simulations to demonstrate influences of climate
changes on the dynamical behaviors of model (2). Fix

r1(x− ct) =
1.62

π
arctan (x− ct),

r2(x− ct) =
2

π
arctan (x− ct),
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where c > 0. Choose the initial data by

u(0, x) =

{
0.4 sin(x− 20) if 20 6 x 6 20 + π,

0 elsewhere,

v(0, x) =

{
1 if 20 6 x 6 20 + π,

0 elsewhere.

Then profiles of advantageous reproduction areas of two competing species move to the
right at a speed c, and the two species are initially distributed on the interval [20, 20 +
π]. Let us fix d1 = d2 = 1. If a1 = 0.21, a2 = 0.2, then (5) holds, c∗1(∞) ' 1.55,
2
√
d1r1(∞) = 1.8 and 2

√
d2r2(∞) = 2.

Figure 1 displays the numerical solutions when c = 1.4 < c∗1(∞), which shows that
two species with the weak competition coexist in an asymptotic region t(c + ε) 6 x 6
t(c∗1(∞)− ε) by expanding its spatial range to the right at the asymptotic speed c∗1(∞).

Figure 2 demonstrates the numerical solutions when c = 1.4 < c∗1(∞) with a1 =
0.21, a2 = 1.5 satisfying (6), which shows that in a region of asymptotic size
(c∗1(∞)− c)t, the superior competitor u displaces the well established species v.

In Fig. 3, we consider the case where c = 1.9 ∈ (2
√
d1r1(∞), 2

√
d2r2(∞)). Note

that 2
√
d1r1(∞) is the asymptotic invasion speed of u in (1) without competition (in the

absence of individuals of species v). Thus, u becomes extinct and only species v persists
in the suitable habitat through expanding its spatial range to the right at the asymptotic
speed 2

√
d2r2(∞).

Figure 1. Densities of u and v with a1 = 0.21, a2 = 0.2 when c = 1.4.
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Figure 2. Densities of u and v with a1 = 0.21, a2 = 1.5 when c = 1.4.

Figure 3. Densities of u and v with a1 = 0.21, a2 = 0.2 when c = 1.9.

Lastly, Fig. 4 presents the case c = 2.1 >
√
d2r2(∞) where both species cannot keep

a pace with a shifting climate and, finally, become extinct.
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Figure 4. Densities of u and v with a1 = 0.21, a2 = 0.2 when c = 2.1.

4 Discussion

One crucial measure of a species’ invasiveness is the rate at which it spreads into a com-
petitor’ environment, so that the spreading speed which reflecting the invasion speed of the
invader becomes a hot topic in the past decades [6, 10, 30]. In this paper, we focus on the
effect of climate change on two species interacting through Lotka–Volterra competition
with different dispersal and competitive abilities with varying habitat suitability, that is,
shifting in time.

By applying the methods developed in Li et al. [11], we have determined the critical
invasion speed for each species, and have found that two competing species become
extinct if the habitat boundary moves at speeds greater than the fastest speed of expansion
of species population. On the other hand, two competing species coexist and spread
if the habitat boundary moves at speeds lower than the slowest speed of expansion of
species population when the competition is weak. If the rate of shifting habitat edge
is medium, then more adapted species survives. As we have pointed out earlier, the
persistence conditions in our theorem requires weak interactions between two competitors
(i.e., a1a2 < 1), and we shall consider the strong competition in future.
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manuscript.
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