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Abstract. In this paper, we consider a fractional-order single-species model, which is composed
of several patches connected by diffusion. We first prove the existence, uniqueness, non-negativity,
and boundedness of solutions for the model, as desired in any population dynamics. Moreover, we
also obtain some sufficient conditions ensuring the existence and uniform asymptotic stability of the
positive equilibrium point for the investigated system. Finally, numerical simulations are presented
to demonstrate the validity and feasibility of the theoretical results.
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1 Introduction

In the natural world, dispersal often occurs among patches in ecological environments. In
recent years, due to the ecological effects of local construction and development, such as
the locations of manufacturing industries, the construction of dams and highways, as well
as the development of tourism, habitats have been increasingly separated into isolated
patches. Thus, realistic models should include dispersal processes that take into consid-
eration the effects of spatial heterogeneity [11, 16, 18, 19, 29–31, 33]. In [30], Takeuchi
considered the following integer-order single-species system:

dxi(t)

dt
= xi(t)gi

(
xi(t)

)
+

n∑
j=1

Dij

(
xj(t)− xi(t)

)
,

xi(0) = xi0, i = 1, 2, . . . , n,

(1)
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where xi denotes population density in the ith patch, gi(xi) denotes the density dependent
growth rate in the ith patch, constant Dij > 0 is the dispersal rate from patch j to patch i,
and Dii = 0. By applying cooperative system theory, Takeuchi showed that species
can survive in all patches at a globally asymptotically stable equilibrium point for any
dispersal rate whenever it can survive in each isolated patch. In [16], Li and Shuai proved
the global asymptotic stability of the positive equilibrium point for system (1) by using
the graph theoretic approach.

Many authors pointed out that fractional-order calculus is very suitable for the de-
scription of memory and hereditary properties of various materials and processes, which
are neglected in classical integer-order models [9, 10, 13, 26]. Although many interesting
and important results have been done in modelling the dynamics of population models,
they have been restricted to integer-order differential equations. Recently, fractional-order
differential equations have garnered a lot of attention and appreciation since they are
naturally related to systems with memory, which exists in most biological systems. Also
they are closely related to fractals, which are abundant in biological systems. For these
reasons, many phenomena in mathematical biology [1, 2, 7, 12, 24, 27, 28] and some other
interdisciplinary fields [5, 6, 8, 20–23] can be described very successfully by the models
using fractional-order differential equations. Due to the limited theories for analyzing
the dynamics of fractional-order systems, stability study of fractional-order population
models is only the beginning. In [7], El-Sayed et al. considered the following fractional-
order logistic system:

c
0D

q
tx(t) = rx(t)

(
1− x(t)

)
, t > 0,

x(0) = x0,
(2)

where 0 < q < 1 and c
0D

q
t is in the sense of the Caputo fractional derivative, x(t) denotes

population density at time t, and r is the intrinsic rate of population or the strength of intra-
specific competition of population. They showed existence and uniqueness of solution and
studied the asymptotical stability of the positive equilibrium point. However, to the best of
the authors knowledge, to this day, still no scholar has investigated the dynamic behavior
of fractional-order single-species model in a patchy environment. Motivated by the above
considerations, in this paper, we consider the following fractional-order single-species
model, which is composed of several patches connected by diffusion:

c
t0D

q
txi(t) = xi(t)

(
ai − bixi(t)

)
+

n∑
j=1

dijxj(t)−
n∑

j=1

djixi(t),

xi(t0) = xit0 , i = 1, 2, . . . , n,

(3)

where 0 < q < 1, t0 > 0 is the initial time, and c
t0D

q
t is in the sense of the Caputo

fractional derivative, xi(t) denotes population density in patch i at time t, ai is the intrinsic
growth rate of population in patch i, bi is the intraspecific competition coefficient of
population in patch i, the dispersal rate of population from patch j to patch i is given
by dij . Once an individual enters into a patch, it is counted as an individual in the
patch and homogeneously mixed with other individuals in the patch,

∑n
j=1 dijxj denotes

https://www.mii.vu.lt/NA
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the total immigration of population individuals from every other patch to patch i, and∑n
j=1 djixi denotes the total emigration of population individuals from patch i to every

other patch. Since
∑n

i=1

∑n
j=1 dijxj =

∑n
i=1

∑n
j=1 djixi always holds, the exchange of

population individuals among all patches is always in balance. All parameter values are
assumed to be nonnegative and bi > 0 for all i.

The contributions of this paper are as follows. Firstly, we prove the non-negativity
and boundedness of solutions for a fractional-order population model, as desired in any
population dynamics. Secondly, combining Lyapunov method and graph theoretic ap-
proach, we obtain a uniform asymptotic stability principle, which has a close relation to
the dispersal matrix. Finally, by numerical simulations, we show the effects of dispersal
rates on the solutions of the considered system.

This paper is organized as follows. In Section 2, some definitions and lemmas are
reminded. In Section 3, we prove the existence, uniqueness, non-negativity and bound-
edness of solutions for system (3). In addition, we consider the stability of the positive
equilibrium point for the considered system, and some criteria are derived to ensure the
uniform asymptotic stability of the positive equilibrium point. In Section 4, numerical
simulations are presented to illustrate the effectiveness of our theoretical results. Finally,
conclusions are given in Section 5.

2 Preliminaries

In this section, we will introduce some definitions and some useful lemmas. It is well
known that the initial conditions of fractional differential equations with Caputo deriva-
tives take on the same form as for integer-order ones, which have well-understood practi-
cal meanings and more applications in modeling and analysis. Throughout the paper, we
use the Caputo fractional-order derivative.

Definition 1. (See [26].) The fractional integral with non-integer order q > 0 of function
f(t) is defined as follows:

t0I
q
t f(t) =

1

Γ(q)

t∫
t0

(t− τ)q−1f(τ) dτ,

where Γ(·) is the Gamma function, Γ(s) =
∫∞
0
ts−1e−t dt.

Definition 2. (See [26].) The Caputo derivative of fractional order q of function f(t) is
defined as follows:

c
t0D

q
t f(t) =

1

Γ(n− q)

t∫
t0

f (n)(τ)

(t− τ)q−n+1
dτ,

where Γ(·) is the Gamma function, Γ(s) =
∫∞
0
ts−1e−t dt, t > t0, and n is a positive

integer such that n− 1 < q < n.
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Definition 3. (See [17].) The constant x∗ is an equilibrium point of Caputo fractional
dynamic system

c
t0D

q
tx(t) = f(t, x), 0 < q < 1,

with the initial condition x(t0) = xt0 if and only if f(t, x∗) = 0.

Remark 1. When 0 < q < 1, it follows from Definition 2 that the Caputo fractional-order
system (3) has the same equilibrium points as the the integer-order system

dxi(t)

dt
= xi(ai − bixi) +

n∑
j=1

dijxj −
n∑

j=1

djixi, i = 1, 2, . . . , n. (4)

To prove the non-negativity and boundedness of solutions of system (3), we need the
following lemmas.

Lemma 1. (See [25].) Let 0 < q 6 1. Suppose that f(t) ∈ C[a, b] and c
t0D

q
t f(t) ∈

C[a, b]. If c
t0D

q
t f(t) > 0 for all t ∈ [a, b], then f(t) is a nondecreasing function for each

t ∈ [a, b]. If c
t0D

q
t f(t) 6 0 for all t ∈ (a, b), then f(t) is a non-increasing function for

each t ∈ [a, b].

Lemma 2. (See [15].) Let V (t) be a continuous function on [t0,+∞) and satisfying

c
t0D

q
tV (t) 6 λV (t), V (t0) = Vt0 ,

where 0 < q < 1, λ ∈ R, and t0 is the initial time. Then

V (t) 6 Vt0Eq

[
λ(t− t0)q

]
.

For stability analysis of fractional-order single-species model in a patchy environ-
ment, we need the following lemmas.

Lemma 3. (See [14].) Suppose that the following assumptions are satisfied:

(H1) There exist positive definite function Vi(t, xi) and k-function bi(·) such that

Vi(t, xi) 6 bi
(
‖xi‖

)
∀ xi ∈ Rmi , i = 1, 2, . . . , n.

(H2) For positive definite function Vi(t, xi), there exist k-function ϕi(·), function
Fij(t, xi, xj), and a matrix A = (aij)n×n in which aij > 0 such that

c
t0D

q
tVi(t, xi) 6 −ϕi

(
‖xi‖

)
+

n∑
j=1

aijFij(t, xi, xj), 0 < q < 1,

xi ∈ Rmi , xj ∈ Rmj .
(H3) There exists function Gi(t, xi) such that Fij(t, xi, xj) 6 Gi(t, xi)−Gj(t, xj).
(H4) The weighted digraph (G, A) is strongly connected.

Then the function V (t, x) =
∑n

i=1 ciV (t, xi) is a Lyapunov function, and the trivial
solution of coupled system on network is uniformly asymptotically stable.
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Remark 2. If the weighted digraph (G, A) is strongly connected, then ci > 0 for
1 6 i 6 n, where ci is the cofactor of the ith diagonal element in the Laplacian matrix of
(G, A), the basic concepts and notations on graph theory can be seen in [16].

Lemma 4. (See [32].) Let x(t) ∈ R+ be a continuous and derivable function. Then, for
any time instant t > t0,

c
t0D

q
t

[
x(t)− x∗ − x∗ ln

x(t)

x∗

]
6

(
1− x∗

x(t)

)
c
t0D

q
tx(t), 0 < q < 1, x∗ ∈ R+.

3 Main results

In this section, we will prove the existence, uniqueness, non-negativity and boundedness
of solutions for system (3). In addition, some sufficient conditions are derived to ensure
the uniform asymptotic stability of system (3).

To prove the the existence and uniqueness of the solution for system (3), we need the
following lemma.

Lemma 5. (See [17].) Consider the system
c
t0D

q
tx(t) = f(t, x), t > t0, (5)

with initial condition x(t0), where 0 < q 6 1, f : [t0,∞)×Ω → Rn, Ω ∈ Rn, if f(t, x)
satisfies the locally Lipschitz condition with respect to x, then there exists a unique
solution of (5) on [t0,∞)×Ω.

Definition 4. x(t) = (x1(t), x2(t), . . . , xn(t)) is a solution of problem (3) if

(i) x(t) ∈ Ω = Ω1 ×Ω2 × · · · ×Ωn, where Ωi = {xi ∈ R: |xi| 6 ci};
(ii) x(t) satisfies system (3).

Theorem 1. For each xt0 = (x1t0 , x2t0 , . . . , xnt0) ∈ Ω, there exists a unique solution
x(t) ∈ Ω of system (3) with initial condition x(t0) = xt0 .

Proof. We denote x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) and consider a mapping
H(x) = (H1(x), H2(x), . . . ,Hn(x)), where

Hi(x) = xi(ai − bixi) +

n∑
j=1

dijxj −
n∑

j=1

djixi, i = 1, 2, . . . , n. (6)

For any x, y ∈ Rn, we have∥∥H(x)−H(y)
∥∥ =

n∑
i=1

∣∣Hi(x)−Hi(y)
∣∣

=

n∑
i=1

∣∣∣∣∣xi(ai − bixi) +

n∑
j=1

dijxj −
n∑

j=1

djixi − yi(ai − biyi)

−
n∑

j=1

dijyj +

n∑
j=1

djiyi

∣∣∣∣∣
Nonlinear Anal. Model. Control, 22(3):303–316



308 H.-L. Li et al.

=

n∑
i=1

∣∣∣∣∣ai(xi − yi)− bi(x2i − y2i )+

n∑
j=1

dij(xj − yj)−
n∑

j=1

dji(xi − yi)

∣∣∣∣∣
6

n∑
i=1

(
ai + bi

(
|xi|+ |yi|

)
+ 2

n∑
j=1

dji

)
|xi − yi|

6
n∑

i=1

(
ai + 2bici + 2

n∑
j=1

dji

)
|xi − yi| 6 L‖x− y‖, (7)

where L = maxi∈L{ai + 2bici + 2
∑n

j=1 dji}, L = {1, 2, . . . , n}. Thus, H(x) satisfies
the Lipschitz condition with respect to x. It follows from Lemma 5 that there exists
a unique solution x(t) of system (3) with initial condition xt0 . This completes the proof
of Theorem 1.

Considering the biological significance, we are only interested in solutions that are
nonnegative and bounded. The following result ensures the non-negativity and bounded-
ness of solutions for system (3). Let R+ denote the set of all non-negative real numbers
and Ω+ = {(x1, x2, . . . , xn) ∈ Ω | xi ∈ R+, i = 1, 2, . . . , n}.

Theorem 2. All the solutions of system (3), which start in Ω+, are non-negative and
uniformly bounded.

Proof. Firstly, we prove that all the solutions of system (3), which start in Ω+, are non-
negative. That is, xi(t) > 0 for all i ∈ I = {1, 2, . . . , n} and t > t0. Suppose that is not
true, then there exist a positive t1 > t0 and some i ∈ I1 ⊆ I such that

xi(t) > 0, i ∈ I, t0 6 t < t1,

xj(t1) > 0, j ∈ I/I1,
xi(t1) = 0, i ∈ I1,
xi
(
t+1
)
< 0, i ∈ I1.

(8)

Based on (8) and system (3), we have

c
t0D

q
t1xi(t1)

∣∣
xi(t1)=0

=

n∑
j=1

dijxj(t1) > 0, i ∈ I1.

According to Lemma 1, we have xi(t+1 ) > 0, which contradicts the fact xi(t+1 ) < 0.
Therefore, we have xi(t) > 0 for all i ∈ I and t > t0.

Next, we show that all the solutions of system (3), which start in Ω+, are uniformly
bounded. Denote W (t) =

∑n
i=1 xi(t), then we have

c
t0D

q
tW (t) +W (t)

=

n∑
i=1

[
xi(ai − bixi) +

n∑
j=1

dijxj −
n∑

j=1

djixi

]
+

n∑
i=1

xi
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=

n∑
i=1

xi(ai + 1− bixi) =

n∑
i=1

[
−bi
(
xi −

ai + 1

2bi

)2

+
(ai + 1)2

4bi

]

6
n∑

i=1

(ai + 1)2

4bi
. (9)

Let U(t) = W (t)−
∑n

i=1(ai + 1)2/(4bi). It follows from (9) that

c
t0D

q
tU(t) 6 −U(t).

By Lemma 2, we have

W (t) 6

(
W (t0)−

n∑
i=1

(ai + 1)2

4bi

)
Eq

[
−(t− t0)q

]
+

n∑
i=1

(ai + 1)2

4bi

→
n∑

i=1

(ai + 1)2

4bi
, t→∞.

Therefore, all the solutions of system (3), which start in Ω+, are confined to the region Γ ,
where

Γ =

{
(x1, x2, . . . , xn) ∈ Ω+

∣∣∣ n∑
i=1

xi 6
n∑

i=1

(ai + 1)2

4bi
+ ε, ε > 0

}
.

This completes the proof of Theorem 2.

For system (4), we consider a mapping F (x) = (F1(x), F2(x), . . . , Fn(x)), where
x = (x1, x2, . . . , xn) and

Fi(x) = xi(ai − bixi) +

n∑
j=1

dijxj −
n∑

j=1

djixi. (10)

The Fréchet derivative of F (x) is DF (x) = [∂fi(x1, x2, . . . , xn)/∂xj ] with

∂Fi(x1, x2, . . . , xn)

∂xj
=

{
ai −

∑
j 6=i dji − 2bixi for j = i, i = 1, 2, . . . , n,

dij for j 6= i, i = 1, 2, . . . , n.

Let

M0 = DF (0) =



a1 −
∑

j 6=1 dj1 d12 . . . d1n

d21 a2 −
∑

j 6=2 dj2 . . . d2n

...
...

. . .
...

dn1 dn2 . . . an −
∑

j 6=n djn


.

Nonlinear Anal. Model. Control, 22(3):303–316
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Clearly, F is continuously differential, F (0) = 0, Fi(x) > 0 for all x ∈ Rn
+ with xi = 0,

i = 1, 2, . . . , n. For any F (x) = (F1(x), F2(x), . . . , Fn(x)) and x = (x1, x2, . . . , xn),
∂Fi/∂xj = dij > 0, i, j = 1, 2, . . . , n, and i 6= j, so F is cooperative. Since matrix
D = (dij)n×n is irreducible, it follows that the matrix DF (0) is also irreducible. In
addition, it follows from (4) that

n∑
i=1

dxi(t)

dt
=

n∑
i=1

xi(ai − bixi) < 0 for sufficiently large xi,

which shows the boundedness of solutions of system (4). Let s(M0) denote the stability
modulus of an n × n matrix M0, which is defined by s(M0) = max{Reλ | λ is an
eigenvalue of M0}. Then if s(M0) > 0, by [34, Cor. 3.1], system (4) admits a positive
equilibrium point x∗ = (x∗1, x

∗
2, . . . , x

∗
n). Since the Caputo fractional-order system (3)

has the same equilibrium points as the integer-order system (4), we know that system (3)
has a positive equilibrium point x∗ = (x∗1, x

∗
2, . . . , x

∗
n).

We define a function

Vi(xi) = xi − x∗i − x∗i ln
xi
x∗i
.

It can be vertified that Vi(xi) > 0 for all xi > 0 and Vi(xi) = 0 if and only if xi = x∗i .
Calculating the fractional-order derivatives of Vi(xi) along the solutions of system (3),
we have

c
t0D

q
tVi(xi) = c

t0D
q
t

(
xi − x∗i − x∗i ln

xi
x∗i

)
6

(
1− x∗i

xi

)
c
t0D

q
txi

= (xi − x∗i )

(
ai − bixi +

n∑
j=1

dij
xj
xi
−

n∑
j=1

dji

)

= (xi − x∗i )

[
−bi(xi − x∗i ) +

n∑
j=1

dij

(
xj
xi
−
x∗j
x∗i

)]

= −bi(xi − x∗i )2 +

n∑
j=1

aijFij(xi, xj), (11)

where aij = dijx
∗
j , Fij(xi, xj) = xj/x

∗
j − xi/x∗i − x∗i xj/(xix∗j ) + 1. Let Gi(xi) =

−xi/x∗i + ln(xi/x
∗
i ), then we have

Fij(xi, xj) = Gi(xi)−Gj(xj) + 1− x∗i xj
xix∗j

+ ln
x∗i xj
xix∗j

6 Gi(xi)−Gj(xj).

In fact, 1 − a + ln a 6 0 for a > 0 and 1 − a + ln a = 0 for a = 1. If D = (dij)n×n
is irreducible, we know that A = (aij)n×n is irreducible. That is to say, the weighted
digraph (G, A) is strongly connected, it follows from Remark 2 that ci > 0 for 1 6 i 6 n.

https://www.mii.vu.lt/NA
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Clearly, we have shown that Vi, Fij , Gi, and aij satisfy the conditions of Lemma 3.
Therefore, V (x1, x2, . . . , xn) =

∑n
i=1 ciVi(xi) is a Lyapunov function for system (3),

and c
t0D

q
tV (x) = 0 implies that xi = x∗i for all 1 6 i 6 n. It follows from Lemma 3

that the positive equilibrium point x∗ = (x∗1, x
∗
2, . . . , x

∗
n) of system (3) is uniformly

asymptotically stable. Therefore, we thus have the following result.

Theorem 3. Suppose that the matrix D = (dij)n×n is irreducible. If s(M0) > 0, then
system (3) has a positive equilibrium point x∗ = (x∗1, x

∗
2, . . . , x

∗
n), which is uniformly

asymptotically stable.

Remark 3. The dispersal matrix D = (dij)n×n is not required to be symmetric, namely,
the dispersal rate from patch i to patch j may not be the same as that from patch j to
patch i. A typical assumption we impose on dispersal matrix D is that it is irreducible.
From biological point of view, this means that population individuals in each patch can
disperse between any two patches directly or indirectly.

Remark 4. Evidently, the derived result in this paper is still true for q = 1 although the
above discussion is based on 0 < q < 1. However, the case q > 1 is not considered in
this paper since Lemma 3 is not solved for q > 1, this deserves our further consideration.

4 Numerical simulations

An effcient method for solving fractional-order differential equations is the predictor–
correctors scheme or more precisely, PECE (Predict, Evaluate, Correct, Evaluate)
[3,4], which represents a generalization of Adams–Bashforth–Moulton algorithm. In this
section, we use the PECE method for the numerical simulations of the considered model.

In the following, we consider a fractional-order single-species model, which is com-
posed of two patches connected by diffusion as follows:

c
0D

q
txi(t) = xi(t)

(
ai − bixi(t)

)
+

2∑
j=1

dijxj(t)−
2∑

j=1

djixi(t),

xi(0) = xi0, i = 1, 2,

(12)

where the parameters are chosen in Table 1.
We keep all parameter values in Table 1 unchanged. By virtue of Matlab, we can

compute that x∗ = (10.48, 6.47). Since aij = dijx
∗
j , i, j = 1, 2, 3, we have

A = (aij)2×2 =

(
0 2.588

2.096 0

)
,

L = (pij)2×2 =

(
2.588 −2.588
−2.096 2.096

)
.

Table 1. Parameter values used in the simulations of system (12).

Parameter a1 a2 b1 b2 d11 d12 d21 d22 q
Value 1 0.4 0.1 0.05 0 0.4 0.2 0 0.98

Nonlinear Anal. Model. Control, 22(3):303–316
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(a) (b)

Figure 1. Uniform asymptotic stability of system (12) with parameter values as given in Table 1. (a) Time series
of x1 and x2. (b) Phase portrait of x1 and x2.

(a) (b)

Figure 2. State trajectories of system (12) with parameter values as given in Table 1. (a) Time series of x1.
(b) Time series of x2.

By simple calculation, c1 = 2.096, c2 = 2.588. Obviously, (G, A) is strongly connected,
it is very easy to verify that condition s(M0) = 0.8899 > 0 holds. Then it follows from
Theorem 3 that system (12) is uniformly asymptotically stable, numerical simulations can
be seen in Fig. 1, where the initial values are taken as (8+2k, 6+2k) (k = 1, 2, 3). From
Fig. 1 we find that all solutions of system (12), which through these initial values will
converge to the positive equilibrium point x∗.

https://www.mii.vu.lt/NA
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(a) (b)

Figure 3. Influence of dispersal rate d12 on system (12). Here we vary the parameter d12, while keeping the
other parameters fixed as mentioned in Table 1. (a) Population density in patch 1. (b) Population density in
patch 2.

(a) (b)

Figure 4. Influence of dispersal rate d21 on system (12). Here we vary the parameter d21, while keeping the
other parameters fixed as mentioned in Table 1. (a) Population density in patch 1. (b) Population density in
patch 2.

Next, we will show the effect of fractional order on the solutions of system (12). We
vary the parameter q, while keeping the other parameters fixed as mentioned in Table 1.
Figure 2 shows the state trajectories of system (12) with initial value (8, 6) when q = 0.4,
q = 0.7, and q = 0.98. We can see from Fig. 2 that q is a significant factor, which affects
the convergence speed of solutions.

Nonlinear Anal. Model. Control, 22(3):303–316
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Remark 5. We can observe from Fig. 2 that the convergence velocities of solutions of
system (12) becomes fast as the increase of the fractional-order q (0 < q < 1).

Finally, we will show the effects of dispersal rates on the solutions of system (12).
On the one hand, we vary the parameter d12, while keeping the other parameters fixed as
mentioned in Table 1. Numerical simulations can be seen in Fig. 3, where the initial value
is taken as (8, 6). On the other hand, we vary the parameter d21, while keeping the other
parameters fixed as mentioned in Table 1. Numerical simulations can be seen in Fig. 4,
where the initial value is taken as (8, 6).

Remark 6. We can observe from Figs. 3 and 4 that dispersal rates have no influence on
the uniform asymptotic stability of system (12), that is, dispersal rates only change the
position of the positive equilibrium point of system (12) and retain its stability, which is
in accord with the integer-order single-species model with diffusion [16, 30].

5 Conclusions

This paper investigates a fractional-order single-species model, which is composed of n
(n > 2) patches connected by diffusion. By using some useful inequality techniques,
Lyapunov method and graph theoretic approach, we prove that existence, uniqueness,
non-negativity and boundedness of solutions for system (3), and some criteria are es-
tablished to ensure the uniform asymptotic stability of the positive equilibrium point of
system (3). These critaria have a close relation to the dispersal matrix. Finally, numerical
simulations are presented to demonstrate the validity of the theoretical results and show
the effects of fractional order and dispersal rates on the solutions of system (12).
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