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Abstract. By utilizing backstepping technique, an H∞ robust controller with improved prescribed
performance and dynamic surface control is designed for a class of strict feedback nonlinear
systems. The transient and steady state performance for the tracking errors of nonlinear system can
be guaranteed by using improved prescribed performance constraint. The dynamic surface control
is used to overcome the differential explosion problem in the backstepping procedure. The impacts
of uncertainties in the system are attenuated by H∞ control. The performance and stability analysis
proves that the controller design procedure is simple with low complexity and robustness. Finally,
the simulation results verify the effectiveness of the controller. By comparing with the existing
method, the proposed method has a faster convergence speed and better steady state performance,
and also the controller design process is simpler.

Keywords: H∞ control, backstepping, prescribed performance, dynamic surface control, nonlinear
system.

1 Introduction

In recent years, prescribed performance control (PPC) is one of hot research topics in
current control area, its main idea is guaranteeing the transient and steady state behav-
ior on the premise of ensuring the stabilization of the system. The relative remarkable
PPC method was developed by Rovithakis et al. In [10], an adaptive dynamic output
feedback neural network controller is designed for a class of MIMO affine in the control
uncertain nonlinear systems with prescribed performance. In [1], due to the force/position
tracking problem, the prescribed performance is used to achieve prescribed performance
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bounds on the tracking errors and guarantee contact maintenance. In [3], the prescribed
performance tracking problem is solved for SISO, unknown, non-affine systems in the
presence of exogenous disturbances. In these papers, the prescribed error transforma-
tion function S(ε(t)) = e(t)/ρ(t) is adopted, and it can regulate the tracking errors of
the transient and steady state performance. The inverse of the transformation function
ε(t) = S−1(e(t)/ρ(t)) is provided for the controller design to guarantee the prescribed
performance and stability of the closed-loop system. In [8], Han and Lee pointed out
that the constraint method proposed by Rovithakis et al. is complex due to the use of
the transformation function, and its inverse function has a singularity problem in the
inverse transformation function with certain constraint conditions. Therefore, Han and
Lee proposed an improved prescribed performance constraint (IPPC) method by using
a new transformation function, which successfully avoids the singularity problem and
makes the design process simpler.

Backstepping is a systematic control design method for nonlinear systems, which
is a combination of the selection of Lyapunov function and controller design. It starts
from the lowest order differential equation system, and the concept of virtual control is
introduced. The requirements of virtual control are satisfied based on step by step design.
Finally, the real control law can be designed [5, 6, 11, 25, 28–30, 32]. Unfortunately, the
conventional backstepping control method has a large number of complex terms with high
order system due to differentiations of virtual control functions.

Dynamic surface control (DSC) method introduces a low-pass filter during the recur-
sive process to avoid the differentiations of desired virtual control functions, which can
overcome the differential explosion problem in the backstepping control, and simplify the
design of the control law, therefore, it has a large numbers of applications. In [13, 26],
the observer-based output feedback control schemes are designed by considering all state
vectors measurable. In [31,33], DSC is applied to the non-affine systems in pure feedback
form. In [4], an adaptive DSC is proposed for reinforcing robustness.

By considering the unknown and time-varing uncertainties, some approximation meth-
ods are adopted for the controller design to attenuate the impacts of uncertainties, such
as fuzzy logic systems [8, 12, 14, 15, 17, 18, 24, 27] and neural networks [2, 9, 19, 22].
In [8], an adaptive fuzzy system is used to obtain required approximation performances.
By exploiting the neural network density property [2], the unknown nonlinearities are
substituted, without loss of generality, by neural networks linear in weights plus a mod-
eling error term. In [9], the fuzzy echo state network method is proposed to improve
the approximation performance in conventional neural network algorithms. In [22], the
uncertainties are eliminated by compensation signals that are constructed by a low-pass
filter. Most studies with above-mentioned methods are combined with PPC or funnel
control. H∞ robust control is another effective method to deal with the uncertainties,
the main objective of H∞ robust control is to minimize the effect of model uncertainties
and external disturbances on the tracking performance. In [23], H∞ robust control is
applied to a single machine infinite bus system with var compensator, damping coefficient
uncertainty, and external disturbances. In [20], H∞ robust control is applied to a class of
strict feedback nonlinear systems with mismatching nonlinear uncertainties that may not
be linearly parameterized based on neural networks. In [16], H∞ control is applied to
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irregular buildings with AMD via LMI approach. Currently, the researches of PPC or
IPPC with H∞ robust control are few.

Based on the above observations, the prescribed tracking control for strict feedback
system is considered. In the controller design, the performance function in [8] is se-
lected to guarantee the transient and steady state performance. Due to the differential
explosion problem in the controller design procedure of existing method, the dynamic
surface control is adopted. Comparing with the existing results, the proposed control
scheme can avoid the repeated differentiations of virtual controls. Therefore, the proposed
control scheme is simpler. Then H∞ control is used to deal with the uncertainties in
the system. Finally, the simulation results verify the effectiveness of the controller. The
proposed method has a better transient and steady state performance than that of the
existing methods. The contributions of this work are including: (i) In order to improve
the system performance and robustness, it is the first attempt to combine IPPC method
with H∞ robust control for nonlinear systems. (ii) By comparing with the controller
design procedures with PPC methods proposed by Rovithakis et al., IPPC method with
surface control has a low computational complexity, IPPC method can avoid the repeated
differentiations of inverse of the transformation function S−1(e(t)/ρ(t)) in the recursive
steps, and surface control can avoid the repeated differentiations of virtual controls in
backstepping design. The combination of these two methods simplifies the controller
design.

The remainder of this paper is organized as follows: Section 2 describes the system
formulation, performance function and error transformation. An H∞ robust controller is
designed and the stability of the system is analyzed in Section 3. Section 4 verifies the
effectiveness of the controller through the simulation, and Section 5 is the summary of
the proposed work and further remarks.

2 Problem formulation and preliminaries

2.1 System formulation

Consider a strict feedback nonlinear system

ẋi = fi(x̄i) + gi(x̄i)xi+1 +∆i,

ẋn = fn(x̄n) + gn(x̄n)u+∆n,

y = x1,

(1)

where xi ∈ <, i = 1, . . . , n, is the system state, x̄i = [x1, . . . , xi]
T ∈ <i; u ∈ <

and y ∈ < represent the control input and output, respectively; fi(·) and gi(·) are known,
continuous, and smooth functions. ∆i, i = 1, . . . , n, are the unknown bounded distur-
bances.

Assumption 1. (See [8].) The signs of gi(·) are known, and there exist constants 0 <
gmin < gmax such that gmin 6 |gi(·)| 6 gmax, i = 1, . . . , n. Without losing generality,
assume that gmin 6 gi(·) 6 gmax.
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Assumption 2. (See [8].) The desired trajectory yr(t) is a known and bounded function
with time, and its derivatives are also known and bounded.

Remark 1. Actually, many real control systems are able to fall into the class given in (1),
such as single force mechanical arm [7], inverted pendulum system [21], and so on.
From the mathematical models of these applications, Assumption 1 can be satisfied. For
Assumption 2, the function of desired trajectory can be easily defined in the controller
design for real systems.

2.2 Performance function and error transformation

A continuous and smooth function ρ(t) : <+ → <+ with limt→∞ ρ(t) = ρ∞ can be
defined as follows:

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞, (2)

where ρ0, ρ∞, and l are appropriately selected positive constants. The transient and steady
state performance can be guaranteed by the following prescribed constraint conditions:

−δρ(t) < e(t) < ρ(t) if e(0) > 0

or
−ρ(t) < e(t) < δρ(t) if e(0) < 0,

where e(t) is the output tracking error, and 0 < δ < 1 is the designed parameter. The
prescribed performance function is shown in Fig. 1.

According to [8], the transformed error ε can be defined as follows:

ε(t) =
e(t)

ζ(t)
, ζ = aζH + (1− a)ζL,

Figure 1. Behavior of prescribed performance function.
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where a = 1 if e(t) > 0, and a = 0 if e(t) < 0. ζH and ζL are defined as follows:

ζH =

{
ρ(t) if e(0) > 0,

δρ(t) if e(0) < 0,
ζL =

{
−δρ(t) if e(0) > 0,

−ρ(t) if e(0) < 0.

In [8], it has proved that the transformed error ε satisfies the inequality

0 < ε(t) < 1 ∀t > 0. (3)

Remark 2. In equation (2), the constant ρ∞ confines the maximum allowable steady
state error, l regulates the convergence speed of tracking error, and δρ0 is the upper bound
of maximum overshoot. Therefore, the steady state error of system is able to converge
into a prescribed area by selecting appropriate ρ0, ρ∞, and l. Thus the maximum over-
shoot and convergence speed can be guaranteed to satisfy the requirements of prescribed
performance.

3 H∞ robust controller design

A group of dynamic surface variables are defined as follows:

S1 =
ε1

1− ε1
, Si = xi − xi,out, (4)

where ε1 = e1/ζ1 and xi,out, i = 2, . . . , n, are virtual filtering control functions. The
time derivatives of surface variables are given below:

Ṡ1 =
ε̇1

(1− ε1)2
=
ė1ζ1 − e1ζ̇1
(1− ε1)2ζ21

=
1

(1− ε1)2ζ1
(ẋ1 − ẏr − ε1ζ̇1),

Ṡi = ẋi − ẋi,out.

Substituting above derivatives into system (1), a transformation system is provided by

Ṡ1 = Ξ
(
f1(x̄1) + g1(x̄1)x2 +∆1 − ẏr − ε1ζ̇1

)
,

Ṡi = fi(x̄i) + gi(x̄i)xi+1 +∆i − ẋi,out,
Ṡn = fn(x̄n) + gn(x̄n)u+∆n − ẋn,out,
z = S1,

(5)

where Ξ = 1/((1 − ε1)2ζ1) and z is control output. The derivatives of virtual filtering
controls are obtained by passing designed virtual controls xi,in, i = 2, . . . , n, through
first-order filters with time constants τi, i = 2, . . . , n, such that

τi−1ẋi,out + xi,out = xi,in, xi,out(0) = xi,in(0). (6)

The approximation error of above filters are determined by

σi = xi,out − xi,in, i = 2, . . . , n. (7)

The H∞ control problem is defined as follows.
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Definition 1. If there exist a control law u = α(x), an appropriate Lyapunov function
candidate VN , and a positive constant γ so that the following three objectives (O1)–(O3)
can be achieved, then the H∞ control problem is solvable.

(O1) All signals are bounded in the closed loop system.
(O2) The output tracking error e(t) = y(t) − yr(t) satisfies the prescribed perfor-

mance during both transient process and steady state with the desired trajectory
yr(t).

(O3) The L2 gain from the external disturbances and modeling errors to the output is
less than or equal to γ, that is,

VN − VN (0) 6

T∫
0

(
γ2‖∆̄‖2 − ‖z‖2

)
dt (8)

for any final time T > 0 with ∆̄ = [∆1, . . . ,∆n, σ2, . . . , σn]T.

Remark 3. ∆̄i is the system uncertainty composed by external disturbances and approxi-
mation errors of surface control. A better robust performance can be achieved by selecting
a smaller γ.

The H∞ controller with improved prescribed performance is designed by using back-
stepping control method, and the design procedure is divided into n steps.

Step 1. Consider the first subsystem in (5) and choose the following Lyapunov func-
tion candidate:

V1(S1) =
1

2
S2
1 .

Define the following function:

H1 =
1

2
z2 − γ2

2
∆2

1 + V̇1(S1). (9)

Substituting the derivative of V1(S1), z = S1, x2 = S2 + x2,out, and x2,out =
σ2 + x2,in into (9), we obtain

H1 =
1

2
S2
1 −

γ2

2
∆2

1 + S1Ξ
(
f1(x̄1) + g1(x̄1)x2 − ẏr − ε1ζ̇1 +∆1

)
= −1

4
γ2∆2

1 −
(
γ

2
∆1 −

S1Ξ

γ

)2

+ S1Ξ
[
Γ1S1 + f1(x̄1) + g1(x̄1)(S2 + σ2 + x2,in)

]
+ S1Ξ(−ẏr − ε1ζ̇1)

6 −1

4
γ2∆2

1 −
(
γ

2
∆1 −

S1Ξ

γ

)2

+ S1Ξg1(x̄1)S2 + S2
1

Ξ2g21(x̄1)

2γ2
+
γ2

2
σ2
2

+ S1Ξ
(
Γ1S1 + f1(x̄1) + g1(x̄1)x2,in − ẏr − ε1ζ̇1

)
, (10)
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where Γ1 = Ξ/γ2 + 1/(2Ξ), and the inequality above is obtained by using the following
relation:

S1Ξg1(x̄1)σ2 6
S2
1Ξ2g21(x̄1)

2γ2
+
γ2

2
σ2
2 .

Introduce the virtual control x2,in as follows:

x2,in = − 1

g1(x̄1)

(
k1ζ1S1 + Γ1S1 + f1(x̄1)− ẏr − ε1ζ̇1 +

S1Ξg21(x̄1)

2γ2

)
, (11)

where k1 is a positive design parameter. It follows from substituting x2,in into (10) that

H1 6 −1

4
γ2∆2

1 −
(
γ

2
∆1 −

S1Ξ

γ

)2

− k1
(1− ε1)2

S2
1

+ S1Ξg1(x̄1)S2 +
γ2

2
σ2
2 . (12)

Step 2. Consider the second subsystem in (5) and choose the following Lyapunov
function candidate:

V2(S1, S2) = V1(S1) +
1

2
S2
2 . (13)

By differentiating both sides of (13), the following relation can be obtained:

V̇2(S1, S2) = V̇1(S1) + S2Ṡ2.

Substituting (9) into the equation above gives

V̇2(S1, S2) = H1 −
1

2
z2 +

γ2

2
∆2

1 + S2Ṡ2. (14)

Define the following function:

H2 =
1

2
z2 − γ2

2

2∑
j=1

(
∆2
j + σ2

j

)
+ V̇2(S1, S2). (15)

Then, by substituting (14) into (15) and taking (12) into consideration, it follows that

H2 = −γ
2

2
∆2

2 −
γ2

2
σ2
2 +H1 + S2Ṡ2

6 Ψ1 −
γ2

4
∆2

2 −
(
γ

2
∆2 −

S2

γ

)2

+ S2

(
S2

γ2
+ f2(x̄2) + g2(x̄2)x3 + S1Ξg1(x̄1)− ẋ2,out

)
, (16)
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where Ψ1 = −(γ2/4)∆2
1 − ((γ/2)∆1 − (Ξ/γ)S1)2 − (k1/(1 − ε1)2)S2

1 . Substituting
x3 = S3 + x3,out and x3,out = σ3 + x3,in into (16) produces

H2 6 Ψ1 −
γ2

4
∆2

2 −
(
γ

2
∆2 −

S2

γ

)2

+ S2

[
S2

γ2
+ f2(x̄2) + g2(x̄2)(S3 + σ3 + x3,in)

]
+ S2

(
S1Ξg1(x̄1)− ẋ2,out

)
6 Ψ1 −

γ2

4
∆2

2 −
(
γ

2
∆2 −

S2

γ

)2

+ S2g2(x̄2)S3 +
γ2

2
σ2
3

+ S2

(
S2

γ2
+ f2(x̄2) + g2(x̄2)x3,in + S1Ξg1(x̄1)

)
+ S2

(
S2g

2
2(x̄2)

2γ2
− ẋ2,out

)
, (17)

where the inequality is obtained by using the following relation:

S2g2(x̄2)σ3 6
S2
2g

2
2(x̄2)

2γ2
+
γ2

2
σ2
3 .

Define the virtual control x3,in as follows:

x3,in = − 1

g2(x̄2)

(
k2S2 +

S2

γ2
+ f2(x̄2) + S1Ξg1(x̄1) +

S2g
2
2(x̄2)

2γ2
− ẋ2,out

)
,

where k1 is a positive design parameter. It follows from substituting x3,in into (17) that

H2 6 Ψ1 −
γ2

4
∆2

2 −
(
γ

2
∆2 −

S2

γ

)2

− k2S2
2 + S2g2(x̄2)S3 +

γ2

2
σ2
3 .

Step i (i = 3, . . . , n− 1). Suppose that at Step i− 1, the function

Hi−1 =
1

2
z2 − γ2

2

i−1∑
j=1

(
∆2
j + σ2

j

)
+ V̇i−1(S1, . . . , Si−1) (18)

satisfies the inequality

Hi−1 6 Ψ1 −
i−1∑
j=2

[
γ2

4
∆2
j +

(
γ

2
∆j −

Sj
γ

)2]

−
i−1∑
j=2

kjS
2
j + Si−1gi−1(x̄i−1)Si +

γ2

2
σ2
i , (19)

where
Vi−1(S1, . . . , Si−1) = Vi−2(S1, . . . , Si−2) +

1

2
S2
i−1.
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Consider the ith subsystem in (5) and choose the following Lyapunov function candi-
date:

Vi(S1, . . . , Si) = Vi−1(S1, . . . , Si−1) +
1

2
S2
i . (20)

By differentiating both sides of (20), the following can be obtained:

V̇i(S1, . . . , Si) = V̇i−1(S1, . . . , Si−1) + SiṠi.

Substituting (5) and (18) into the equation above yields

V̇i(S1, . . . , Si) = Hi−1 −
1

2
z2 +

γ2

2

i−1∑
j=1

(
∆2
j + σ2

j

)
+ SiṠi. (21)

Define the function

Hi =
1

2
z2 − γ2

2

i∑
j=1

(
∆2
j + σ2

j

)
+ V̇i(S1, . . . , Si).

Then, by using (21) and (19), it can be easily verified that

Hi =
1

2
z2 − γ2

2

i∑
j=1

(
∆2
j + σ2

j

)
+Hi−1 −

1

2
z2 +

γ2

2

i−1∑
j=1

(
∆2
j + σ2

j

)
+ SiṠi

6 Ψ1 −
i∑

j=2

[
γ2

4
∆2
j +

(
γ

2
∆j −

Sj
γ

)2]
−

i−1∑
j=2

kjS
2
j

+ Si

(
Si
γ2

+ fi(x̄i) + gi(x̄i)xi+1 + Si−1gi−1(x̄i−1)− ẋi,out
)
. (22)

Substituting xi+1 = Si+1 + xi+1,out and xi+1,out = σi+1 + xi+1,in into (22) gives

Hi 6 Ψ1 −
i∑

j=2

[
γ2

4
∆2
j +

(
γ

2
∆j −

Sj
γ

)2]
−

i−1∑
j=2

kjS
2
j

+ Sigi(x̄i)Si+1 + Sigi(x̄i)σi+1

+ Si

(
Si
γ2

+ fi(x̄i) + gi(x̄i)xi+1,in + Si−1gi−1(x̄i−1)− ẋi,out
)

6 Ψ1 −
i∑

j=2

[
γ2

4
∆2
j +

(
γ

2
∆j −

Sj
γ

)2]
−

i−1∑
j=2

kjS
2
j + Sigi(x̄i)Si+1 +

γ2

2
σ2
i+1

+ Si

(
Si
γ2

+ fi(x̄i) + gi(x̄i)xi+1,in + Si−1gi−1(x̄i−1)

)
+ Si

(
Sig

2
i (x̄i)

2γ2
− ẋi,out

)
, (23)
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where the inequality is obtained by

Sigi(x̄i)σi+1 6
S2
i g

2
i (x̄i)

2γ2
+
γ2

2
σ2
i+1.

Design the virtual control xi+1,in as follows:

xi+1,in = − 1

gi(x̄i)

(
kiSi +

Si
γ2

+ fi(x̄i) + Si−1gi−1(x̄i−1)

)
− 1

gi(x̄i)

(
Sig

2
i (x̄i)

2γ2
− ẋi,out

)
,

where ki is a positive design parameter. It follows from substituting xi+1,in into (23) that

Hi 6 Ψ1 −
i∑

j=2

[
γ2

4
∆2
j +

(
γ

2
∆j −

Sj
γ

)2]

−
i∑

j=2

kjS
2
j + Sigi(x̄i)Si+1 +

γ2

2
σ2
i+1. (24)

Step n. Consider the nth subsystem in (5) and choose the following Lyapunov func-
tion candidate:

Vn(S1, . . . , Sn) = Vn−1(S1, . . . , Sn−1) +
1

2
S2
n. (25)

The following relation can be obtained by differentiating both sides of (25) and us-
ing (24) with i = n− 1:

V̇n(S1, . . . , Sn) = V̇n−1(S1, . . . , Sn−1) + SiṠi

= Hn−1 −
1

2
z2 +

γ2

2

n−1∑
j=1

(
∆2
j + σ2

j

)
+ SnṠn. (26)

Define the following function:

Hn =
1

2
z2 − γ2

2

n∑
j=1

(
∆2
j + σ2

j

)
+ V̇n(S1, . . . , Sn). (27)

Then, by using (26) and (24) with i = n− 1, it can be proved that

Hn =
1

2
z2 − γ2

2

n∑
j=1

(
∆2
j + σ2

j

)
+Hn−1

1

2
z2 +

γ2

2

n−1∑
j=1

(
∆2
j + σ2

j

)
+ SnṠn

6 −γ
2

2
∆2
n −

γ2

2
σ2
n + Ψ1 −

n−1∑
j=2

[
γ2

4
∆2
j +

(
γ

2
∆j −

Sj
γ

)2]
−
n−1∑
j=2

kjS
2
j

+ Sn−1gn−1(x̄n−1)Sn +
γ2

2
σ2
n + Sn

(
fn(x̄n) + gn(x̄n)u+∆n − ẋn,out

)
https://www.mii.vu.lt/NA



Prescribed H∞ tracking control for nonlinear systems 327

6 Ψ1 −
n∑
j=2

[
γ2

4
∆2
j +

(
γ

2
∆j −

Sj
γ

)2]
−
n−1∑
j=2

kjS
2
j

+ Sn

(
Sn
γ2

+ fn(x̄n) + gn(x̄n)u+ gn−1(x̄n−1)Sn−1 − ẋi,out
)
. (28)

Choose the control input u as follows:

u = − 1

gn(x̄n)

(
knSn +

Sn
γ2

+ fn(x̄n) + gn−1(x̄n−1)Sn−1 − ẋn,out
)
,

where kn is a positive design parameter. It follows from substituting u into (28) that

Hn 6 Ψ1 −
n∑
j=2

[
γ2

4
∆2
j +

(
γ

2
∆j −

Sj
γ

)2]
−

n∑
j=2

kjS
2
j 6 0. (29)

Select VN (S1, . . . , Sn) = 2Vn(S1, . . . , Sn). Then it follows from (27) that the deriva-
tive of VN satisfies

V̇N (S1, . . . , Sn) = 2Hn −
(
‖z‖2 − γ2‖∆‖2 − γ2‖σ‖2

)
.

Because of Hn 6 0, the following inequality is obtained:

V̇N (S1, . . . , Sn) 6
(
γ2‖∆̄‖2 − ‖z‖2

)
. (30)

By integrating both sides of inequality (30), inequality (8) in Definition 1 can be
obtained with the initial condition VN (0) = 2Vn(0), which indicates that the L2 gain
from uncertainties ∆̄i to output z is smaller than or equal to a positive constant γ.

Now it is ready to make the following conclusion.

Theorem 1. Suppose that Assumptions 1, 2 are satisfied. If the initial condition e(0)
satisfies (3), then the H∞ control problem is solvable. All signals are bounded in the
closed loop system, and the output tracking error e(t) satisfies the prescribed performance
with the desired trajectory yr(t).

Proof. (i) By substituting Ψ1 = −(γ2/4)∆2
1− (γ/2)∆1− (Ξ/γ)S2

1 − (k1/(1− ε1)2)S2
1

into (29), the following relation can be derived:

Hn 6 −γ
2

4
∆2

1 −
(
γ

2
∆1 −

Ξ

γ
S1

)2

− k1
(1− ε1)2

S2
1

−
n∑
j=2

[
γ2

4
∆2
j +

(
γ

2
∆j −

Sj
γ

)2]
−

n∑
j=2

kjS
2
j

6 − k1
(1− ε1)2

S2
1 −

n∑
j=2

kjS
2
j .
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Replacing Hn by (27) gives

1

2
z2 − γ2

2

n∑
j=1

(
∆2
j + σ2

j

)
+ V̇n(S1, . . . , Sn) 6 − k1

(1− ε1)2
S2
1 −

n∑
j=2

kjS
2
j .

It is easy to derive the following:

V̇n(S1, . . . , Sn) 6 − k1
(1− ε1)2

S2
1 −

n∑
j=2

kjS
2
j −

1

2
z2 +

γ2

2

n∑
j=1

(
∆2
j + σ2

j

)
6 − k1

(1− ε1)2
S2
1 −

n∑
j=2

kjS
2
j +

γ2

2

n∑
j=1

(
∆2
j + σ2

j

)
. (31)

Select the control gains as follows:

k1 = (1− ε1)2Λ1, kj = Λj , j = 2, . . . , n. (32)

By considering (32), (31) becomes

V̇n(S1, . . . , Sn) 6 −2ΛVn(S1, . . . , Sn) + ϑ, (33)

where Λ = min[Λ1, . . . , Λn] and ϑ = (γ2/2)
∑n
j=1(∆2

j + σ2
j ).

Solving inequality (33), we get

Vn(t) 6

(
Vn(0)− ϑ

2Λ

)
e−2Λt +

ϑ

2Λ
6 Vn(0)e−2Λt +

ϑ

2Λ
∀t > 0. (34)

From (34), it shows that all signals in the closed-loop system are semiglobally, uni-
formly and ultimately bounded, which can be explained as follows.

It is easy to see that Vn(t) > 0 and Vn(t) is bounded by ϑ/(2Λ), which implies that
ϑ/(2Λ) can be made arbitrarily small by selecting appropriate design parameters.

From the first equation in (4), ε1 = S1/(1+S1) = e1/ζ1 can be derived. By using the
conclusion in (3), S1 cannot be equal to−1, hence ε1 is bounded by the boundness of S1,
which implies that e1 is bounded because ζ1 is bounded in the definition of performance
function. From e1 = x1 − yr and Assumption 2, it can be proven that x1 is bounded and
f1(x̄1) is also bounded.

From (11), it is easy to derive that x2,in is bounded by the boundness of ζ1, S1, f1(x̄1),
g1(x̄1), ε1, ẏr, and ζ̇1. According to (6), x2,out is bounded by the boundness of x2,in,
furthermore, x2 is bounded from (4), and the modeling error σ2 is also bounded from (7).
Similarly, xi,in, xi,out, σi, xi, i = 3, . . . , n, and u are all bounded. The objective (O1) is
achieved.

(ii) According to (34), the following equality is satisfied:

V1 =
1

2
S2
1 =

1

2

ε21
(1− ε1)2

6 Vn(0)e−2Λt +
ϑ

2Λ
. (35)
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Then (35) can be written as

ε21 6 2(1− ε1)2
[
Vn(0)e−2Λt +

ϑ

2Λ

]
.

Substituting ε1(t) = e1(t)/ζ1(t) into the above inequality, we get(
e1(t)

ζ1(t)

)2

6 2(1− ε1)2
[
Vn(0)e−2Λt +

ϑ

2Λ

]
,

|e1(t)|
|ζ1(t)|

6
√

2(1− ε1)

√
Vn(0)e−2Λt +

ϑ

2Λ
,

∣∣e1(t)
∣∣ 6 ∣∣ζ1(t)

∣∣√2(1− ε1)

√
Vn(0)e−2Λt +

ϑ

2Λ
. (36)

For t→∞, Vn(0)e−2Λt = 0, then it follows from (36) that

∣∣e1(t)
∣∣ 6 ∣∣ζ1(t)

∣∣√2(1− ε1)

√
ϑ

2Λ
. (37)

According to the conclusion 0 < ε1 < 1, (37) becomes

∣∣e1(t)
∣∣ 6 ∣∣ζ1(t)

∣∣√ϑ

Λ
. (38)

If the selected design parameters satisfies Λ > ϑ, (38) yields∣∣e1(t)
∣∣ 6 ∣∣ζ1(t)

∣∣.
Therefore, the output tracking errors are smaller than the prescribed bounds, and the

errors can be arbitrarily small by selecting appropriate design parameters. The objec-
tive (O2) is achieved.

(iii) The objective (O3) was proved before the theorem.

4 Simulation

Consider a rigid robot manipulator system, its mathmatical model can be described as
follows [7]:

ẋ1 = x2 +∆1,

ẋ2 = −mrgvlr
J

cosx1 +
u

J
+∆2,

y = x1,

(39)

where x1 is the angular position of manipulator, x2 is the relative angular velocity, mr is
the load mass, gv is the gravity, lr is the length of manipulator, and J = 4mrl

2
r/3 is the

inertia coeffecient. ∆1 and ∆2 are the external disturbances.

Nonlinear Anal. Model. Control, 22(3):317–333
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(a) (b)

Figure 2. Tracking performance of system (39) and comparisons with existing method.

According to Theorem 1, the robust controller for system (39) is designed. In order
to verify the effectiveness and feasibility of the proposed method, the simulation results
of the proposed method are compared with the existing backstepping method with H∞
control.

The selected parameters are as follows: the initial conditions are

x1(0) = 0.4 and x2(0) = 0.

The desired trajectory is
yr(t) = sin t+ sin(2t).

∆1 = 0 and ∆2 = 0.01 cos t. The prescribed performances of tracking errors are set as
follows: the initial value of performance function ρ0 = 1, the steady state error is no more
than ρ∞ = 0.01, the minimum convergence speed is l = 2, and the overshoot is δ = 0.5,
therefore, the selected performance function is

ρ(t) = (1− 0.01)e−2t + 0.01.

The time constant of filter is τ = 0.01. The control gains are selected as k1 = k2 = 10.
The best disturbance attenuation constant is γ = 0.5.

The tracking performance with IPPC and the comparisons of tracking errors between
the proposed method and existing backstepping method with H∞ control are shown in
Fig. 2. It is found that (i) if the selected control gains are k1 = 10 and k2 = 10, the
proposed method has a faster convergence speed and better steady state performance
than the existing backstepping method, (ii) the steady state performance of the existing
backstepping method can be improved by setting the control gains with k1 = 50 and
k2 = 120. However, the steady state of the system is still out of the range of performance
functions. The comparisons of the proposed method with different value of γ and control
gains are shown in Fig. 3. It shows that the smaller value of γ has a faster the convergence
speed, and the smallest value of γ is 0.5. It also indicates that the tracking errors can
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(a) (b)

Figure 3. Comparisons of the proposed method with different γ and k.

converge to a very small value, and the larger the control gains have the faster convergence
rate. Therefore, it is easy to see that the proposed method can achieve a better performance
with small control gains, and the proposed control design scheme is feasible and effective.

5 Conclusion

In this paper, a backstepping control scheme has been designed for the H∞ control prob-
lem of strict feedback nonlinear systems. An improved prescribed performance constraint
method has been adopted to achieve prescribed performance bounds on the tracking
errors. Surface control has been used to avoid the differentiation of virtual control in
each recursive step of backstepping design, H∞ robust control has been introduced to
attenuate the impacts of the unknown disturbances and modeling errors. By selecting
appropriate parameters, a better tracking performance has been obtained by simulation.
The simulation results have shown that the proposed design scheme is effective and
feasible. For the further work, a new prescribed performance function can be designed
based on IPPC method to improve the transient and steady state performance of the
system, and also adaptive neural or fuzzy control method can be used to approximate
the uncertain terms in system (1).
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