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Abstract. Damping of spikes in an array of coupled oscillators by injection of sinusoidal current is
studied both electronically and numerically. The effect is investigated using an array consisting
of thirty mean-field coupled FitzHugh–Nagumo-type oscillators. The results are considered as
a possible mechanism of the deep brain stimulation used to avoid the symptoms of the Parkinson’s
disease.
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1 Introduction

Undesirable instabilities in dynamical systems can be avoided by applying conventional
proportional feedback techniques [8, 11]. An example is a simple second-order system,
where the proportional feedback is given by a linear term with a control coefficient k:

ẋ = F (x, y) + k(x∗ − x), ẏ = G(x, y). (1)

Here F and G are either linear or nonlinear functions, the x∗ is a reference point, e.g.
a steady state coordinate of the system. However, in many real systems, especially in bi-
ology, chemistry, physiology, etc., the exact locations of these states are unknown. More-
over, their positions may vary with time because of unknown and unpredictable forces.
Therefore, adaptive methods, automatically tracing and stabilizing the steady states, are
required. A large number of adaptive control techniques have been developed so far,
e.g. the tracking filter method [9, 10, 15], and applied to a variety of dynamical systems
(see [1,19] and references therein). To implement the tracking filter technique, system (1)
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should be provided with an additional equation describing the dynamical variable z of the
first-order filter:

ẋ = F (x, y) + k(z − x), ẏ = G(x, y), ż = ωf (x− z), (2)

where ωf is the cut-off frequency of the filter (usually ωf � 1).
An alternative control method is a non-feedback technique based on applying to the

system external periodic force:

ẋ = F (x, y) +A sin(ωt), ẏ = G(x, y). (3)

In system (3), the frequency of the external forcing ω should be high enough in compari-
son with the natural frequency of the uncontrolled dynamical system. A specific example
is the stabilization of the unstable upside-down position of a mechanical pendulum by
vibrating its pivot up and down at a relatively high frequency [20]. Recently, this “me-
chanical” idea has been exploited in a seemingly unexpected field [12], namely, to get
insight into the mechanism of the so-called deep brain stimulation (DBS) conventionally
used for patients with the Parkinson’s disease, essential tremor [2–4], and other brain
malfunctions.

In this paper, we extend this research by demonstrating that external periodic forcing
can inhibit spikes in an array of coupled neuronal oscillators. To be specific, we consider
an array of the mean-field coupled electronic FitzHugh–Nagumo (FHN) oscillators, also
known in literature as the Bonhoeffer–van der Pol oscillators [14].

2 Analogue circuits

The corresponding circuit diagrams are presented in Fig. 1. CN is a coupling node. It
is assumed that the CN is not accessible directly from the outside, but via some passive
resistance network represented here for simplicity by an equivalent resistance Rg . DN is
an accessible damping node.

In Fig. 1(b), OA is a general-purpose operational amplifier, e.g. NE5534-type de-
vice, D1 and D2 are the BAV99-type Schottky diodes, L = 10 mH, C = 3.3 nF,

(a) (b)

Figure 1. Circuit diagrams: (a) array of mean-field coupled oscillators, (b) single asymmetric (R4 � R5)
FHN-type oscillator.
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R1 = R2 = 1 kΩ, R3 = 510 Ω, R4 = 30 Ω, R5 = 510 Ω, R6 = 275 Ω (an external
resistor R′6 = 220 Ω in series with the coil resistance R′′6 = 55 Ω), R7i = (24 + i) kΩ,
i = 1, 2, . . . , N , R∗ = 510 Ω, V0 = −15 V. The single FHN oscillator in Fig. 1(b) is
a circuit with an asymmetric nonlinearity (R4 � R5). It is a slight modification of an
oscillator described in [16] and essentially differs from the earlier asymmetric version of
the FHN-type oscillator suggested in [5]. In the experiments, we employed a hardware
array with N = 30 described in details (without any external control) elsewhere [17].
The external inhibitory current Iinh(t) = IA sin(2πft) was injected from an external sine
wave generator via the damping node DN.

3 Electronic experiments

In real neuronal systems, the typical spike parameters are the following: spike height is
about 100 mV, spike width is about 1 ms, interspike interval ranges from several hundreds
to several tens of milliseconds [7]. Consequently, the repetition rate f0 of the spikes is
from several Hz to several tens of Hz. Correspondingly, the practical DBS frequencies
are chosen between 50 and 300 Hz [4]. Though an analog electronic circuit exhibiting
the above neuron parameters, e.g. with f0 =10 Hz, can be implemented as a hardware
[18], in the present modelling experiment, we employed an array of FHN-type oscillators
described in [17]. In this array, the frequencies of the individual units were intentionally
set at 12 kHz, i.e. by about three orders higher than in real neurons. Such an increase of
working frequency makes the analog experiment more convenient. All experimental data,
in particular phase portraits, Poincaré sections, and power spectra can be taken on a real
time scale [17]. Also, time averaging procedure of the signals become extremely fast.

For the best performance, it is necessary to choose an appropriate drive frequency f
and amplitude IA. The f should be much higher than the natural frequency f0 of the spik-
ing oscillators. The threshold value of the drive amplitude I∗A depends on the frequency f .
The I∗A is relatively low in the interval from 50 to 500 kHz. Outside this range (below
50 and above 500 kHz), I∗A increases rapidly. Similar amplitude–frequency dependence
(a valley in a certain frequency range) was observed in real DBS experiments [3] with
f from 100 until 5000 Hz, also for single electronic neuron model in low frequency
experiment [18], where the optimal range of f was from 40 to about 400 Hz. In our present
high frequency electronic experiments, we chose f = 150 kHz, i.e. in the middle between
50 and 500 kHz. The selected frequency provided the lowest threshold I∗A = 50 mA.

The experimental results are shown in Figs. 2 and 3 by the waveforms and the phase
portraits, respectively. Here the 〈VC〉 is the mean-field voltage of the voltages VCi from
the individual oscillators (i = 1, 2, . . . , 30).

The time average of the high frequency non-spiking voltage 〈VC〉 (right-hand side
of the bottom plot), taken over the period (T = 1/f ) of the external current, is ŪC ≈
−0.18 V. It is non-zero value because of the DC bias V0. The ŪC is noticeably different
from the natural steady state 〈V0C〉 = −0.27 V measured in a non-oscillatory mode (when
the all coils L are short-circuited).
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Figure 2. Experimental waveforms of the external periodic current Iinh and the mean-field voltage of the array
〈VC〉; f=150 kHz.

(a) (b)

Figure 3. Phase portraits [VC30, 〈VC〉]: (a) spiking oscillators (no control, IA = 0), (b) non-spiking oscillators,
IA = 50 mA, f = 150 kHz. Small cross in (b) marks the averages of the voltages [ŪC30, ŪC ] taken over the
period of the external inhibitory current Iinh(t). They are at about [−0.18 V,−0.18 V]. Note different position
of the diagonal, also different horizontal and vertical scales in (b) compared to (a).

Fine diagonals in Fig. 3, [VC30, 〈VC〉] indicate that the individual oscillator No. 30 is
strongly synchronized with the mean-field of the array. Other oscillators, No. 1 to No. 29,
were also checked experimentally by means of the phase portraits [VCi, 〈VC〉] and gave
similar result.

The self-sustained low frequency (f0 ≈ 12 kHz) spikes of about 3 V height are totally
suppressed when the inhibitory current IA > I∗A = 50 mA is injected. However, we
have a finite (≈ 13%) higher frequency artefact. The voltage oscillates around the time
average ŪC with the amplitude of about 0.4 V at the external drive frequency f .

Moreover, the artefact voltage continues to change (Fig. 4) when the external drive
amplitude IA is increased above the threshold value I∗A (the amplitude IA should be
higher than the threshold to guarantee robust inhibition). For example, at a double drive
amplitude, IA/I∗A = 2 the average voltage changes its sign. Similar behaviour was
observed earlier, but not emphasized in the numerically simulated bifurcation diagram
for the Hodgkin–Huxley (HH) single neuron model [12].
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Figure 4. Time average of the mean-field voltage ŪC , taken over the period (T = 1/f ) of the external
inhibitory current Iinh, as a function of the normalized amplitude IA/I∗A of the external current. I∗A = 50 mA.
Extrapolation to zero control (IA = 0) provides a value of ŪC close to the natural steady state 〈V0C〉 =
−0.27 V (dashed line in the plot).

4 Mathematical model

Applying the Kirchhoff laws to the circuits in Fig. 1 withR1 =R2 andR7�max{
√
L/C,

R3, R4, R5, R6}, the following differential equations are derived:

C
dVCi

dt
=
VCi

R3
− ID − ILi +

V0
R7i

+
〈VC〉 − VCi

R∗
+
IA sin(2πft)

N
,

L
dILi

dt
= VCi −R6ILi, i = 1, 2, . . . , N.

(4)

The nonlinear current–voltage (I–V ) characteristic ID = ID(VCi) of the D1R4–D2R5

composite in system (4) is approximated by three segments of linear functions

ID(VCi) =


(VCi + V ∗)/R4, VCi < −V ∗,
0, −V ∗ 6 VCi 6 V ∗,

(VCi − V ∗)/R5, VCi > V ∗.

Here V ∗ is the breakpoint voltage of the forward I–V characteristic of the diodes (V ∗ ≈
0.6 V). In system (4), the individual oscillators are coupled via the mean-field voltage

〈VC〉 =
1

N

N∑
i=1

VCi. (5)

We introduce the following set of dimensionless variables and parameters:

xi =
VCi

V ∗
, yi =

ρILi

V ∗
, t→ t√

LC
, 〈x〉 =

1

N

N∑
i=1

xi,

ρ =

√
L

C
, a =

ρ

R3
, b =

R6

ρ
, ci =

ρV0
R7iV ∗

, (6)

d1 =
ρ

R4
, d2 =

ρ

R5
, k =

ρ

R∗
,
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also, two additional dimensionless parameters for the external sine wave forcing:

A =
ρIA
NV ∗

, ω = 2πf
√
LC, (7)

and we arrive to a set of 2N coupled non-autonomous differential equations convenient
for numerical integration:

ẋi = axi − f(xi)− yi + ci + k
(
〈x〉 − xi

)
+A sin(ωt),

ẏi = xi − byi, i = 1, 2, . . . , N.
(8)

The f(xi) in system (8) is a nonlinear function presented by a piecewise linear function

f(xi) =


d1(xi + 1), xi < −1,

0, −1 6 xi 6 1,

d2(xi − 1), xi > 1.

Note that, due to d1 � d2, the f(xi) is an essentially asymmetric function [16] in
contrast to the common FHN cubic parabola x3 introduced by FitzHugh [6]. The DC bias
parameters ci are intentionally set different for each individual oscillator, thus making
them non-identical units.

5 Numerical results

Integration of system (8) has been performed using the Wolfram Mathematica package.
The numerical results are presented in Fig. 5. They are in a good agreement with the
experimental plots in Fig. 2. The mean-field variable 〈x〉 does not converge to a constant
steady state, but oscillates around it at the drive frequency. Strictly speaking, the non-
autonomous (externally driven) dynamical systems, e.g. given by system (8), do not
possess steady states at all. Only in the case of high frequency (f � f0) drive, we can
introduce the average values taken over the external period. These averages are related to
the real steady states.
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Figure 5. Simulated waveforms of the inhibitory current A sin(ωt) and the mean-field voltage 〈x〉 from
system (8); N = 30. A = 5.1, ω = 6.28, a = 3.4, b = 0.16, ci = −44/(24 + i), i = 1, 2, . . . , 30,
d1 = 60, d2 = 3.4, k = 3.4. The external inhibitory term A sin(ωt) is activated at t = 100.
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6 Mean-field approach

Analysis of system (8) can be essentially simplified if we consider only the mean-field
variables obtained by the direct averaging of xi, yi, f(xi), k(〈x〉 − xi), and ci in the
original equations:

〈ẋ〉 = a〈x〉 −
〈
f(xi)

〉
− 〈y〉+ 〈c〉+A sin(ωt),

〈ẏ〉 = 〈x〉 − b〈y〉.
(9)

As a result, the mean of the coupling term 〈k(〈x〉−xi)〉 = k(〈x〉−〈x〉) = 0 in system (9)
has been nullified independently on the value of k. Further, we assume that all |xi| 6 1.
According to definition of the nonlinear function f(xi), this leads to f(xi)=〈f(xi)〉=0.
Eventually, we obtain a set of linear differential equations, which do not describe the full
dynamics of the mean field, but provide its steady state. In the absence of the external
drive (A = 0), it has the following coordinates (for ab < 1 and |ci| 6 1/b− a):

〈x0〉 =
b〈c〉

1− ab
, 〈y0〉 =

〈c〉
1− ab

. (10)

Stability analysis of system (9) shows that, for A = 0 and a > b, the steady state
is unstable (the real parts of the both eigenvalues of the corresponding second-order
characteristic equation are both positive). If (in addition to a > b) the sum a+ b > 2, then
the eigenvalues are real (no imaginary parts). Thus, the steady state is an unstable node.
Whereas the external periodic forcing (A 6= 0), similarly to the mechanical pendulum [20]
and the single HH neuron [12], stabilizes the originally unstable steady state.

For the parameter values employed in numerical simulations: a = 3.4, b = 0.16,
and ci = −44/(24+ i), the steady-state coordinates have the following numerical values:
x0 = −0.41, y0 = −2.57. Using the definitions of the dimensionless variables introduced
in (6), we estimate the means of the steady-state coordinates of the original system:
〈V0C〉 ≈ −0.25 V, 〈I0L〉 ≈ −1 mA. The estimated steady-state voltage 〈V0C〉 is close to
its experimental value −0.27 V.

7 Conclusions

The recent papers [12, 13] on suppression of neuronal spikes by means of periodic force
consider mathematical models of single neurons. Our paper [16] on an adaptive feedback
technique for damping neuronal activity also deals with a single oscillator only. The
present work extends the above investigations to an array of coupled (synchronized)
neuronal oscillators. In addition to numerical simulations, we have carried out a hardware
experiment using an analog electronic network described in [17]. This research can serve
for better understanding the mechanism of the DBS technique.

The influence of strongly perturbed steady states of the neurons on the effectiveness
of DBS technique has not been investigated yet. However, one can suppose that the high
frequency artefact oscillations (Fig. 2) and especially its unnatural DC component (Fig. 4)
probably can cause the undesirable side effects in the real neuronal systems.
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for stabilizing saddle steady states of dynamical systems, Nonlinear Dyn., 82(4):1743–1753,
2015.

2. A.L. Benabid, S. Chabardes, J. Mitrofanis, P. Pollak, Deep brain stimulation of the subthalamic
nucleus for the treatment of Parkinson’s disease, Lancet Neurol., 8(1):67–81, 2009.

3. A.L. Benabid, P. Pollak, C. Gervason, D. Hoffman, D.M. Gao, M. Hommel, J.E. Perret,
J. de Rougemont, Long-term suppression of tremor by chronic stimulation of the ventral
intermediate thalamic nucleus, Lancet, 337:403–406, 1991.

4. A.L. Benabid, P. Pollak, A. Louveau, S. Henry, J. de Rougemont, Combined (thalamotomy and
stimulation) stereotactic surgery of the vim thalamic nucleus for bilateral Parkinson disease,
Appl. Neurophysiol., 50:344–346, 1987.

5. S. Binczak, V.B. Kazantsev, V.I. Nekorkin, J.M. Bilbaut, Experimental study of bifurcations in
modified FitzHugh–Nagumo cell, Electron. Lett., 39(13):961–962, 2003.

6. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,
Biophys. J., 1(6):445–466, 1961.

7. W. Gerstner, W. Kistler, Spiking Neuron Models, Cambridge University Press, Cambridge,
2005.

8. B.C. Kuo, Automatic Control Systems, Prentice Hall, Englewood Cliffs, NJ, 1995.
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