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Abstract. In this paper, we propose a discrete-time host-pathogen model and study its qualitative
behavior. The model is for the spread of an infectious disease with constant mortality rate of hosts.
Moreover, the time-step is equal to the duration of the infectious phase, and the host mortality
is taken at some constant rate d > 0. This two-dimensional discrete-time epidemic model has
complex dynamical behavior. More precisely, we investigate the existence and uniqueness of
positive equilibrium point, boundedness character, local and global asymptotic stability of unique
positive equilibrium point, and the rate of convergence of positive solutions that converge to unique
positive equilibrium point. Numerical simulations are provided to illustrate our theoretical results.
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1 Introduction

Differential and difference equations are used to study a wide range of population models.
For more detail of some interesting population models both in differential equations as
well as in difference equations, we refer the interested reader to [1, 2, 15]. When the
population remains small over a number of generations or remains essentially constant
over a generation, it would seem that the dynamics of the population is best described by
a discrete-time model [17].

It is well known fact that in population growth disease is an important agent to control
the population dynamics. Many experiments show that parasites can reasonably reduce
host population and even take host population to complete annihilation. This natural
phenomenon is successfully modeled by many simple SI -type host-parasite models. The
most interesting properties of such models are their ability of generating host annihilation
dynamics with ideal parametric values and initial conditions. This is possible because
such models naturally contain the proportion transmission term, which is often referred
to as ratio-dependent functional response in the case of predator–prey models. In the SI -
type model, the population is subdivided into two classes, susceptibles S and infectives I .
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The notation SI means that there is a transfer from the susceptible to infective class,
susceptibles become infective and do not recover from the infection. Thus, the transfer
continues until all individuals become infected. This type of model is very simple, but may
represent some complicated dynamical properties. Most of the SI -type models consist of
the mass action principle, i.e., the assumption that new cases arise in a simple proportion
to the product of the number of individuals which are susceptible and the number of
individuals which are infectious. However, this principle has limited validity, and in dis-
crete models, this principle leads to biologically irrelevant results unless some restrictions
are suggested for the parameters. It is more appropriate for discrete epidemic models to
include an exponential factor in the rate of transmission. In [16, 19–21], authors studied
qualitative behavior of population models in exponential form of difference equations.

Din et al. [12] investigated the qualitative behavior of the following discrete-time host-
pathogen model for spread of an infectious disease with permanent immunity:

In+1 = Sn
(
1− e−αIn

)
, Sn+1 = Sn + β − In+1 = Sne−αIn + β,

where the time-step is equal to the duration of the infectious phase, the state variables
are Sn, the number of susceptible individuals at time n, and In representing the number
of individuals getting the disease (new cases) between times n − 1 and n. Moreover,
β is the number of births between n and n + 1, all added to the susceptible class and
assumed to be constant over time. So the difference equation Sn+1 = Sne−αIn + β is
just “conservation of mass” for the susceptible class. The first part In+1 = Sn(1−e−αIn)
of the model is just like Nicholson–Bailey, it comes from assuming that each susceptible
escapes infection with probability e−αIn , the more infectives there are, the lower the
chance of escape. The model ignores mortality in the susceptible class on the assumption
that everyone gets the disease while young and mortality occurs later in life.

It is a natural fact to assume the mortality of host at some constant rate d > 0, say.
In this paper, we want to investigate stability analysis of the case where there is host
mortality at some constant rate d > 0 and the susceptible dynamics become Sn+1 =
(1 − d)Sn + β − In, where 0 < d < 1. In this case, the host-pathogen model with
constant mortality rate of host is given by

In+1 = Sn
(
1− e−αIn

)
, Sn+1 = (1− d)Sn + β − In. (1)

More precisely, our aim is to investigate boundedness character, local asymptotic stability
of unique positive equilibrium point, the global asymptotic character of equilibrium point,
and the rate of convergence of positive solutions of system (1). Although, system (1)
seems to be very simple 2-dimensional discrete dynamical system, but it has extremely
complex behavior. For some interesting results related to the qualitative behavior of dif-
ference equations, we refer the reader to [3–14].

2 Boundedness

The following theorem shows that every positive solution {(In, Sn)}∞n=0 of system (1) is
bounded.
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Theorem 1. Assume that 0 < d < 1, then every positive solution {(In, Sn)} of (1) is
bounded.

Proof. Let {(In, Sn)}∞n=0 be an arbitrary positive solution of system (1). From Sn+1 =
(1− d)Sn + β − In one has

Sn+1 6 (1− d)Sn + β

for all n = 0, 1, 2, . . . . Consider the difference equation xn+1 = (1− d)xn + β with an
initial condition x0 = S0, then its solution is given by

xn = (1− d)nx0 + β
(1− (1− d)n)

d
.

Assume that 0 < d < 1, then

xn 6 x0 +
β

d

for all n = 1, 2, . . . . Thus, by comparison one has Sn 6 S0 + β/d for all n = 1, 2, . . . .
Similarly, from In+1 = Sn(1− e−αIn) we have

In+1 6 Sn 6 S0 +
β

d

for all n = 1, 2, . . . . It follows that

0 < In 6
β

d
+ S0, 0 < Sn 6

β

d
+ S0

for all n = 1, 2, . . . .

Theorem 2. Let {(In, Sn)} be a positive solution of system (1). Then [0, β/d]× [0, β/d]
is an invariant set for system (1).

Proof. Let {(In, Sn)} be a positive solution of system (1) with initial conditions I0, S0 ∈
I = [0, β/d]. Then, from system (1),

I1 = S0

(
1− e−αI0

)
6 S0 6

β

d
and

S1 = (1− d)S0 + β − I0 6 (1− d)S0 + β 6 (1− d)
β

d
+ β =

β

d
.

Hence, I1, S1 ∈ I . Then it follows by induction that

0 < Sn 6
β

d
, 0 < In 6

β

d

for all n = 1, 2, . . . . Hence, the proof is completed.
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3 Existence and local stability of positive equilibrium

The following result shows the existence and uniqueness of positive equilibrium point of
system (1).

Theorem 3. Assume that αβ > d, then system (1) has a unique positive equilibrium point
(x̄, ȳ) in [0, β/d]× [0, β/d].

Proof. Consider the following system:

x = y
(
1− e−αx

)
, y = (1− d)y + β − x. (2)

It follows from (2) that

y =
x

1− e−αx
, x = β − dy. (3)

Moreover, taking
F (x) = β − df(x)− x,

where
f(x) =

x

1− e−αx
.

Then it follows that
lim
x→0

F (x) =
αβ − d
α

> 0 if αβ > d

and

F

(
β

d

)
= β

(
1− 1

1− e−αβ/d
− 1

d

)
< 0.

Hence, F (x) has at least one root in [0, β/d]. Furthermore, we have

F ′(x) = −df ′(x)− 1,

where

f ′(x) =
eαx(eαx − αx− 1)

(eαx − 1)2
> 0.

It follows that F ′(x) < 0 for every x ∈ [0, β/d]. Hence, F (x) has a unique positive root
in [0, β/d]. This completes the proof.

Consider the two-dimensional discrete dynamical system of the form

xn+1 = f(xn, yn), yn+1 = g(xn, yn), n = 0, 1, . . . , (4)

where f : I × J → I and g : I × J → J are continuously differentiable functions
and I , J are some intervals of real numbers. Furthermore, a solution {(xn, yn)}∞n=0 of
system (4) is uniquely determined by initial conditions (x0, y0) ∈ I × J . The linearized
system of (4) about the equilibrium point (x̄, ȳ) is

Xn+1 = MXn,
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where Xn =
(
xn

yn

)
and M is Jacobian matrix of system (4) about the equilibrium point

(x̄, ȳ).
Let (Ī , S̄) is the equilibrium point of system (1), then one has

Ī = S̄
(
1− e−αĪ

)
, S̄ = (1− d)S̄ − Ī + β.

Moreover, the Jacobian matrix M(Ī , S̄) of system (1) about the equilibrium point (Ī , S̄)
is given by

M(Ī , S̄) =

[
αS̄e−αĪ 1− e−αĪ

−1 1− d

]
.

Lemma 1 [Jury condition]. Consider the second-degree polynomial equation

λ2 + pλ+ q = 0, (5)

where p and q are real numbers. Then the necessary and sufficient condition for both roots
of equation (5) to lie inside the open disk |λ| < 1 is

|p| < 1 + q < 2.

Arguing as in [15], we take the following theorems for local asymptotic stability of
positive equilibrium point of system (1).

Theorem 4. Assume that αβ > d. Then the unique positive equilibrium point (x̄, ȳ) in
[0, β/d]× [0, β/d] is locally asymptotically stable if

(1− d)

(
1 +

αβ

d
− αr(1 + d)

)
+
αβ

d
+

rd2

β − rd
− αr(1 + d) < 1,

where r is the ratio of the steady-state host density with its constant mortality rate d, i.e.,
r = Ī/d.

Proof. As pointed out in [15], it is convenient to discuss stability behavior in terms of
the quantity r = Ī/d. The equilibrium value r = Ī/d is of interest in modeling as being
the ratio of the steady-state host densities with its constant mortality rate. For the positive
equilibrium point (Ī , S̄) of system (1), we have from system (3)

S̄ =
β

d
− Ī

d
=
β

d
− r

and

S̄e−αĪ =
β

d
− r(1 + d), 1− e−αĪ =

rd2

β − rd
.

In terms of ratio r, the unique positive equilibrium point of (1) is given by

(Ī , S̄) =

(
rd,

β − rd
d

)
.
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For the consistency of r, it is enough to show that(
rd,

β − rd
d

)
∈
[
0,
β

d

]
×
[
0,
β

d

]
.

The inequality 0 < exp(−αĪ) < 1 implies that

0 < 1− rd2

β − rd
< 1. (6)

From (6) it follows that
0 < rd2 < β − rd < β.

Hence, 0 < rd < β/d. Similarly, one can obtain that 0 < β − rd/d < β/d. The
characteristic polynomial of M(Ī , S̄) is given by

P (λ) = λ2 − Tr
[
M(Ī , S̄)

]
λ+ det

[
M(Ī , S̄)

]
, (7)

where Tr[M(Ī , S̄)] = 1− d+ αS̄e−αĪ > 0 and det[M(Ī , S̄)] = (1− d)αS̄e−αĪ + 1−
e−αĪ > 0. Moreover, we assume that:

Φ(λ) = λ2, Ψ(λ) =
(
1− d+ αS̄e−αĪ

)
λ− (1− d)αS̄e−αĪ − 1 + e−αĪ .

Assume that (1− d)(1 +αβ/d−αr(1 + d)) +αβ/d+ rd2/(β − rd)−αr(1 + d) < 1,
and |λ| = 1. Then we obtain∣∣Ψ(λ)

∣∣ 6 1− d+ αS̄e−αĪ + (1− d)αS̄e−αĪ + 1− e−αĪ

= (1− d)

(
1 +

αβ

d
− αr(1 + d)

)
+
αβ

d
+

rd2

β − rd
− αr(1 + d) < 1.

Hence, by Rouche’s theorem Φ(λ) and Φ(λ) − Ψ(λ) have same number of zeroes in an
open unit disk |λ| < 1. Hence, both roots of (7) lie in an open disk |λ| < 1, and it follows
that the equilibrium point (Ī , S̄) in [0, β/d]×[0, β/d] is locally asymptotically stable.

The following result shows necessary and sufficient condition for local asymptotic
stability of unique positive equilibrium point of system (1).

Theorem 5. The unique positive equilibrium point of system (1) is locally asymptotically
stable if and only if

1− d+
αβ

d
− αr(1 + d) < 1 + α(1− d)

(
β

d
− r(1 + d)

)
+

rd2

β − rd
< 2. (8)

4 Global stability analysis

In this section, we will determine the global character of the unique positive equilibrium
point of system (1). Similar methods can be found in [18].
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Lemma 2. Let I = [a, b] and J = [c, d] be real intervals, and let f : I × J → I
and g : I × J → J be continuous functions. Consider system (4) with initial conditions
(x0, y0) ∈ I × J . Suppose that following statements are true:

(i) f(x, y) is non-decreasing in both arguments;
(ii) g(x, y) is non-increasing in x and non-decreasing in y;

(iii) (m1,M1,m2,M2) ∈ I2 × J2 is a solution of the system

m1 = f(m1,m2), M1 = f(M1,M2),

m2 = g(M1,m2), M2 = g(m1,M2)

such that m1 = M1 and m2 = M2.

Then there exists exactly one equilibrium point (x̄, ȳ) of system (4) such that
limn→∞(xn, yn) = (x̄, ȳ).

Proof. According to Brouwer fixed point theorem, the function F : I × J → I × J
defined by F (x, y) = F (f(x, y), g(x, y)) has a fixed point (x̄, ȳ), which is a fixed point
of system (4).

Assume that m0
1 = a, M0

1 = b, m0
2 = c, M0

2 = d such that

mi+1
1 = f

(
mi

1,m
i
2

)
, M i+1

1 = f
(
M i

1,M
i
2

)
and

mi+1
2 = g

(
M i

1,m
i
2

)
, M i+1

2 = g
(
mi

1,M
i
2

)
.

Then

m0
1 = a 6 f

(
m0

1,m
0
2

)
6 f

(
M0

1 ,M
0
2

)
6 b = M0

1

and
m0

2 = c 6 g
(
M0

1 ,m
0
2

)
6 g
(
m0

1,M
0
2

)
6 d = M0

2 .

Moreover, one has

m0
1 6 m1

1 6M1
1 6M0

1

and
m0

2 6 m1
2 6M1

2 6M0
2 .

We similarly have

m1
1 = f

(
m0

1,m
0
2

)
6 f

(
m1

1,m
1
2

)
6 f

(
M1

1 ,M
1
2

)
6 f

(
M0

1 ,M
0
2

)
= M1

1

and
m1

2 = g
(
M0

1 ,m
0
2

)
6 g
(
M1

1 ,m
1
2

)
6 g
(
m1

1,M
1
2

)
6 g
(
m0

1,M
0
2

)
= M1

2 .

Now observe that for each i > 0,

a = m0
1 6 m1

1 6 · · · 6 mi
1 6M i

1 6M i−1
1 6 · · · 6M0

1 = b
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and
c = m0

2 6 m1
2 6 · · · 6 mi

2 6M i
2 6M i−1

2 6 · · · 6M0
2 = d.

Hence, mi
1 6 xn 6 M i

1 and mi
2 6 yn 6 M i

2 for n > 2i + 1. Let m1 = limn→∞mi
1,

M1 = limn→∞M i
1, m2 = limn→∞mi

2, and M2 = limn→∞M i
2. Then a 6 m1 6

M1 6 b and c 6 m2 6M2 6 d. By continuity of f and g one has

m1 = f(m1,m2), M1 = f(M1,M2),

m2 = g(M1,m2), M2 = g(m1,M2).

Hence, m1 = M1, m2 = M2.

Lemma 3. The unique positive equilibrium point of system (1) is a global attractor if the
following condition is satisfied:

eαβ−d + αβe1−d < 1 + deαβ−d + (1− d)(αβ − d). (9)

Proof. Let f(x, y) = y(1− e−αx) and g(x, y) = (1− d)y+β−x. Then it is easy to see
that f(x, y) is non-decreasing in both x and y. Moreover, g(x, y) is non-increasing in x
and non-decreasing in y if 0 < d < 1. Let (m1,M1,m2,M2) be a solution of the system

m1 = f(m1,m2), M1 = f(M1,M2),

m2 = g(M1,m2), M2 = g(m1,M2).

Then one has

m1 = m2

(
1− e−αm1

)
, M1 = M2

(
1− e−αM1

)
(10)

and
m2 = (1− d)m2 + β −M1, M2 = (1− d)M2 + β −m1. (11)

Furthermore, it suffices to suppose that

0 < m1 6M1, 0 < m2 6M2.

(11) implies that
M1 = β − dm2, m1 = β − dM2. (12)

Moreover, using the inequality x/(1 + x) 6 (1− e−x) 6 x for all x > 0, we obtain from
(10) and (12)

1

α
(1− d)(αβ − d) 6 m1 6M1 6 β − d

α
(13)

and
1

α
6 m2 6M2 6

1

α
(1 + αβ − d). (14)
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On subtracting (12), we have

M1 −m1 = d(M2 −m2). (15)

Subtracting (10) and using (12), one has

M1 −m1 = M2 −m2 +m2e−αm1 −M2e−αM1

= M2 −m2 +
β −M1

d
e−αm1 − β −m1

d
e−αM1

= M2 −m2 +
β

d

(
e−αm1 − e−αM1

)
+

1

d

(
m1e−αM1 −M1e−αm1

)
= M2 −m2 +

αβ

d
eα(θ1−m1−M1)(M1 −m1)

+
1

d
(αθ2 + 1)eα(θ2−m1−M1)(m1 −M1), (16)

where θ1, θ2 ∈ [m1,M1]. Then from (13), (15), and (16) it follows that(
1 + deαβ−d + (1− d)(αβ − d)− eαβ−d − αβe1−d)(M1 −m1) 6 0. (17)

Finally, from (9) and (17) we have m1 = M1. Then (15) implies that m2 = M2. Hence,
from Lemma 2 the equilibrium point of system (1) is a global attractor.

Theorem 6. Under conditions (8) and (9), the unique positive equilibrium point of sys-
tem (1) is globally asymptotically stable.

5 Rate of convergence

In this section, we will determine the rate of convergence of a solution that converges to
the unique positive equilibrium point of system (1).

The following result gives the rate of convergence of solutions of a system of differ-
ence equations:

Xn+1 =
(
A+B(n)

)
Xn, (18)

where Xn is an m-dimensional vector, A ∈ Cm×m is a constant matrix, and B : Z+ →
Cm×m is a matrix function satisfying∥∥B(n)

∥∥→ 0 (19)

as n→∞, where ‖·‖ denotes any matrix norm, which is associated with the vector norm∥∥(x, y)
∥∥ =

√
x2 + y2.

Proposition 1 [Perron’s theorem]. (See [22].) Suppose that condition (19) holds. If Xn

is a solution of (18), then either Xn = 0 for all large n or

ρ = lim
n→∞

‖Xn‖1/n (20)

exists and is equal to the modulus of one the eigenvalues of matrix A.

Nonlinear Anal. Model. Control, 22(2):173–187



182 Q. Din

Proposition 2. (See [22].) Suppose that condition (19) holds. If Xn is a solution of (18),
then either Xn = 0 for all large n or

ρ = lim
n→∞

‖Xn+1‖
‖Xn‖

(21)

exists and is equal to the modulus of one the eigenvalues of matrix A.

Let {(In, Sn)} be any solution of system (1) such that limn→∞ In = Ī and
limn→∞ Sn = S̄. To find the error terms, it follows from system (1)

In+1 − Ī = Sn
(
1− e−αIn

)
− S̄

(
1− e−αĪ

)
=
S̄(e−αĪ − e−αIn)

In − Ī
(In − Ī) +

(
1− e−αIn

)
(Sn − S̄),

and
Sn+1 − S̄ = Sn(1− d)− In − S̄ + Ī

= (1− d)(Sn − S̄)− (In − Ī).

Let e1
n = In − Ī , and e2

n = Sn − S̄, then one has

e1
n+1 = ane

1
n + bne

2
n and e2

n+1 = cne
1
n + dne

2
n,

where

an =
S̄(e−αĪ − e−αIn)

In − Ī
, bn = 1− e−αIn ,

cn = −1, dn = 1− d.

Moreover,

lim
n→∞

an = αS̄e−αĪ , lim
n→∞

bn = 1− e−αĪ ,

lim
n→∞

cn = −1, lim
n→∞

dn = 1− d.

Now the limiting system of error terms can be written as[
e1
n+1

e2
n+1

]
=

[
αS̄e−αĪ 1− e−αĪ

−1 1− d

] [
e1
n

e2
n

]
,

which is similar to linearized system of (1) about the equilibrium point (Ī , S̄).
Using Proposition 1, one has the following result.

Theorem 7. Assume that {(In, Sn)} be a positive solution of system (1) such that
limn→∞ In = Ī and limn→∞ Sn = S̄, where (Ī , S̄) be unique positive equilibrium
point of the system (1). Then the error vector en =

(e1n
e2n

)
of every solution of (1) satisfies

both of the following asymptotic relations:

lim
n→∞

‖en‖1/n = |λ1,2|, lim
n→∞

‖en+1‖
‖en‖

= |λ1,2|,

where λ1,2 are the characteristic roots of Jacobian matrix FJ(Ī , S̄).
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6 Numerical simulations and discussion

In order to verify our theoretical results and to support our theoretical discussions, we
consider some interesting numerical examples in this section. These examples represent
different types of qualitative behavior of solutions of system (1). Mathematica is used for
numerical simulation.

Example 1. Let α = 0.5, d = 0.39, and β = 2.8 with initial conditions I0 = 1.65,
S0 = 2.93, then system (1) has a unique positive equilibrium point, which is locally
asymptotically stable. In this case, (Ī , S̄) = (1.65361, 2.93946) be unique positive equi-
librium point of system (1). Moreover, the plot of In is shown in Fig. 1(a), the plot of
Sn is shown in Fig. 1(b), and a phase portrait of system (1) is shown in Fig. 1(c). This
example shows that both host and pathogen survive and positive equilibrium point is
locally asymptotically stable.

Example 2. Let α = 0.9, d = 0.5, and β = 2.85 with initial conditions I0 = 1.74,
S0 = 2.2, then system (1) has a unique positive equilibrium point, which is locally
asymptotically stable. In this case, (Ī , S̄) = (1.74751, 2.20498) be unique positive equi-
librium point of system (1). Moreover, the plot of In is shown in Fig. 2(a), the plot of
Sn is shown in Fig. 2(b), and a phase portrait of system (1) is shown in Fig. 2(c). This

(a) In for system (1) (b) Sn for system (1)

(c) Phase portrait for system (1)

Figure 1. Plots for system (1) with α = 0.5, d = 0.39, β = 2.8 and initial conditions I0 = 1.65, S0 = 2.93.
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(a) In for system (1) (b) Sn for system (1)

(c) Phase portrait for system (1)

Figure 2. Plots for system (1) with α = 0.9, d = 0.5, β = 2.85 and initial conditions I0 = 1.74, S0 = 2.2.

example shows that both host and pathogen survive and positive equilibrium point is
locally asymptotically stable.

Example 3. Let α = 0.98, d = 0.95, and β = 35.5 with initial conditions I0 = 12,
S0 = 13, then unique positive equilibrium point of system (1) is unstable. Moreover, the
plot of In is shown in Fig. 3(a), the plot of Sn is shown in Fig. 3(b), and a phase portrait of
system (1) is shown in Fig. 3(c). This example shows that both host and pathogen survive,
but positive equilibrium point is unstable.

Example 4. In this example, we take β as bifurcation parameter. Let α = 0.9, d =
0.87, and 6 6 β 6 18 with initial conditions I0 = S0 = 5, then system (1) undergoes
bifurcation. Moreover, bifurcation diagram of In is shown in Fig. 4(a), and bifurcation
diagram of Sn is shown in Fig. 4(b).

Example 5. Finally, we investigate the sensitivity of parameters β, d and α, respectively.
First, we take α = 0.5, d = 0.6, and β = 3.3, 3.01, 3.02, . . . , 3.09 with initial conditions
I0 = 1.56, S0 = 2.88. Figures 5(a) and 5(b) show that both infected and susceptible
individuals are directly proportional to birth rate β. Next, we take α = 0.5, β = 3.3 and
vary mortality rate d = 0.6, 0.6001, 0.6002, . . . , 0.6009. It is easy to see from Figs. 6(a)
and 6(b) that both populations are inversely proportional to mortality rate d. Finally,
d = 0.6, β = 3.3, and initial conditions I0 = 1.56, S0 = 2.88 are kept fixed, while
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(a) In for system (1) (b) Sn for system (1)

(c) Phase portrait for system (1)

Figure 3. Plots for system (1) with α = 0.98, d = 0.95, β = 35.5 and initial conditions I0 = 12, S0 = 13.

(a) Bifurcation diagram for In (b) Bifurcation diagram for Sn

Figure 4. Bifurcation diagrams for system (1) with α = 0.9, d = 0.87, 6 6 β 6 18 and initial conditions
I0 = S0 = 5.

parameter α is taken as α = 0.5, 0.501, . . . , 0.509. In this case, infected class is directly
proportional to α, whereas susceptible population is inversely proportional to α (see
Figs. 7(a) and 7(b)).

Nonlinear Anal. Model. Control, 22(2):173–187
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(a) In with variation in β (b) Sn with variation in β

Figure 5. Plots for system (1) with α = 0.5, d = 0.6, β = 3.3, 3.01, 3.02, . . . , 3.09 and initial conditions
I0 = 1.56, S0 = 2.88.

(a) In with variation in d (b) Sn with variation in d

Figure 6. Plots for system (1) with α = 0.5, β = 3.3, d = 0.6, 0.6001, 0.6002, . . . , 0.6009 and initial
conditions I0 = 1.56, S0 = 2.88.

(a) In with variation in α (b) Sn with variation in α

Figure 7. Plots for system (1) with d = 0.6, β = 3.3, α = 0.5, 0.501, 0.502, . . . , 0.509 and initial conditions
I0 = 1.56, S0 = 2.88.
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