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Abstract. The analytical and numerical studies are performed to investigate the non-uniform
heat generation/absorption effect on the boundary layer flow of an incompressible, electrically
conducting nanofluid over a vertical plate in the presence of thermal radiation. The highly nonlinear
governing equations along with the boundary conditions are converted into ordinary differential
equations by appropriate similarity transformations. The transformed highly nonlinear ordinary
differential equations are solved both analytically and numerically using homotopy analysis method
and fourth-order Runge–Kutta method with shooting technique, respectively, for the various values
of physical parameters. The results show that the presence of both space and temperature dependent
heat generation enhances the velocity and temperature profiles and reduces the solid volume fraction
of nanofluid profile. Comparison between present analytical and numerical results is found to be
good.

Keywords: homotopy analysis method, hydromagnetic flow, nanofluid, non-uniform heat genera-
tion/absorption, thermal radiation, vertical plate.

1 Introduction

Nonlinear phenomena play a crucial role in applied mathematics and physics. It is difficult
to solve nonlinear problems, especially to obtain the analytical solutions. An analytical
method for strongly nonlinear problems, namely the homotopy analysis method (HAM)
was proposed by Liao in 1992 [11]. HAM is a general analytic approach to get series
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solutions of various types of nonlinear equations, including algebraic equations, ordinary
differential equations, partial differential equations, differential-integral equations, differ-
ential-difference equations and coupled equations of them. Unlike perturbation method,
the HAM is independent of small or large physical parameters and thus is valid no matter
whether a nonlinear problem contains small or large physical parameters or not. More
importantly, different from all perturbation and traditional non-perturbation methods, the
HAM provides us a simple way to ensure the convergence of solution series, and therefore,
the HAM is valid even for strongly nonlinear problems. Besides, the HAM provides us
with great freedom to choose proper base functions to approximate a nonlinear problem
[11, 12, 14].

The study of flow and internal heat generation/absorption has many practical ap-
plications in manufacturing processes in industry. In thermal convection process, the
effect of heat generation/absorption is important where there exists high temperature
difference between the surface and the ambient fluid. The deposition rate in nuclear
reactors, electronic chips and semi conductor wafers is altered by heat generation. In
many theoretical studies on heat transfer and fluid flow problems, the internal heat gener-
ation/absorption is assumed to be constant, space-dependent or temperature-dependent
(non-uniform heat source/sink). The following researchers studied the effect of space
and temperature dependent internal heat generation/absorption on the fluid flow problems
recently [6, 7, 15, 19].

Nanofluids are suspensions of nanoparticles (usually 1–100 nm) in fluids, which were
introduced by Choi [5] that show significant enhancement of their properties at modest
nanoparticles concentration. Many of the publications on nanofluids are about understand-
ing their behavior so that they can be utilized where straight heat transfer enhancement
is paramount as in many industrial applications such as nuclear reactors, transportation,
electronics as well as biomedicine and food. Boungiorno et al. [3] proposed an analytical
model for convective transport in nanofluids taking into the account of Brownian diffusion
and thermophoresis. The following papers investigated the nanofluid flow problems over
a vertical plate with various physical effects numerically using Boungiorno model in the
absence of space and temperature dependent heat generation/absorption [1, 4, 8–10, 16–
18, 20, 21, 23, 24].

Keeping this in mind, we have performed both analytical and numerical investigation
on the problem of heat transfer of hydromagnetic nanofluid flow over vertical plate in
the presence of thermal radiation, space and temperature dependent internal heat gener-
ation/absorption. The nonlinear governing equations along with the boundary conditions
are converted into ordinary differential equations by appropriate similarity transforma-
tions. The transformed equations are solved both analytically and numerically using ho-
motopy analysis method and fourth-order Runge–Kutta method with shooting technique,
respectively.

2 Formulation of the problem
We consider steady two-dimensional boundary layer flow of a nanofluid over vertical
plate in the presence of magnetic field intensity, thermal radiation and volumetric rate of
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heat generation/absorption. We select a coordinate frame, in which the x-axis is aligned
vertically upwards. We consider a vertical plate at y = 0. At this boundary, the tem-
perature T and the nanoparticles volume fraction φ take constant values Tw and φw,
respectively. When y → ∞, the temperature T and the nanoparticles volume fraction
of the nanofluid φ take values T∞ and φ∞, respectively. We consider the influence of
a constant magnetic field of strength B0 that is applied along the normal direction of
the plate. It is further assumed that the induced magnetic field strength is negligible in
comparison to the applied magnetic field. Under the above assumptions, the boundary
layer equations governing the flow, thermal and concentration fields can be written in
dimensional form as [10]

∂u

∂x
+
∂v

∂y
= 0, (1)

∂p

∂x
= µ

∂2u

∂y2
− ρf

(
u
∂u

∂x
+ v

∂u

∂y

)
− σB2

0u

+
[
(1− φ∞)ρf∞βg(T − T∞)− (ρp − ρf∞)g(φ− φ∞)

]
, (2)

u
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q′′′
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[
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∂T

∂y
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(
∂T

∂y

)2]
, (3)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

∂2φ

∂y2
+
DT

T∞

∂2T

∂y2
, (4)

where u and v are the velocity components along the x and y directions, respectively.
p is the fluid pressure, ρf is the density of base fluid, ρp is the nanoparticle density, µ is
the absolute viscosity of the base fluid, α = k/(ρc)f is the thermal diffusivity of the
base fluid, τ = (ρc)p/(ρc)f is the ratio of nanoparticles heat capacity and the base fluid
heat capacity, φ is the local solid volume fraction of the nanofluid, β is volumetric thermal
expansion coefficient of the base fluid,DB is the Brownian diffusion coefficient,DT is the
thermophoretic diffusion coefficient, T is the local temperature and g is the acceleration
due to gravity. B0 is the constant magnetic field, and q′′′ is the space and temperature
dependent internal heat generation/absorption (non-uniform heat source/sink), which can
be expressed as [6, 7, 15, 19]

q′′′ =
kRa1/2x

2x2
[
A(Tw − T∞)s′(η) +B(T − T∞)

]
,

where A and B are the parameters of the space and temperature dependent internal heat
generation/absorption, s is defined in Eq. (8). It is to be noted thatA andB are positive to
internal heat source and negative to internal heat sink. The boundary conditions are taken
to be

u = 0, v = 0, T = Tw, φ = φw at y = 0,

u = v = 0, T → T∞, φ→ φ∞ as y →∞.
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The radiative heat flux qr is described by Roseland approximation [5, 6] such that

qr = −4σ∗

3δ

∂T 4

∂y
, (5)

where σ∗ and δ are the Stefan–Boltzmann constant and the mean absorption coefficient,
respectively. We assume that the temperature differences within the flow are sufficiently
small so that the T 4 can be expressed as a linear function after using Taylor series to
expand T 4 about the free stream temperature T∞ and neglecting higher-order terms. This
result is the following approximation:

T 4 ∼= 4T 3
∞T − 3T 4

∞. (6)

Using (5) and (6) in (3), we obtain

u
∂T

∂x
+ v

∂T

∂y
= α∇2T +

1

(ρc)f

16σ∗T 3
∞

3δ

∂2T

∂y2
+

1

(ρc)f
q′′′

+ τ

[
DB

∂φ

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2]
. (7)

3 Similarity transformations

The following similarity transformations are introduced to transform Eqs. (2), (4) and (7)
into ordinary differential equations:

η =
y

x
Ra1/4x , ψ = αRa1/4x s(η),

θ(η) =
T − T∞
Tw − T∞

, f(η) =
φ− φ∞
φw − φ∞

(8)

with the local Rayleigh number, which is defined as

Rax =
(1− φ∞)gβ(Tw − T∞)x3

να
,

and the stream function ψ(x, y) is defined such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

So, the continuity equation (1) is identically satisfied. After some algebraic manipulation,
the momentum, energy and the solid volume fraction equations are obtained as follows:

s′′′ +
1

4Pr
(3ss′′ − 2s′2 − 4M

√
Prs′) + θ −Nrf = 0, (9)(

1 +
4N

3

)
θ′′ +

3

4
sθ′ + Nbf ′θ′ + Nt θ′2 +

1

2
[As′ +Bθ] = 0, (10)

f ′′ +
3

4
Lesf ′ +

Nt

Nb
θ′′ = 0, (11)
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where primes denote differentiation with respect to η, and the non-dimensional parame-
ters, Prandtl number Pr, buoyancy-ratio parameter Nr, Brownian motion parameter Nb,
thermophoresis parameter Nt, Lewis number Le, radiation parameter N , heat generation
or absorption parametersA andB and magnetic field parameterM are defined as follows:

Pr =
ν

α
, Nr =

(ρp − ρf∞)(φw − φ∞)

ρf∞β(Tw − T∞)(1− φ∞)
,

Nb =
(ρc)pDB(φw − φ∞)

(ρc)fα
, Nt =

(ρc)pDT (Tw − T∞)

(ρc)fαT∞
,

Le =
α

DB
, M =

σB2
0x

1/2

ρf
√

(1− φ∞)gβ(Tw − T∞)
, N =

4σ∗T 3
∞

kδ
.

It is to be mentioned that due to the x-dependence of the magnetic field parameter M ,
Eq. (9) is locally similar. A choice of B0 ∼ x−1/4 eliminates the dependence of M on x,
thus, Eq. (9) becomes self similar.

The corresponding boundary conditions are as follows:

s(η) = 0, s′(η) = 0, θ(η) = 1, f(η) = 1 at η = 0, (12)
s′(η) = 0, θ(η) = 0, f(η) = 0 as η →∞. (13)

A quantities of practical interest are the Nusselt number Nu and Sherwood number Sh
defined by

Nu =
xq′′w

k(Tw − T∞)
, Sh =

xq′′m
DB(φw − φ∞)

,

where q′′w and q′′m are the wall heat flux and mass flux. Following Kuznetsov and Nield
[10], the reduced local Nusselt number Nur and reduced local Sherwood number Shr can
be introduced and represented as follows:

Nur = Ra1/4x Nu = −
(

1 +
4N

3

)
θ′(0), Shr = Ra1/4x Sh = −f ′(0).

4 Analytical solution by homotopy analysis method

Equations (9)–(11) are solved under the corresponding boundary conditions (12) and (13)
by using HAM. For HAM solutions, we choose the initial guesses and auxiliary linear
operators in the following form:

s0(η) = 1− e−η − ηe−η, θ0(η) = e−η, f0(η) = e−η,

L1(s) = s′′′ − s′, L2(θ) = θ′′ + θ, L3(f) = f ′′ + f,

L1

(
c1 + c2eη + c3e−η

)
= L2

(
c1eη + c2e−η

)
= L3

(
c1eη + c2e−η

)
= 0,
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where c1, c2 and c3 are constants. Let pε[0, 1] be the embedding parameter, and h1, h2
and h3 are the non-zero auxiliary parameters. We then construct the following problems:
zeroth-order deformation problems

(1− p)L1

[
s(η, p)− s0(η)

]
= ph1N1

[
s(η, p), θ(η, p), f(η, p)

]
,

(1− p)L2

[
θ(η, p)− θ0(η)

]
= ph2N2

[
s(η, p), θ(η, p), f(η, p)

]
,

(1− p)L3

[
f(η, p)− f0(η)

]
= ph3N3

[
s(η, p), θ(η, p), f(η, p)

]
,

s(0, p) = 0, s′(0, p) = 1, s′(∞, p) = 0,

θ(0, p) = 1, θ(∞, p) = 0,

f(0, p) = 1, f(∞, p) = 0

and

N1

[
s(η, p), θ(η, p), f(η, p)

]
= s′′′(η, p) +

1

4Pr

(
3s(η, p)s′′(η, p)− 2s′2(η, p)

− 4M
√

Prs′(η, p)
)

+ θ(η, p)−Nrf(η, p),

N2

[
s(η, p), θ(η, p), f(η, p)

]
=

(
1 +

4N

3

)
θ′′(η, p) +

3

4
s(η, p)θ′(η, p)

+ Nbf ′(η, p)θ′(η, p) + Ntθ′2(η, p)

+
1

2

[
As′(η, p) +Bθ(η, p)

]
,

N3

[
s(η, p), θ(η, p), f(η, p)

]
= f ′′(η, p) +

3

4
Les(η, p)f ′(η, p) +

Nt

Nb
θ′′(η, p).

For p = 0 and p = 1, we have

s(η, 0) = s0(η), s(η, 1) = s(η),

θ(η, 0) = θ0(η), θ(η, 1) = θ(η),

f(η, 0) = f0(η), f(η, 1) = f(η).

Due to Taylor’s series with respect to p, we have

s(η, p) = s0(η) +

∞∑
m=1

sm(η)pm,

θ(η, p) = θ0(η) +

∞∑
m=1

θm(η)pm,

f(η, p) = f0(η) +

∞∑
m=1

fm(η)pm,
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sm(η) =
1

m!

∂m(s(η, p))

∂pm
,

θm(η) =
1

m!

∂m(θ(η, p))

∂pm
,

fm(η) =
1

m!

∂m(f(η, p))

∂pm
,

and thus, mth-order deformation problems

L1

[
sm(η)− χmsm−1(η)

]
= h1R

s
m(η),

L2

[
θm(η)− χmθm−1(η)

]
= h2R

θ
m(η),

L3

[
fm(η)− χmfm−1(η)

]
= h3R

f
m(η)

and
sm(0) = s′m(0) = s′m(∞) = 0,

θm(0) = θm(∞) = 0,

fm(0) = f ′m(∞) = 0,

where

Rsm = s′′′m−1 +
1

4Pr

(
3

m−1∑
i=0

sm−1−is
′′
i − 2

m−1∑
i=0

s′m−1−is
′
i − 4M

√
Prs′m−1

)
+ θm−1 −Nrfm−1,

Rθm =

(
1 +

4N

3

)
θ′′m−1 +

3

4

m−1∑
i=0

sm−1−iθ
′
i

+ Nb

m−1∑
i=0

f ′m−1−iθ
′
i + Nt

m−1∑
i=0

θ′m−1−iθ
′
i +

1

2
[As′m−1 +Bθm−1],

Rfm = f ′′m−1 +
3

4
Le

m−1∑
i=0

sm−1−if
′
i +

Nt

Nb
θ′′m−1.

Here χm = 0 for m 6 1 and χm = 1 for m > 1; h is chosen in such a way that these
three series are convergent at p = 1. Therefore, we have

s(η) = s0(η) +

∞∑
m=1

sm(η),

θ(η) = θ0(η) +

∞∑
m=1

θm(η),

f(η) = f0(η) +

∞∑
m=1

fm(η).
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4.1 Convergence of HAM

As pointed by Liao [14], the convergence rate of approximation for the HAM solution
strongly depends on the values of auxiliary parameter. It is essential to adopt a proper
value of the auxiliary parameters h1, h2 and h3, which can adjust and control the conver-
gence of the HAM solution. The range of the h curves of the functions s′′(0), θ′(0) and
f ′(0) for 15th order of approximations is shown in Fig. 1. It is found that the range of the
admissible values of h1, h2 and h3 are−1.66h160.1,−1.46h260.0,−1.46h360.0.

Ress = s′′′ +
1

4Pr
(3ss′′ − 2s′2 − 4M

√
Prs′) + θ −Nrf, (14)

Resθ =

(
1 +

4N

3

)
θ′′ +

3

4
sθ′ + Nbf ′θ′ + Nt θ′2 +

1

2
[As′ +Bθ], (15)

Resf = f ′′ +
3

4
Lesf ′ +

Nt

Nb
θ′′. (16)

In order to choose the optimal value of auxiliary parameter h, we have presented the
average residual error as (see [13, 22] for more details)

∆s,m =
1

K

K∑
i=0

[
Ress

(
m∑
j=0

sj(i∆x)

)]2
,

∆θ,m =
1

K

K∑
i=0

[
Resθ

(
m∑
j=0

θj(i∆x)

)]2
,

∆f,m =
1

K

K∑
i=0

[
Resf

(
m∑
j=0

fj(i∆x)

)]2
,

where ∆x = 10/K and K = 15. For the given order of approximation m, the optimal
value of h is given by the minimum values of ∆s,m,∆θ,m and ∆f,m corresponding to the

Figure 1: s′′(0), θ′(0) and f ′(0) plots for determining of optimum of h coefficient
at 15 th order of approximation.

with the increase of magnetic parameter (Fig. 3(a)). The temperature and solid
volume fraction profiles (Fig.3(b) and 3(c)) increase in the presence of magnetic
parameter. This is because, a drag-like Lorentz force is created by the transverse
magnetic field on the electrically conducting fluid. This force has the tendency to
slow down the flow and increase the temperature and solid volume fraction profiles
of the nanofluid.

Fig. 4 shows the effect of thermal radiation parameter on the velocity, tem-
perature and solid fraction of nanofluid profiles. It is observed that the increasing
values of radiation parameter increase the velocity and temperature profiles (Fig.
4(a) and 4(b)) and reduce the solid volume fraction of nanofluid profile (Fig. 4(c)).

The effect of Brownian motion and thermophoresis parameters on the velocity,
temperature and solid volume fraction of nanofluid profiles is depicted in Fig.
5. It is noticed that the velocity and temperature profiles (Fig. 5(a) and 5(b))
increase with the increase of Nb and Nt. Due to the fact that the thermophoresis
parameter Nt is directly proportional to the heat transfer coefficient associated
with the nanofluid. It is observed from fig. 5(c), the solid volume fraction of
nanofluid profile decreases with the increase of Brownian motion and thermophore-
sis parameters.

The values of the reduced Nusselt number and the local Sherwood number
for different values of physical parameters are tabulated in Table 2. The reduced
Nusselt number and the local Sherwood number increase with the increasing values

11

Figure 1. s′′(0), θ′(0) and f ′(0) plots for determining of optimum of h coefficient at 15th order of
approximation.
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nonlinear algebraic equations:

d∆s,m

dh
= 0,

d∆θ,m

dh
= 0,

d∆f,m

dh
= 0.

In the present calculation, h = h1 = h2 = h3 = −0.35 for the whole region η.

5 Numerical method for solution

The nonlinear coupled differential equations (9)–(11) along with the boundary condi-
tions (12)–(13) form a two point boundary value problem and is solved using shooting
technique together with fourth-order Runge–Kutta integration scheme by converting it
into an initial value problem. In this method, we have to choose a suitable finite value
of η → ∞, say η∞. Considering y1 = s, y4 = θ, and y6 = f , we set the following
first-order system:

y′1 = y2, y′2 = y3,

y′3 = − 1

4Pr

(
3y1y3 − 2y22 − 4M

√
Pry2

)
− y4 +Nry6, y′4 = y5,

y′5 =

(
−3

4
y1y5 −Nby7y5 −Nty25 −

1

2
(Ay2 +By4)

)
3

3 + 4N
,

y′6 = y7, y′7 = −3

4
Ley1y7 −

Nt

Nb
y′5

(17)

with the boundary conditions

y1(0) = 0, y2(0) = 0, y4(0) = 1 and y6(0) = 1. (18)

To solve (17) with (18) as an initial value problem, we must need the values for y3(0) i.e.
s′′(0), y5(0) i.e. θ′(0) and y7(0) i.e. f ′(0), but no such values are given. The initial guess
values for s′′(0), θ′(0) and f ′(0) are chosen and the fourth-order Runge–Kutta integration
scheme is applied to obtain the solution. Then we compare the calculated values of s′(η),
θ(η) and f(η) at η∞ with the given boundary conditions s′(η∞) = 0, θ(η∞) = 0 and
f(η∞) = 0 and adjust the values of s′′(0), θ′(0) and f ′(0) using the shooting technique to
give better approximation for the solution. The process is repeated until we get the results
correct up to the desired accuracy of 10−8 level, which fulfills the convergence criterion.

6 Results and discussion

Equations (9)–(11) subject to the boundary conditions (12)–(13) are solved both ana-
lytically and numerically. The results are discussed through graphical illustrations for
some values of the governing parameters Pr, Le, M , A, B, N , Nr, Nb and Nt. In order
to verify the accuracy of our present study, the values of the reduced Nusselt number
Nur = Ra1/4x Nu in the limiting case of a regular fluid for various values of Prandtl

Nonlinear Anal. Model. Control, 22(1):1–16
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Table 1. Test results.

Pr Nur = Ra
1/4
x Nu

Bejan [2] Present results: analytical, numerical
1 0.401 0.40103 0.40102817
10 0.465 0.46496 0.46496287
100 0.490 0.49000 0.49000028

Figure 2: Effect of heat generation/absorption parameter on (a) dimensionless
velocity profile (b) dimensionless temperature profile (c) dimensionless solid
volume fraction of the nanofluid profile with Pr = 1, Le = 1,M = N = 0.5
and Nb = Nt = Nr = 0.1.

12

(a)

Figure 2: Effect of heat generation/absorption parameter on (a) dimensionless
velocity profile (b) dimensionless temperature profile (c) dimensionless solid
volume fraction of the nanofluid profile with Pr = 1, Le = 1,M = N = 0.5
and Nb = Nt = Nr = 0.1.

12

(b)

Figure 2: Effect of heat generation/absorption parameter on (a) dimensionless
velocity profile (b) dimensionless temperature profile (c) dimensionless solid
volume fraction of the nanofluid profile with Pr = 1, Le = 1,M = N = 0.5
and Nb = Nt = Nr = 0.1.

12

(c)

Figure 2. Effect of heat generation/absorption parameter on (a) dimensionless velocity profile (b) dimensionless
temperature profile (c) dimensionless solid volume fraction of the nanofluid profile with Pr = 1, Le = 1,
M = N = 0.5 and Nb = Nt = Nr = 0.1.

number are compared and displayed in Table 1, which shows an excellent agreement with
those reported by Bejan [2].

Figure 2 demonstrates the effect of space and temperature dependent heat gener-
ation/absorption parameters on the velocity, temperature and solid volume fraction of
nanofluid profiles, respectively. It is observed that the increasing values of both heat
generation parameters (A > 0 and B > 0) lead to increase the velocity (Fig. 2a) and
temperature profiles (Fig. 2b) and decreases the solid volume fraction of nanofluid profile
(Fig. 2c). A reverse trend has been observed for increasing values of heat absorption
parameters (A < 0 and B < 0). Due to the fact that the presence of space and temper-
ature dependent heat generation enhances the momentum and thermal boundary layers
thicknesses and reduces the nanofluid concentration boundary layer thickness.

http://www.mii.lt/NA
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Figure 3: Effect of magnetic parameter on (a) dimensionless velocity profile (b)
dimensionless temperature profile (c) dimensionless solid volume fraction of the
nanofluid profile with Pr = 1, Le = 1, N = 0.5, A = B = 0.2 and Nb = Nt =
Nr = 0.1.

15

(a)

Figure 3: Effect of magnetic parameter on (a) dimensionless velocity profile (b)
dimensionless temperature profile (c) dimensionless solid volume fraction of the
nanofluid profile with Pr = 1, Le = 1, N = 0.5, A = B = 0.2 and Nb = Nt =
Nr = 0.1.

15

(b)

Figure 3: Effect of magnetic parameter on (a) dimensionless velocity profile (b)
dimensionless temperature profile (c) dimensionless solid volume fraction of the
nanofluid profile with Pr = 1, Le = 1, N = 0.5, A = B = 0.2 and Nb = Nt =
Nr = 0.1.

15

(c)

Figure 3. Effect of magnetic parameter on (a) dimensionless velocity profile (b) dimensionless temperature
profile (c) dimensionless solid volume fraction of the nanofluid profile with Pr = 1, Le = 1, N = 0.5,
A = B = 0.2 and Nb = Nt = Nr = 0.1.

The effect of magnetic parameter on the velocity, temperature and solid volume frac-
tion profiles of nanofluid is illustrated in Fig. 3. The velocity profile diminishes with
the increase of magnetic parameter (Fig. 3a). The temperature and solid volume fraction
profiles (Figs. 3b and 3c) increase in the presence of magnetic parameter. This is because
a drag-like Lorentz force is created by the transverse magnetic field on the electrically
conducting fluid. This force has the tendency to slow down the flow and increase the
temperature and solid volume fraction profiles of the nanofluid.

Figure 4 shows the effect of thermal radiation parameter on the velocity, temperature
and solid fraction of nanofluid profiles. It is observed that the increasing values of radia-
tion parameter increase the velocity and temperature profiles (Figs. 4a and 4b) and reduce
the solid volume fraction of nanofluid profile (Fig. 4c).

The effect of Brownian motion and thermophoresis parameters on the velocity, tem-
perature and solid volume fraction of nanofluid profiles is depicted in Fig. 5. It is noticed
that the velocity and temperature profiles (Fig. 5a and 5b) increase with the increase of
Nb and Nt. Due to the fact that the thermophoresis parameter Nt is directly proportional
to the heat transfer coefficient associated with the nanofluid. It is observed from Fig. 5c,
the solid volume fraction of nanofluid profile decreases with the increase of Brownian
motion and thermophoresis parameters.

Nonlinear Anal. Model. Control, 22(1):1–16
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The values of the reduced Nusselt number and the local Sherwood number for differ-
ent values of physical parameters are tabulated in Table 2. The reduced Nusselt number
and the local Sherwood number increase with the increasing values of Pr, Le and de-
creases with M and Nr. The increasing values of N , Nb and Nt decrease the reduced
Nusselt number and increase the local Sherwood number. The space and temperature
dependent heat generation parameter decreases the reduced Nusselt number and increases
the local Sherwood number. An opposite trend is observed in heat absorption case.

Figure 4: Effects of radiation parameter on (a) dimensionless velocity profile (b)
dimensionless temperature profile (c) dimensionless solid volume fraction of the
nanofluid profile with Pr = 1, Le = 1,M = 0.5, λ = 0.1 andNb = Nt = Nr = 0.1.

16
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Figure 4: Effects of radiation parameter on (a) dimensionless velocity profile (b)
dimensionless temperature profile (c) dimensionless solid volume fraction of the
nanofluid profile with Pr = 1, Le = 1,M = 0.5, λ = 0.1 andNb = Nt = Nr = 0.1.
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Figure 4: Effects of radiation parameter on (a) dimensionless velocity profile (b)
dimensionless temperature profile (c) dimensionless solid volume fraction of the
nanofluid profile with Pr = 1, Le = 1,M = 0.5, λ = 0.1 andNb = Nt = Nr = 0.1.
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Figure 4. Effects of radiation parameter on (a) dimensionless velocity profile (b) dimensionless temperature
profile (c) dimensionless solid volume fraction of the nanofluid profile with Pr = 1, Le = 1, M = 0.5,
λ = 0.1 and Nb = Nt = Nr = 0.1.

Table 2. Values of Nur and Shr. While studying the effect of individual parameters, the following
values are assumed: M = 0.4, N = 0.2, Pr = 2, Le = 3, A = B = 0.2, Nr = 0.3 and
Nb = Nt = 0.6.

Parameters Values Nur Shr
Analytical Numerical Analytical Numerical

M 0.2 0.09711 0.09710535 0.78412 0.78411889
0.4 0.08642 0.08642488 0.76128 0.76128103
0.6 0.07641 0.07640703 0.74131 0.74131095

N 0.1 0.07724 0.07724455 0.76833 0.76832625
0.2 0.08642 0.08642488 0.76128 0.76128103
0.3 0.09356 0.09355816 0.75590 0.75589610
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Table 2. (Continued.)

Parameters Values Nur Shr
Analytical Numerical Analytical Numerical

Pr 1 0.06558 0.06557969 0.72460 0.72460278
2 0.08642 0.08642488 0.76128 0.76128103
3 0.09581 0.09581089 0.78213 0.78212636

Le 1 0.08571 0.08570693 0.47458 0.47458155
3 0.08642 0.08642488 0.76128 0.76128103
5 0.08722 0.08721566 0.91955 0.91954889

A −0.2 0.17561 0.17561218 0.67251 0.67251068
0 0.13559 0.13559884 0.71501 0.71501128
0.2 0.08642 0.08642488 0.76128 0.76128103

B −0.2 0.24424 0.24424189 0.61238 0.61238097
0 0.16928 0.16927741 0.68554 0.68553680
0.2 0.08642 0.08642488 0.76128 0.76128103

Nr 0.1 0.09256 0.09255960 0.77869 0.77868667
0.2 0.08955 0.08954690 0.77012 0.77012485
0.3 0.08642 0.08642488 0.76128 0.76128103

Nb = Nt 0.3 0.13108 0.13107506 0.72201 0.72201342
0.6 0.08643 0.08642488 0.76128 0.76128103
0.9 0.05179 0.05178774 0.79027 0.79027452

Figure 5: Effects of Brownian motion and thermophoresis parameters on
(a) dimensionless velocity profile (b) dimensionless temperature profile (c)
dimensionless solid volume fraction of the nanofluid profile with Pr = 1, Le = 1,
Nr = 0.1, A = B = 0.2 and M = N = 0.5.
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Figure 5. Effects of Brownian motion and thermophoresis parameters on (a) dimensionless velocity profile (b)
dimensionless temperature profile (c) dimensionless solid volume fraction of the nanofluid profile with Pr = 1,
Le = 1, Nr = 0.1, A = B = 0.2 and M = N = 0.5.
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7 Conclusions

A two-dimensional steady free convective hydromagnetic laminar incompressible bound-
ary layer flow of an electrically conducting nanofluid past a vertical plate with the effects
of thermal radiation in the presence of non-uniform heat source or sink is studied both
analytically and numerically. Homotopy analysis method is used to find the analytical
solutions, whereas numerical solutions are obtained by fourth-order Runge–Kutta method
with shooting technique for the governing nonlinear dimensionless ordinary differential
equations. The main conclusions derived from the present study are as follow:

• The increasing values of radiation, Brownian motion and thermophoresis parame-
ters enhance the nanofluid velocity and temperature profiles and diminish the solid
volume fraction profile.

• The presence of magnetic field reduces the velocity and solid volume fraction
profiles and enhances the temperature profile.

• The velocity and temperature profiles increase in the presence of space and temper-
ature dependent heat generation and decreases in heat absorption case. The solid
volume fraction profile increases in the presence of heat absorption and decreases
in heat generation case.

• The space and temperature dependent heat absorption parameters increase the re-
duced Nusselt number and decrease the local Sherwood number, but both space and
temperature dependent heat generation parameters show an opposite effect on the
reduced Nusselt number and the local Sherwood number.

• The space and temperature dependent heat absorption case is better suited for cool-
ing purposes.
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