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Abstract. We bring in the notion of rational g-ω-weak contractions in metric-like spaces and
demonstrate common fixed point results for such mappings in 0-σ-complete metric-like spaces.
Examples are given to support the usability of our results and to show that they are improvements
of some known ones. An application to second-order differential equations is presented in the final
section.
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1 Introduction

Matthews [7] introduced the notion of partial metric space as a part of the study of
denotational semantics of dataflow network. In such spaces, the usual metric is replaced
by a partial metric with the property that the self distance for a point of space may
not be zero. Further, Matthews showed that the Banach contraction principle is valid in
partial metric spaces and can be applied in program verification. Later, several authors
generalized the Matthews’s result.

Romaguera [9] introduced the notion of 0-Cauchy sequence and 0-complete partial
metric space, and proved some characterizations of partial metric spaces in terms of
completeness and 0-completeness.
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Recently, Amini-Harandi [5] has introduced the notion of metric-like space, which
is a new generalization of partial metric space. Amini-Harandi defined σ-completeness
of metric-like spaces. Further, Shukla et al. have introduced in [10] the notion of 0-σ-
complete metric-like space and proved some fixed point theorems in such spaces, as
improvements of Amini-Harandi’s results.

Alber and Guerre-Delabriere in [4] suggested a generalization of the Banach contrac-
tion mapping principle by introducing the concept of a weak contraction in Hilbert spaces.
Rhoades [8] extended their result to complete metric spaces. Very recently, Abbas and
Ðorić [3], as well as Abbas and Ali Khan [2] have obtained common fixed points for four
and two mappings, respectively, which satisfy generalized weak contractive conditions.

The purpose of this paper is to present some fixed point theorems involving weakly
contractive mappings in the context of metric-like spaces. The presented theorems im-
prove the results of papers [5] and [10]. We introduce the notion of rational g-ω-weak
contractions in metric-like spaces and prove some fixed point results for such mappings
in 0-σ-complete metric-like spaces. Examples are given to support the usability of our
results and to show that the mentioned improvements are proper.

An application to the study of existence and uniqueness of solutions for a class of
two-point boundary value problems for second-order differential equations is discussed
by using the obtained fixed point results.

2 Preliminaries

A selfmap f of a metric space X is weakly contractive (or ψ-weakly contractive) if for
all x, y ∈ X ,

d(fx, fy) 6 d(x, y)− ψ
(
d(x, y)

)
,

where ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function with ψ(0) = 0,
ψ(t) > 0 for all t ∈ (0,∞), and limt→∞ ψ(t) = ∞. It is clear that weakly contractive
maps are continuous and include contraction maps as a special case for the choice ψ(t) =
(1− k)t, k ∈ [0, 1).

Let f and g be self maps on a set X . Recall [1] that if w = fx = gx for some x ∈ X ,
then x is called a coincidence point of f and g, and w is called a point of coincidence
of f and g. The pair {f, g} of self maps is weakly compatible if they commute at their
coincidence points. It is easy to show [1] that if weakly compatible self maps f and g on
a set X have a unique point of coincidence w = fx = gx, then w is the unique common
fixed point of f and g.

Definition 1. (See [5].) A metric-like on a nonempty set X is a mapping σ : X ×X →
R+ such that for all x, y, z ∈ X ,

(σ1) σ(x, y) = 0 implies x = y,
(σ2) σ(x, y) = σ(y, x),
(σ3) σ(x, y) 6 σ(x, z) + σ(z, y).

The pair (X,σ) is called a metric-like space.
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Definition 2. (See [5, 10].) Let (X,σ) be a metric-like space. A sequence {xn} is said
to σ-converge to a point x ∈ X if limn→∞ σ(xn, x) = σ(x, x). A sequence {xn} in X
is called a 0-σ-sequence if there exists a point x ∈ X such that limn→∞ σ(xn, x) =
σ(x, x) = 0. A subset A ⊂ X is called σ-closed if every convergent sequence in A has
all of its limits in A. The subset A is called 0-closed if every 0-σ-convergent sequence in
A has a limit in A.

Remark 1. Every σ-closed subset of X is necessarily 0-closed, but the converse is not
necessarily true. For instance, let X = R+, A = [0, 1) ⊂ X and the metric-like on X
be defined by σ(x, y) = max{x, y} for all x, y ∈ X . Then A is not a σ-closed subset
of X . Indeed, for any sequence {xn} ⊂ A, we have limn→∞ σ(xn, 1) = σ(1, 1) = 1,
i.e., xn → 1 /∈ A as n→∞. Whereas, it is easy to see that A is 0-closed.

Definition 3. (See [10].) Let (X,σ) be a metric-like space. A sequence {xn} is called
a 0-σ-Cauchy sequence if limm,n→∞ σ(xn, xm) = 0. The space (X,σ) is said to be
0-σ-complete if every 0-σ-Cauchy sequence inX σ-converges to a point x ∈ X such that
σ(x, x) = 0.

Lemma 1. (See [10].) Let (X,σ) be a metric-like space, and let {xn} be a sequence in
X such that limn→∞ σ(xn+1, xn) = 0. If {xn} is not a 0-σ-Cauchy sequence in (X,σ),
then there exist ε > 0 and two sequences {mk} and {nk} of positive integers such that
nk > mk > k, and the following four sequences tend to ε when k →∞:{

σ(xmk
, xnk

)
}
,
{
σ(xmk

, xnk+1)
}
,
{
σ(xmk−1, xnk

)
}
,
{
σ(xmk−1, xnk+1)

}
.

Remark 2. Notice that if the condition of the above lemma is satisfied, then the sequences
{σ(xmk−1, xnk−1)} and {σ(xmk+1, xnk+1)} also converge to ε when k →∞.

Proof. By (σ3) we have

σ(xmk−1, xnk−1) 6 σ(xmk−1, xmk
) + σ(xmk

, xnk
) + σ(xnk

, xnk−1),

σ(xmk
, xnk

) 6 σ(xmk
, xmk−1) + σ(xmk−1, xnk−1) + σ(xnk−1, xnk

).

Passing to the limit when k → ∞ and using Lemma 1 in the above inequalities, we
obtain limk→∞ σ(xmk−1, xnk−1) = ε. Similarly, one can obtain that the sequence
{σ(xmk+1, xnk+1)} also converges to ε when k →∞.

As an improvement of [5, Thm. 2.4], the following result was proved in [10].

Theorem 1. (See [10].) Let (X,σ) be a 0-σ-complete metric-like space. Suppose that
mappings f, g : X → X satisfy

σ(fx, fy) 6 ψ
(
M(x, y)

)
for all x, y ∈ X , where ψ : [0,∞) → [0,∞) is a nondecreasing function satisfying
ψ(t) < t for all t > 0, lims→t+ ψ(s) < t for all t > 0, limt→∞(t− ψ(t)) =∞ and

M(x, y) = max
{
σ(gx, gy), σ(gx, fx), σ(gy, fy), σ(gx, fy), σ(gy, fx),

σ(gx, gx), σ(gy, gy)
}
.
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If the range of g contains the range of f and f(X) or g(X) is a 0-closed subset of X ,
then f and g have a unique point of coincidence in X . Moreover, if f and g are weakly
compatible, then f and g have a unique common fixed point v and σ(v, v) = 0.

3 Main results

In further discussion, we denote byΩ, the class of all functions ω : [0,∞)→ [0,∞) such
that ω is lower semi-continuous with ω(t) = 0 if and only if t = 0.

Definition 4. Let (X, d) be a metric-like space and f, g : X → X be two mappings. The
mapping f is called a rational g-ω-weak contraction if there exists ω ∈ Ω such that the
condition

σ(fx, fy) 6 Rf,g(x, y)− ω
(
Rf,g(x, y)

)
(1)

is satisfied for all x, y ∈ X , where

Rf,g(x, y) = max

{
σ(gx, gy), σ(gx, fx), σ(gy, fy),

σ(gx, fx)σ(gy, fy)

1 + σ(gx, gy)

}
. (2)

Lemma 2. Let (X,σ) be a metric-like space and f, g : X → X be two mappings such
that f is a rational g-ω-weak contraction. If f and g have a point of coincidence v ∈ X ,
then σ(v, v) = 0.

Proof. Let v ∈ X be the point of coincidence of f and g and u be the corresponding
coincidence point, that is, gu = fu = v. Notice that

Rf,g(u, u) = max

{
σ(gu, gu), σ(gu, fu), σ(gu, fu),

σ(gu, fu)σ(gu, fu)

1 + σ(gu, gu)

}
= max

{
σ(v, v), σ(v, v), σ(v, v),

σ(v, v)σ(v, v)

1 + σ(v, v)

}
= σ(v, v).

Using (1), we obtain

σ(v, v) = σ(fu, fu) 6 Rf,g(u, u)− ω
(
Rf,g(u, u)

)
= σ(v, v)− ω

(
σ(v, v)

)
.

The above inequality shows that ω(σ(v, v)) = 0, that is, σ(v, v) = 0, which completes
the proof.

The next theorem gives a sufficient condition for the existence of a unique common
fixed point of two mappings on a 0-σ-complete metric-like space.

Theorem 2. Let (X,σ) be a 0-σ-complete metric-like space and f, g : X → X be two
mappings such that f is a rational g-ω-weak contraction. If the range of g contains the
range of f and f(X) or g(X) is a 0-closed subset of X , then f and g have a unique
point of coincidence in X . Moreover, if f and g are weakly compatible, then f and g have
a unique common fixed point v and σ(v, v) = 0.
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Proof. Let x0 be an arbitrary point in X and choose a x1 ∈ X such that fx0 = y0 =
gx1 (say). This can be done, since the range of g contains the range of f . Similarly,
choose x2 ∈ X such that fx1 = y1 = gx2 (say). Continuing this process, having chosen
xn ∈ X , we obtain xn+1 ∈ X such that fxn = yn = gxn+1 (say). Thus, we obtain
a Jungck sequence {yn}n∈N = {gxn+1}n∈N.

First, we show the existence of point of coincidence of f and g. If yn−1 = yn for
some n ∈ N, then gxn = fxn = yn is a point of coincidence. Therefore, in further
calculations, we assume that yn−1 6= yn for all n > 1. We shall show that {yn} is a 0-σ-
Cauchy sequence in X .

Since σ(gxn, gxn+1) = σ(yn−1, yn) > 0, for every n ∈ N, we have

Rf,g(xn, xn+1) = max

{
σ(gxn, gxn+1), σ(gxn, fxn), σ(gxn+1, fxn+1),

σ(gxn, fxn)σ(gxn+1, fxn+1)

1 + σ(gxn, gxn+1)

}
= max

{
σ(yn−1, yn), σ(yn−1, yn), σ(yn, yn+1),

σ(yn−1, yn)σ(yn, yn+1)

1 + σ(yn−1, yn)

}
.

Therefore, using (1), we obtain

σ(yn, yn+1) = σ(fxn, fxn+1) 6 Rf,g(xn, xn+1)− ω
(
Rf,g(xn, xn+1)

)
< Rf,g(xn, xn+1)

= max

{
σ(yn−1, yn), σ(yn, yn+1),

σ(yn−1, yn)σ(yn, yn+1)

1 + σ(yn−1, yn)

}
6 max

{
σ(yn−1, yn), σ(yn, yn+1)

}
.

Therefore,
σ(yn, yn+1) < max

{
σ(yn−1, yn), σ(yn, yn+1)

}
.

If max{σ(yn−1, yn), σ(yn, yn+1)} = σ(yn, yn+1) for any n ∈ N, then the above in-
equality yields a contradiction. Therefore, we must have σ(yn, yn+1) < σ(yn−1, yn) for
all n ∈ N. Thus, the sequence {σ(yn, yn+1)} is a strictly decreasing sequence of positive
numbers. Let limn→∞ σ(yn, yn+1) = δ > 0. If δ > 0, then we have

σ(yn, yn+1) = σ(fxn, fxn+1) 6 Rf,g(xn, xn+1)− ω
(
Rf,g(xn, xn+1)

)
= max

{
σ(yn−1, yn), σ(yn−1, yn), σ(yn, yn+1),

σ(yn−1, yn)σ(yn, yn+1)

1 + σ(yn−1, yn)

}
− ω

(
max

{
σ(yn−1, yn), σ(yn−1, yn), σ(yn, yn+1),

σ(yn−1, yn)σ(yn, yn+1)

1 + σ(yn−1, yn)

})
.

Nonlinear Anal. Model. Control, 22(1):51–63



56 H.K. Nashine et al.

Since ω ∈ Ω, taking the upper limit as n→∞, we obtain

δ 6 max

{
δ,

δ2

1 + δ

}
− lim inf

n→∞
ω

(
max

{
σ(yn−1, yn), σ(yn, yn+1),

σ(yn−1, yn)σ(yn, yn+1)

1 + σ(yn−1, yn)

})
6 δ − ω(δ) < δ.

This contradiction shows that

lim
n→∞

σ(yn, yn+1) = δ = 0. (3)

We shall show that the sequence {yn} is a 0-σ-Cauchy sequence. Suppose to the
contrary that {yn} is not a 0-σ-Cauchy sequence. Then by Lemma 1 there exist ε > 0 and
two sequences {mk} and {nk} of positive integers such that nk > mk > k and

lim
k→∞

σ(ymk
, ynk

) = lim
k→∞

σ(ymk−1, ynk−1) = lim
k→∞

σ(ymk+1, ynk+1) = ε. (4)

For any k ∈ N, by definition

Rf,g(xmk
, xnk

) = max

{
σ(gxmk

, gxnk
), σ(gxmk

, fxmk
), σ(gxnk

, fxnk
),

σ(gxmk
, fxmk

)σ(gxnk
, fxnk

)

1 + σ(gxmk
, gxnk

)

}
= max

{
σ(ymk−1, ynk−1), σ(ymk−1, ymk

), σ(ynk−1, ynk
),

σ(ymk−1, ymk
)σ(ynk−1, ynk

)

1 + σ(ymk−1, ynk−1)

}
.

Therefore, it follows from (1) that

σ(ymk
, ynk

) = σ(fxmk
, fxnk

)

6 Rf,g(xmk
, xnk

)− ω
(
Rf,g(xmk

, xnk
)
)

= max

{
σ(ymk−1, ynk−1), σ(ymk−1, ymk

), σ(ynk−1, ynk
),

σ(ymk−1, ymk
)σ(ynk−1, ynk

)

1 + σ(ymk−1, ynk−1)

}
− ω

(
max

{
σ(ymk−1, ynk−1), σ(ymk−1, ymk

), σ(ynk−1, ynk
),

σ(ymk−1, ymk
)σ(ynk−1, ynk

)

1 + σ(ymk−1, ynk−1)

})
.
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Taking the upper limit as k →∞ in the above inequality and using (4), we obtain

ε 6 max{0, ε} − ω
(
max

{
0, ε,

ε2

1 + ε

})
= ε− ω(ε) < ε.

This contradiction shows that {yn} = {gxn+1} = {fxn} is a 0-σ-Cauchy sequence.
Suppose that g(X) is 0-closed (the proof for the case when f(X) is 0-closed is

similar). Since X is 0-σ complete, there exists v = gu ∈ X such that

lim
n,m→∞

σ(yn, ym) = lim
n→∞

σ(yn, v) = σ(v, v) = 0. (5)

We shall show that u is a coincidence point of f and g.
Suppose that σ(v, fu) > 0. By definition we have

Rf,g(xn, u) = max

{
σ(gxn, gu), σ(gxn, fxn), σ(gu, fu),

σ(gxn, fxn)σ(gu, fu)

1 + σ(gxn, gu)

}
= max

{
σ(yn−1, v), σ(yn−1, yn), σ(v, fu),

σ(yn−1, yn)σ(v, fu)

1 + σ(yn−1, v)

}
.

In view of (5), there exists n0 ∈ N such that

Rf,g(xn, u) = σ(v, fu) for all n > n0.

Therefore, by (1) we have for all n > n0

σ(v, fu) 6 σ(v, yn) + σ(yn, fu)

= σ(v, yn) + σ(fxn, fu)

6 σ(v, yn) +Rf,g(xn, u)− ω
(
Rf,g(xn, u)

)
= σ(v, yn) + σ(v, fu)− ω

(
σ(v, fu)

)
.

Letting n→∞, we get

σ(v, fu) 6 σ(v, fu)− ω
(
σ(v, fu)

)
< σ(v, fu).

This contradiction shows that σ(v, fu) = 0, i.e., fu = v = gu. Thus, u is a coincidence
point and v is the corresponding point of coincidence of f and g. We shall show that the
point of coincidence is unique. If possible, let v′ is another point of coincidence of f and
g and σ(v, v′) > 0. Then there exists u′ ∈ X such that fu′ = gu′ = v′. By Lemma 2 we
have σ(v′, v′) = 0. Then by definition

Rf,g(u, u
′) = max

{
σ(gu, gu′), σ(gu, fu), σ(gu′, fu′),

σ(gu, fu)σ(gu′, fu′)

1 + σ(gu, gu′)

}
= max

{
σ(v, v′), σ(v, v), σ(v′, v′),

σ(v, v)σ(v′, v′)

1 + σ(v, v′)

}
= σ(v, v′).
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Therefore, it follows from (1) that

σ(v, v′) = σ(fu, fu′) 6 Rf,g(u, u
′)− ω

(
Rf,g(u, u

′)
)

= σ(v, v′)− ω
(
σ(v, v′)

)
< σ(v, v′).

This contradiction shows that σ(v, v′) = 0, i.e., v = v′. Thus, v is the unique point of
coincidence of f and g and v is the unique common fixed point of f and g.

Let (X, d) be a metric-like space and f : X → X be a mapping. The mapping f will
be called a rational ω-weak contraction if there exists ω ∈ Ω such that the condition

σ(fx, fy) 6 Rf (x, y)− ω
(
Rf (x, y)

)
(6)

is satisfied for all x, y ∈ X , where

Rf (x, y) = max

{
σ(x, y), σ(x, fx), σ(y, fy),

σ(x, fx)σ(y, fy)

1 + σ(x, y)

}
.

Taking g = IX (the identity mapping on X) in Theorem 2, we obtain the following
corollary.

Corollary 1. Let (X,σ) be a 0-σ-complete metric-like space and f : X → X be a ratio-
nal ω-weak contraction. Then f has a unique fixed point v and σ(v, v) = 0.

If we take ω(t) = (1 − k)t for k ∈ (0, 1) in contraction condition (1), we have the
following corollary.

Corollary 2. Let (X,σ) be a 0-σ-complete metric-like space and f, g : X → X be two
mappings such that

σ(fx, fy) 6 kRf,g(x, y)

holds for all x, y ∈ X , where 0 < k < 1 and Rf,g(x, y) is defined by (2). Then f and
g have a unique point of coincidence in X , and if they are weakly compatible, they have
a unique common fixed point.

Now, we present an example to support the usability of our results (more precisely, of
Corollary 1).

Example 1. Let X = {a, b, c}. Define σ : X ×X → R+ as follows:

σ(a, a) = 0, σ(b, b) = 3, σ(c, c) = 5, σ(a, b) = σ(b, a) = 9,

σ(a, c) = σ(c, a) = 4, σ(b, c) = σ(c, b) = 5.

Then (X,σ) is a 0-σ-complete metric-like space, which is neither a metric space (since,
e.g., σ(b, b) > 0) nor a partial metric space (since, e.g., σ(a, b) = 9 66 4 = σ(a, c) +
σ(c, b)− σ(c, c)). Let f, g : X → X be defined by

fa = a, fb = c, fc = a

http://www.mii.lt/NA
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and
ga = a, gb = b, gc = c.

We next verify that the pair {f, g} satisfies the inequality (1) (i.e., inequality (6)) with
ω(t) = t/5. Let us consider the following possible cases:

1. If {x, y} ⊆ {a, c}, then σ(fx, fy) = σ(a, a) = 0 and (6) trivially holds.
2. If x = b, y = a, then σ(fx, fy) = σ(c, a) = 4 and

Rf,g(x, y) = max

{
σ(b, a), σ(b, c), σ(a, a),

σ(b, c)σ(a, a)

1 + σ(b, a)

}
= 9

and 4 6 9− (1/5) · 9 holds.
3. If x = b, y = b, then σ(fx, fy) = σ(c, c) = 5 and

Rf,g(x, y) = max

{
σ(b, b), σ(b, c), σ(b, c),

σ(b, c)σ(b, c)

1 + σ(b, b)

}
=

25

4

and 5 6 (25/4)− (1/5) · (25/4) holds.
4. If x = b, y = c, then σ(fx, fy) = σ(c, a) = 4 and

Rf,g(x, y) = max

{
σ(b, c), σ(b, c), σ(c, a),

σ(b, c)σ(c, a)

1 + σ(b, c)

}
= 5

and 4 6 5− (1/5) · 5 holds.

Thus, all the required hypotheses of condition (6) are satisfied. Then f and g have
a unique point of coincidence in X and a unique common fixed point. Here a is the
unique fixed point of f , g.

Note that Theorem 2.4 of [5], as well as Theorem 1 of [10] (i.e., Theorem 1), cannot
be used to reach this conclusion since σ(fb, fb) = 5 =M(b, b) and no function ψ can be
chosen such that σ(fb, fb) 6 ψ(M(b, b)).

Without essential changes, the following version of Theorem 2 can be proved.

Theorem 3. Let (X,σ) be a 0-σ-complete metric-like space and f, g : X → X be two
mappings such that

ψ
(
σ(fx, fy)

)
6 ψ

(
Rf,g(x, y)

)
− ω

(
Rf,g(x, y)

)
for all x, y ∈ X , where ω ∈ Ω, ψ : [0,∞) → [0,∞) is continuous, nondecreasing and
ψ−1(0) = {0} andRf,g(x, y) is given by (2). If the range of g contains the range of f and
f(X) or g(X) is a 0-closed subset of X , then f and g have a unique point of coincidence
in X . Moreover, if f and g are weakly compatible, then f and g have a unique common
fixed point v and σ(v, v) = 0.

The following example can be used to illustrate the usage of previous theorem.

Nonlinear Anal. Model. Control, 22(1):51–63
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Example 2. Let X = [0, 1] ∩Q and σ : X ×X → R+ be defined by

σ(x, y) =

{
2x if x = y,

max{x, y} otherwise

for all x, y ∈ X . Then (X,σ) is a 0-σ-complete metric-like space, which is not σ-com-
plete [10, Ex. 5]. Let f, g : X → X be mappings given by fx = x/3 and gx = x/2.
Moreover, let ψ(t) = 4t/3 and ω(t) = t/3. Then, for x > y,

ψ
(
σ(fx, fy)

)
=

4

3
σ

(
x

3
,
y

3

)
=

4x

9

and

Rf,g(x, y) = max

{
σ

(
x

2
,
y

2

)
, σ

(
x

2
,
x

3

)
, σ

(
y

2
,
y

3

)
,
σ(x2 ,

x
3 )σ(

y
2 ,

y
3 )

1 + σ(x2 ,
y
2 )

}
= max

{
x

2
,
x

2
,
y

2
,

xy
4

1 + x
2

}
=
x

2
.

Hence,

ψ
(
σ(fx, fy)

)
=

4x

9
6
x

2
=

4

3
· x
2
− 1

3
· x
2

= ψ
(
Rf,g(x, y)

)
− ω

(
Rf,g(x, y)

)
.

Similarly, for x = y, one gets that

ψ
(
σ(fx, fy)

)
=

8x

9
6 x = ψ

(
Rf,g(x, y)

)
− ω

(
Rf,g(x, y)

)
.

Thus, all the conditions of Theorem 3 are satisfied. Then f and g have a unique point of
coincidence in X and a unique common fixed point (which is 0).

4 An application to second-order differential equations

In this section, we are going to apply Corollary 1 to the study of existence and uniqueness
of solutions for a type of second-order differential equations. Our approach is inspired by
Section 5 of [6].

Denote I = [0, 1] and consider the following boundary value problem for second-
order differential equation:

x′′(t) = −F
(
t, x(t)

)
, t ∈ I,

x(0) = x(1) = 0,
(7)

where F ∈ C(I × R,R).
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It is known and easy to check that problem (7) is equivalent to the integral equation

x(t) =

1∫
0

G(t, s)F
(
s, x(s)

)
ds for t ∈ I, (8)

where G is the Green function defined by

G(t, s) =

{
(1− t)s if 0 6 s 6 t 6 1,

(1− s)t if 0 6 t 6 s 6 1.

That is, if x ∈ C2(I,R), then x is a solution of problem (7) if and only if it is a solution
of the integral equation (8).

Let X = C(I) be the space of all continuous functions defined on I and ‖u‖∞ =
maxt∈I |u(t)| for each u ∈ X . Consider the metric-like σ on X given by

σ(x, y) = ‖x− y‖∞ + ‖x‖∞ + ‖y‖∞ for all x, y ∈ X.

Note that σ is also a partial metric on X and that

dσ(x, y) := 2σ(x, y)− σ(x, x)− σ(y, y) = 2‖x− y‖∞.

Hence, (X,σ) is complete as the metric space (X, ‖·‖∞) is complete.

Theorem 4. Assume the following conditions:

(i) there exist continuous functions α : I → R+
0 and β : I → R+

0 such that∣∣F (s, a)− F (s, b)∣∣ 6 8α(s)|a− b| for s ∈ I and a, b ∈ R,∣∣F (s, a)∣∣ 6 8β(s)|a| for s ∈ I and a ∈ R;

(ii) maxs∈I α(s) = λ1 < 1/3 and maxs∈I β(s) = λ2 < 1/3.

Then problem (7) has a unique solution u ∈ X = C(I,R).

Proof. Define the self-map f : X → X by

fx(t) =

1∫
0

G(t, s)F
(
s, x(s)

)
ds

for all x ∈ X and t ∈ I . Then problem (7) is equivalent to finding a fixed point u of f
in X . Let x, y ∈ X . We have

∣∣fx(t)− fy(t)∣∣ = ∣∣∣∣∣
1∫

0

G(t, s)F
(
s, x(s)

)
ds−

1∫
0

G(t, s)F
(
s, y(s)

)
ds

∣∣∣∣∣
6

1∫
0

G(t, s)
∣∣F (s, x(s))− F (s, y(s))∣∣ds
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6 8

1∫
0

G(t, s)α(s)
∣∣x(s)− y(s)∣∣ds

6 8λ1‖x− y‖∞ sup
t∈I

1∫
0

G(t, s) ds = λ1‖x− y‖∞.

Next, we recall that for each t ∈ I , one has
∫ 1

0
G(t, s) ds = t(1− t)/2, and then

sup
t∈I

1∫
0

G(t, s) ds =
1

8
.

Therefore,
‖fx− fy‖∞ 6 λ1‖x− y‖∞. (9)

Moreover, we have

∣∣fx(t)∣∣ = ∣∣∣∣∣
1∫

0

G(t, s)F
(
s, x(s)

)
ds

∣∣∣∣∣ 6
1∫

0

G(t, s)
∣∣F (s, x(s))∣∣ ds

6 8

1∫
0

G(t, s)β(s)
∣∣x(s)∣∣ds 6 8λ2‖x‖∞ sup

t∈I

1∫
0

G(t, s) ds

6 λ2‖x‖∞.

Thus
‖fx‖∞ 6 λ2‖x‖∞, (10)

and also
‖fy‖∞ 6 λ2‖y‖∞. (11)

Put now λ = λ1 + 2λ2 < 1. Summing up (9)–(11), we obtain

σ(fx, fy) = ‖fx− fy‖∞ + ‖fx‖∞ + ‖fy‖∞
6 λ1‖x− y‖∞ + λ2‖x‖∞ + λ2‖y‖∞
6 (λ1 + 2λ2)

(
‖x− y‖∞ + ‖x‖∞ + ‖y‖∞

)
= λσ(x, y) 6 λRf (x, y).

Now, by considering the control function ω : [0,∞)→ [0,∞) defined by ω(t) = (1−λ)t
for λ ∈ (0, 1), we get

σ(fx, fy) 6 Rf (x, y)− ω
(
Rf (x, y)

)
.

Therefore, all hypotheses of Corollary 1 are satisfied, and so f has a unique fixed point
u ∈ X , that is, problem (7) has a unique solution u ∈ C2(I).
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