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Abstract. Let (X, d) be a metric space, and A1, A2, . . . , Ap be nonempty subsets of X .
We introduce a self map T on X , called p-cyclic orbital contraction map on the union of
A1, A2, . . . , Ap, and obtain a unique best proximity point of T , that is, a point x ∈ ∪p

i=1Ai such
that d(x, Tx) = dist(Ai, Ai+1), 1 6 i 6 p, where dist(Ai, Ai+1) = inf{d(x, y): x ∈ Ai,
y ∈ Ai+1}.

Keywords: uniformly convex Banach space, best proximity points, p-cyclic maps, orbital
contractions.

1 Introduction

The importance of Mathematics lies in solving equations of the form f(x) = 0. This
equation can also be written as f(x) = g(x)−x for some suitable function g. Finding the
solution of the equation f(x) = 0 is equivalent to finding the solution of the equation
g(x) = x. Theorems, which provide a theory by enhancing the possibilities for the
existence of a solution to the given equation g(x) = x, are called fixed point theorems.
One such theorem is the famous Banach contraction theorem. It stats that “if (X, d) is
a complete metric space and T is a self map on X such that there exists a k, 0 < k < 1,
such that d(Tx, Ty) 6 kd(x, y) for all x, y ∈ X , then, for any ξ ∈ X , {Tnξ} converges
to a unique fixed point.

One of the interesting extensions of the classical Banach contraction theorem is Meir–
Keeler contraction introduced by Meir and Keeler in [18].

Later, the authors of [16] introduced a class of mappings called cyclic contractive
mappings. If (X, d) is a metric space and A1, A2, . . . , Ap (p > 2) are the nonempty
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subsets ofX , then a cyclic contraction mapping is defined on the union ofA1, A2, . . . , Ap
with some contraction type of condition imposed on this map. Some fixed point results
were obtained for this map in [16]. In [5], the authors introduced a notion of best proximity
points as an extension of fixed points in the following manner.

LetA andB be non empty subsets of a metric space, and T : A∪B → A∪B such that
T (A) ⊆ B and T (B) ⊆ A. The map T is called a cyclic map. A point x ∈ A∪B is said
to be a best proximity point if d(x, Tx) = dist(A,B), where dist(A,B) = inf{d(x, y) =
x ∈ A, y ∈ B}. Hence, best proximity point theorems are direct extensions of fixed point
theorems.

In [15], a notion of cyclic orbital contraction map is introduced and defined as follows:

Definition 1. LetA andB be non empty subsets of a metric space, and T : A∪B → A∪B
such that T (A) ⊆ B and T (B) ⊆ A. If for some x ∈ A, there exists a kx ∈ (0, 1) such
that

d
(
T 2nx, Ty

)
6 kxd

(
T 2n−1x, y

)
, n ∈ N, y ∈ A,

then T is called a cyclic orbital contraction map.

Also, in [15], the following best proximity theorem is obtained in which the map is of
Meir–Keeler type and the underlying space need to be a uniformly convex Banach space.

Theorem 1. Let X be a uniformly convex Banach space. Let A and B be non empty,
closed and convex subsets of X . Suppose that T : A ∪ B → A ∪ B satisfy the following
conditions:

(i) T (A) ⊆ B and T (B) ⊆ A;
(ii) For every ε > 0, there exists a δ > 0 such that for some x ∈ A,∥∥T 2n−1x− y

∥∥ < dist(A,B) + ε+ δ

=⇒
∥∥T 2nx− Ty

∥∥ < dist(A,B) + ε, n ∈ N, y ∈ A. (1)

Then there exists a best proximity point z ∈ A such that for every x ∈ A satisfying
condition (1), the sequence {T 2nx} converges to z ∈ A.

For more on best proximity point theorems, one may refer to [1, 2, 4, 9, 10, 11, 12, 19,
22, 24].

So far, the authors generalized best proximity points of cyclic orbital contractions,
which are defined on the union of two sets only. But in [24], the author considered
p-cyclic map with Meir–Keeler orbital type in different direction.

In this article, the map which we consider is a p-cyclic map (Definition 2) on which
a Meir–Keeler type of contraction is imposed. That is, a notion of p-cyclic orbital Meir–
Keeler contraction is introduced. Sufficient conditions are given for the existence of a best
proximity point of this map, which is also a unique periodic point of the map in a given
set. The main result of this article generalizes the main results of the theorems given in
the literature.

In Theorem 1, there is no question of the distance between the sets. But in this article,
we consider a p-cyclic map in which the distance between the adjacent sets play an
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important role in obtaining a best proximity point. The condition, under which a best
proximity point is obtained for cyclic maps, need not be the same for obtaining best
proximity point for p-cyclic sets, p > 2. Therefore, the main result of this article is not
a direct generalization of Theorem 1.

2 Preliminaries

The following notion of p-cyclic maps was first introduced by Kirk et al. in [16].

Definition 2. Let A1, A2, . . . , Ap (p > 2) be non empty subsets of a metric space X . Let
T : ∪pi=1Ai → ∪

p
i=1Ai, and if T (Ai) ⊆ Ai+1 for all i = 1, 2, . . . , p (Ap+i = Ai), then

T is said to be p-cyclic map.

Eldred and Veeramani in [5] introduced the concept of best proximity point for a
cyclic map defined on union of two sets, which is an approximation of fixed point defined
as follows:

Definition 3. Let (X, d) be a metric space. Let T : ∪pi=1Ai → ∪
p
i=1Ai be a p-cyclic

map. A point x ∈ Ai is said to be a best proximity point of T in Ai if d(x, Tx) =
dist(Ai, Ai+1), where dist(Ai, Ai+1) = inf{d(x, y): x ∈ Ai, y ∈ Ai+1}.

Remark 1. Let (X, d) be a metric space. Let Ai, i = 1, . . . , p, be subsets of X . Let
T : ∪pi=1Ai → ∪

p
i=1Ai be a p-cyclic map. A best proximity point x ∈ ∪pi=1Ai is a fixed

point of T if and only if dist(Ai, Ai+1) = 0. A fixed point of a p-cyclic map, if it exists,
it exists only in the intersection ∩pi=1Ai.

Lim in [17] introduced the following notion of L-function, which is an useful tool to
study the Meir–Keeler contraction maps.

Definition 4. (See [17].) A function φ : [0,∞) → [0,∞) is called an L-function if
φ(0) = 0, φ(s) > 0 for s ∈ (0,∞), and for every s ∈ (0,∞), there exists a δ > 0 such
that φ(t) 6 s for every t ∈ [s, s+ δ].

Also, Lim also gave a set of equivalent conditions for L-functions [17]. Suzuki gen-
eralize Lim’s results [23]. We will need the following result for the proof of the main
result.

Lemma 1. (See [23].) Let Y be a non empty set and let f, g : Y → [0,∞). Then the
following are equivalent:

(i) For each ε > 0, there exists a δ > 0 such that f(x) < ε+ δ ⇒ g(x) < ε.
(ii) There exists an L-function φ (which may be chosen non decreasing and continu-

ous) such that f(x) > 0⇒ g(x) < φ(f(x)), x ∈ Y and f(x) = 0⇒ g(x) = 0,
x ∈ Y .

Eldred and Veeramani in [5] proved the following lemma, which is an important
property of a uniformly convex Banach space. It is used to prove the main results.
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Lemma 2. (See [5].) Let X be a uniformly convex Banach space. Let A and B be non
empty and closed subsets of X . Let A be convex. Let {xn} and {zn} be sequences in A,
and {yn} be a sequence inB such that limn ‖xn−yn‖=dist(A,B) and limn ‖zn−yn‖=
dist(A,B). Then limn ‖xn − zn‖ = 0.

Definition 5. (See [3, p. 42].) We say that the Banach space (X, ‖ · ‖) is strictly convex
if x = y whenever x, y ∈ X are such that ‖x‖ = ‖y‖ = 1 and ‖x+ y‖ = 2.

The next theorem is stated for Banach spaces in [24], but it holds true for any normed
space. We omit the proof because it is similar to that done in [24]. The theorems, which
give characterization for the strict convexity in Banach spaces [3] and [7], holds true for
normed spaces too [8].

Lemma 3. (See [24].) Let A, B be closed subsets of a strictly convex normed space
(X, ‖ · ‖) such that dist(A,B) > 0 ,and let A be convex. If x, z ∈ A and y ∈ B be such
that ‖x− y‖ = ‖z − y‖ = dist(A,B), then x = z.

An excellent overview of the development of the geometry of Banach spaces may be
found in [3]. Basic concepts about geometry of Banach spaces can be found in two other
excellent books [6] and [7].

3 Main results

We introduce a notion of p-cyclic orbital non expansive map, which is defined as follows:

Definition 6. Let (X, d) be a metric space. Let Ai, i = 1, . . . , p, be non empty subsets
of X . Let T : ∪pi=1Ai → ∪

p
i=1Ai be a p-cyclic map such that for some x ∈ Ai (16 i6p)

and for each k = 1, 2, . . . , p, the following condition is satisfied:

d
(
T pn+kx, T k+1y

)
6 d
(
T pn+k−1x, T ky

)
, n ∈ N, y ∈ Ai. (2)

Then T is called a p-cyclic orbital non expansive map.

The conditions, for which dist(Ai−1, Ai) = dist(Ai−1, Ai−2) = dist(A1, A2), is
given in the following proposition.

Proposition 1. Let X be strictly convex normed linear space. Let Ai, i = 1, . . . , p, be
non empty subsets of X . Let T : ∪pi=1Ai → ∪

p
i=1Ai be a p-cyclic orbital non expansive

map with an x ∈ Ai satisfying (2). Suppose that for each k = 0, 1, 2 . . . , (p − 1) and
y ∈ Ai, limn d(T

pn+k−1x, T pn+ky) = dist(Ai+k−1, Ai+k) and {T pn+kx} converges
to zk ∈ Ai+k. Then:

(a) dist(A1, A2) = dist(A2, A3) = · · · = dist(Ap−1, Ap) = dist(Ap, A1);
(b) zk is a best proximity point of T in Ai+k and zk = T kz0 for i = 1, 2, . . . , p;
(c) zk is the unique periodic point of T with period p in Ai+k.
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Proof. (a) For any k ∈ {1, 2, . . . , p}, there hold the inequalities

dist(Ai+k, Ai+k+1) 6 d(zk, T zk) = lim
n
d
(
T pn+kx, Tzk

)
6 lim

n
d
(
T pn+k−1x, zk

)
= lim

n
d
(
T pn+k−1x, T pn+kx

)
= dist(Ai+k−1, Ai+k).

Consequently, we get the chain of inequalities

dist(Ai+1, Ai+p) 6 dist(Ai+p, Ai+p−1) 6 · · · 6 dist(Ai+k, Ai+k−1)

6 · · · 6 dist(Ai+2, Ai+1) 6 dist(Ai+1, Ai) = dist(Ai+1, Ai+p).

Thus, (a) holds true.

(b) For each k = 0, 1, 2, . . . , (p− 1), consider

dist(Ai+k, Ai+k+1) 6 d(zk, T zk) = lim
n
d
(
T pn+kx, Tzk

)
6 lim

n
d
(
T pn+k−1x, zk

)
= lim

n
d
(
T pn+k−1x, T pn+kx

)
= dist(Ai+k−1, Ai+k)

= dist(Ai+k, Ai+k+1).

Hence, d(zk, T zk) = dist(Ai+k, Ai+k+1).
Consider∥∥z1 − T 2z0

∥∥ = lim
n

∥∥T pn+1x− T 2z0
∥∥ 6 lim

n

∥∥T pnx− Tz0∥∥
6 lim

n

∥∥T pn−1x− z0∥∥ = lim
∥∥T pn−1x− T pnx∥∥

= dist(Ai−1, Ai) = dist(Ai+1, Ai+2).

It is obvious that ‖Tz0 − T 2z0‖ = dist(Ai+1, Ai+2), and since the underlying space is
strictly convex, it follows from Lemma 3 that z1 = Tz0. Hence, z1 = Tz0. Similarly, we
can prove that if x ∈ A1 and T pnx→ z0, then T kz0 = zk for k = 1, 2, . . . , p.

(c) To prove that each zk is a periodic point in Ai+k, consider,∥∥T pz0 − Tz0∥∥ = lim
n

∥∥T pz0 − T pn+1x
∥∥ 6 lim

n

∥∥z0 − T p(n−1)+1x
∥∥

= lim
n

∥∥T pnx− T p(n−1)+1x
∥∥ = dist(Ai, Ai+1).

Hence, ‖T pz0− Tz0‖ = dist(Ai, Ai+1). Since ‖z0− Tz0‖ = dist(Ai, Ai+1), it follows
that T pz0 = z0. Since T kz0 = zk, each zk = T p+kz0 = T pzk.

To prove the uniqueness of z0 as the periodic point, suppose that ξ ∈ Ai is a periodic
point of T in Ai. Then T pnξ = ξ for all n ∈ N. Since z1 = Tz0 and limn T

pn+1x =
z1 = Tz0, we have

‖ξ − Tz0‖ = lim
n

∥∥T pnξ − T pn+1x
∥∥ = dist(Ai, Ai+1).

Since ‖z0−Tz0‖ = dist(Ai, Ai+1) and from the above, ‖ξ−Tz0‖ = dist(Ai, Ai+1), and
since X is strictly convex, it follows that ξ = z0. Hence, z0 is unique. From zk = T kz0
the uniqueness of each zk as a periodic point follows.
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We would like to point out that all known results about cyclic maps, where the condi-
tions are symmetric as like as (2); see, for example, [13,15,20] etc. The distances between
the consecutive sets appear to be equal. It is in contrast to the conditions investigated
in [21] and [24], where the conditions, which ensure existence and uniqueness of the best
proximity points, hold true for sets with different distances between them.

Now we introduce a notion of p-cyclic orbital Meir–Keeler contraction map.

Definition 7. Let (X, d) be a metric space. Let Ai, i = 1, . . . , p, be non empty subsets
of X . Let T : ∪pi=1Ai → ∪pi=1Ai be a p-cyclic map. Then T is called a p-cyclic
orbital Meir–Keeler contraction map if for some x ∈ Ai (1 6 i 6 p) and for each
k = 0, 1, 2, . . . , (p − 1), the following holds: for every ε > 0, there exists a δ > 0 such
that

d
(
T pn+k−1x, T ky

)
< dist(Ai+k−1, Ai+k) + ε+ δ

=⇒ d
(
T pn+kx, T k+1y

)
< dist(Ai+k, Ai+k+1) + ε, n ∈ N, y ∈ Ai. (3)

In the above definition, if we omit the distances between the sets in condition (3), then
we get the following condition (4). In this case, a unique fixed point is obtained.

Theorem 2. Let (X, d) be a complete metric space. Let Ai, i = 1, . . . , p, be non empty
subsets of X . Let T : ∪pi=1Ai → ∪

p
i=1Ai be a p-cyclic map such that for some x ∈ Ai

and for each k = 1, 2, . . . , p, the following condition is satisfied: for every ε > 0, there
exists a δ > 0 such that

d
(
T pn+k−1x, T ky

)
< ε+ δ =⇒ d

(
T pn+kx, T k+1y

)
< ε, n ∈ N, y ∈ Ai. (4)

Then {T pnx} converges to a limit say, z0 ∈ Ai, which is the unique fixed point of T in
∩pi=1Ai.

Proof. Let x ∈ Ai satisfy (4). Define, for each k = 1, 2, . . . , p, the following sets:

Ck =
{
T pn+k−1x: n ∈ N

}
and Bk =

{
T ky: y ∈ Ai

}
.

Define fk, gk : Ck ×Bk → [0,∞) as follows:

fk(ak, bk) = d
(
T pn+k−1x, T ky

)
and gk(ak, bk) = d

(
T pn+kx, T k+1y

)
.

Then each fk and gk satisfies condition (i) of Lemma 1. Hence, there exists an L-func-
tion φ such that if d(T pn+k−1x, T ky) > 0, then

d
(
T pn+kx, T k+1y

)
< φ

{
d
(
T pn+k−1x, T ky

)}
. (5)

From the definition of L-function it follows that

d
(
T pn+kx, T k+1y

)
< d
(
T pn+k−1x, T ky

)
when d

(
T pn+k−1x, T ky

)
> 0, (6)

d
(
T pn+kx, T k+1y

)
= d
(
T pn+k−1x, T ky

)
when d

(
T pn+k−1x, T ky

)
= 0 (7)
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for all n ∈ N, y ∈ Ai and for each k = 1, 2, . . . , p. From (6) and (7) it follows that

d
(
T pn+kx, T k+1y

)
6 d
(
T pn+k−1x, T ky

)
. (8)

Let sn = d(T pnx, T pn+1y), where y ∈ Ai, n ∈ N. If sn = 0 for some n ∈ N, then
from (8) it follows that sn → 0 as n → ∞. Assume that sn > 0 for all n ∈ N. Then
by (6) sn+1 < sn and hence converges to an r > 0. If r > 0, then by (4) there exists
a δ > 0 such that

r 6 d
(
T pnx, T pn+1y

)
< r + δ, n ∈ N.

Then there exists an L-function φ such that

d
(
T pn+1x, T pn+2y

)
< φ

{
d
(
T pnx, T pn+1y

)}
6 r,

which is a contradiction. Hence, r = 0. Therefore, d(T pnx, T pn+1y) → 0 as n → ∞.
Let k ∈ {1, 2, . . . , p}. Then

dist(Ai, Ai+k)

6 d
(
T pnx, T pn+ky

)
6
k−1∑
i=0

d
(
T pn+ix, T pn+i+1y

)
→ 0 as n→∞.

Thus,
d
(
T pn+k−1x, T pn+ky

)
→ 0 as n→∞ (9)

for k = 0, 1, 2, . . . , (p − 1). Therefore, ∩pi=1Ai is nonempty. Let us prove that for
ε > 0, there exists an n0 ∈ N such that d(T pnx, T pmx) < ε for all n,m > n0. Let
ε > 0 be given. From (9) it follows that there exists n0 ∈ N such that the inequality
d(T pm+kx, T pm+k−1x) < δ/p holds for every m > n0 and k ∈ N. Let us prove that
d(T pm+1x, T pnx) < ε/2 by induction on n. This is true for n = m. Let us assume that
this inequality is true for some n > n0. We need to prove that the inequality holds for
n+ 1. By the inductive assumption we obtain the inequalities

S1 = d
(
T pmx, T p(n+1)−1x

)
6 d
(
T p(m+1)x, T p(n+1)−1x

)
+ d
(
T pmx, T p(m+1)x

)
6 d
(
T p(n+1)−1x, T p(m+1)x

)
+

p∑
j=1

d
(
T pm+j−1x, T pm+jx

)
6 d
(
T pnx, T pm+1x

)
+

p∑
j=1

d
(
T pm+j−2x, T pm+j−1x

)
<
ε

2
+ p

δ

p
=
ε

2
+ δ. (10)

The map T is a p-cyclic orbital Meir–Keeler contraction, and thus, it follows from (10)
that d(T pm+1x, T p(n+1)x) < ε/2. Therefore, from the inequality

d
(
T pmx, T pnx

)
6 d
(
T pmx, T pm+1x

)
+ d
(
T pm+1x, T pnx

)
(11)
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we get that d(T pnx, T pmx) < ε for all n,m > n0. Hence, {T pnx} is a Cauchy sequence,
and thus, it converges to a z ∈ Ai. Now using (8) and (9), we get

d(z, Tz) = lim
n
d
(
T pnx, Tz

)
6 lim

n
d
(
T pn−1x, z

)
= lim

n
d
(
T pn−1x, T pnx

)
= 0.

Hence, z ∈ Ai is a fixed point of T in Ai. By Remark 1, z ∈ ∩pi=1Ai.
To prove the uniqueness, let ξ ∈ ∩pi=1Ai be such that ξ = Tξ. Hence, T pnξ = ξ,

n ∈ N. Now d(z, ξ) = limn d(T
pnx, T pn+1ξ) = 0. Hence, ξ = z.

The notion of L-function, given in Definition 4 and Lemma 1, is used to obtain the
following result for a p-cyclic orbital Meir–Keeler contraction map.

Lemma 4. Let (X, d) be a metric space. Let Ai, i = 1, . . . , p, be non empty subsets
of X . Let T : ∪pi=1Ai → ∪

p
i=1Ai be a p-cyclic orbital Meir–Keeler contraction map.

Then there exists an L-function φ such that for an x ∈ Ai satisfying (3), the following
hold:

d
(
T pn+k−1x, T ky

)
> dist(Ai+k−1, Ai+k)

=⇒ λp,n,k(x, y) < φ
(
λp,n,k−1(x, y)

)
, n ∈ N, y ∈ Ai, (12)

where we use the notation λp,n,k(x, y) = d(T pn+kx, T k+1y)−dist(Ai+k, Ai+k+1), and

d
(
T pn+k−1x, T ky

)
= dist(Ai+k−1, Ai+k)

=⇒ d
(
T pn+kx, T k+1y

)
= dist(Ai+k, Ai+k+1) n ∈ N, y ∈ Ai, (13)

for each k = 1, 2, . . . , p.

Proof. Let x ∈ Ai satisfy (3). For each k = 1, 2, . . . , p, define the following sets:

Ck =
{
T pn+k−1x: n ∈ N

}
and Bk =

{
T ky: y ∈ Ai

}
.

Let fk, gk : Ck ×Bk → [0,∞) be defined as follows:

fk(ak, bk) = d
(
T pn+k−1x, T ky

)
− dist(Ai+k−1, Ai+k),

and
gk(ak, bk) = d

(
T pn+kx, T k+1y

)
− dist(Ai+k, Ai+k+1).

Since T is a p-cyclic orbital Meir–Keeler contraction map, each fk and gk satisfy condi-
tion (i) of Lemma 1, and hence, (12) and (13) hold.

Remark 2. From Lemma 4 it follows that a p-cyclic orbital Meir–Keeler contraction map
is p-cyclic orbital non expansive map.

Lemma 5. Let (X, d) be a metric space. LetAi, i = 1, . . . , p, be non empty subsets ofX .
Let T : ∪pi=1Ai → ∪

p
i=1Ai be a p-cyclic orbital Meir–Keeler contraction map with an

x ∈ Ai satisfying (3). Then, for all y ∈ Ai and for each k ∈ {0, 1, 2, . . . , (p − 1)}, the
sequence {d(T pn+kx, T pn+k+1y)}∞n=1 converges to dist(Ai+k, Ai+k+1).
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Proof. Let sn = d(T pn+kx, T pn+k+1y) − dist(Ai+k, Ai+k+1). Then sn > 0 for all
n ∈ N. By Remark 4, sn+1 6 sn for all n ∈ N. If sn = 0 for some n, then the lemma
follows. Suppose sn > 0 for every n ∈ N. Then by Lemma 4 there exists an L-function φ
satisfying (12) and (13). Since sn+1 6 sn, {sn} converges to an r > 0. Suppose r > 0.
Then, for this r > 0, by (3) there exists a δ > 0 such that r 6 sn < r + δ and such that
sn+1 < φ(sn) 6 r. That is, sn+1 < r, which is a contradiction.

Hence, r = 0. Thus, d(T pn+kx, T pn+k+1y)→ dist(Ai+k, Ai+k+1) as n→∞.

Theorem 3. Let X be a uniformly convex Banach space. Let A1, A2, . . . , Ap be non
empty, closed and convex subsets of X . Let T : ∪pi=1Ai → ∪pi=1Ai be a p-cyclic
orbital Meir–Keeler contraction map. Then, for every x ∈ Ai satisfying (3), the sequence
{T pnx} converges to a unique point z ∈ Ai, which is the best proximity point as well as
the unique periodic point of T in Ai. Also, T kz is a best proximity point of T in Ai+k,
which is also a unique periodic point of T in Ai+k for each k = 1, 2, . . . , (p− 1).

Proof. Let ε > 0 be given. Since T is a p-cyclic orbital Meir–Keeler contraction map,
there exists an x ∈ Ai and a δ > 0 satisfying (3). Without loss of generality, let δ < ε.
By Lemma 5, ∥∥T pn+1x− T pn+2x

∥∥→ dist(Ai+1, Ai+2) as n→∞
and ∥∥T p(n+1)+1x− T pn+2x

∥∥→ dist(Ai+1, Ai+2) as n→∞.

Hence, by Lemma 2, ‖T p(n+1)+1x− T pn+1x‖ → 0 as n→∞. Therefore, it is possible
to choose an n1 ∈ N such that∥∥T pn+1x− T p(n+1)+1x

∥∥ < δ

2
for all n > n1, (14)

and, by Lemma 5,∥∥T pnx− T pn+1x
∥∥ < dist(Ai, Ai+1) + 2ε for all n > n1. (15)

Fix n > n1. We show that∥∥T pmx− T pn+1x
∥∥ < dist(Ai, Ai+1) + ε+ δ for all m,n > n1 (16)

by the method of induction. It is obvious that condition (16) is true for m = n. Assume
that condition (16) is true for an m > n. To prove this condition for m+ 1, consider

µp,m,n(x) =
∥∥T p(m+1)x− T pn+1x

∥∥
6
∥∥T pn+1x− T p(n+1)+1x

∥∥+ ∥∥T p(n+1)+1x− T p(m+1)x
∥∥. (17)

Now∥∥T p(n+1)+1x− T p(m+1)x
∥∥ 6

∥∥T p(n+1)x− T p(m+1)−1x
∥∥

6
∥∥T pn+1x− T pmx

∥∥ 6 dist(Ai, Ai+1) + ε+ δ.
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Using (14) in (17), we obtain∥∥T p(m+1)x− T pn+1x
∥∥ < dist(Ai, Ai+1) +

δ

2
+ ε+ δ.

Hence, (16) holds for (m+ 1) in place m.
Consider (16) and (15). By Lemma 5 the following holds: for m > n > n1,∥∥T pnx− T pmx∥∥ < 2ε.

Hence, {T pnx} is a Cauchy sequence and converges to a z ∈ Ai. By Proposition 1
z is a best proximity point of T in Ai, and z is a unique periodic point of T in Ai. Let
ξ ∈ Ai satisfy (3). Then by what we have proved, {T pnξ} converges to an η ∈ Ai such
that ‖η − Tη‖ = dist(Ai, Ai+1) and T pη = η. But z is the unique periodic point of T
in Ai. Hence, η = z. By proposition 1 T kz is a best proximity point of T in Ai+k for
each k = 1, 2, . . . , p.

It is obvious that if condition (3) is satisfied for all x ∈ Ai, then the obtained best
proximity point is unique. Theorem 3 is a generalization of Theorem 1, and the following
theorem proved in [13].

Theorem 4. (See [13].) Let X be a uniformly convex Banach space, and let A1, A2, . . . ,
Ap (p > 2) be non empty, closed and convex subsets of X . Let T be a p - cyclic map such
that for every x ∈ Ai and y ∈ Ai+1, the following condition is satisfied: for every ε > 0,
there exists δ > 0 such that

d(x, y) < dist(Ai, Ai+1) + ε+ δ =⇒ d(Tx, Ty) < dist(Ai+1, Ai+2) + ε. (18)

Then, for any x ∈ Ai, the sequence {T pnx} converges to a unique z ∈ Ai, which is
a best proximity point of T in Ai. Moreover, this point is a unique periodic point of T
in Ai. Further, T kz = zk is a best proximity point of T in Ai+k for each k = 1, 2, . . . , p.

From Theorem 4 we observe that a best proximity point is obtained if condition (18)
is satisfied for all x ∈ Ai and y ∈ Ai+1 and for all i = 1, 2, . . . , p. From Theorem 3 we
observe that a best proximity point of T is obtained even if condition (3) is satisfied for
an x ∈ Ai, for all y ∈ Ai and for some i, 1 6 i 6 p.

Remark 3. From Proposition 1 and Theorem 3 we observe that ifX is a uniformly convex
Banach space and Ai, i = 1, . . . , p, are closed convex subsets of X and if T : ∪pi=1Ai →
∪pi=1Ai is a p-cyclic orbital Meir–Keeler contraction map, then {T pnx} converges if and
only if dist(Ai, Ai+1) = dist(Ai+1, Ai+2) = dist(A1, A2).

4 Examples and applications

We will illustrate the above results with some examples, and we will give an applica-
tion for integral operators. We will define a map T , and we will prove that T satisfies
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condition (3) for k = 1. The proofs that the map T satisfies conditions (3) for k =
0, 2, 3, . . . , p− 1 can be done a similar fashion.

We will show with the first example the difference between p-cyclic Meir–Keeler and
p-cyclic orbital (Meir–Keeler) contraction maps.

Example 1. Let us consider the space R2 = {(u, v): u, v ∈ R} endowed with the
Euclidian norm ‖(u, v)‖2 =

√
u2 + v2. Let α > 0, λ ∈ (0, 1), and let us denote the

sets

A1 =
{
(u, v) ∈ R2: α 6 u 6 α+ 1, α 6 v 6 u

}
,

A2 =
{
(u, v) ∈ R2: −α− 1 6 u 6 −α, α 6 v 6 |u|

}
,

A3 =
{
(u, v) ∈ R2: −α− 1 6 u 6 α+ 1, −|u| 6 v 6 −α

}
,

A4 =
{
(u, v) ∈ R2: α 6 u 6 α+ 1, −|u| 6 v 6 −α

}
.

We define the function f : R → R+ by f(t) = sign(t)(λ|t| + (1 − λ)α), and we define
a map T : ∪4i=1Ai → ∪4i=1Ai by T ((u, v)) = ((−1)if(u), (−1)i+1f(v)) for (u, v) ∈ Ai.

It is easy to see that T (Ai) ⊂ Ai+1, i = 1, 2, 3, 4. The distance between the consecu-
tive sets is equal to 2α.

We will show that T is a p-cyclic orbital Meir–Keeler contraction map. Let us choose
x = (α, α) ∈ A1. Let ε > 0 be arbitrary chosen. Let us put

δ =

√
4αε+ ε2 + 4α2λ2

λ
− (2α+ ε).

Let y ∈ A1 be such that ‖T 4nx−Ty‖2 < 2α+ε+δ. Let us put Ty = (−|y1|, |y2|) ∈ A2.
Then there holds the inequality (|y1|+α)2+(|y2|−α)2 < (2α+ε+δ)2. By the definition
of the sets Ai it follows that 0 6 α 6 |y2| 6 |y1| and, consequently, we get the chain of
inequalities∥∥T 4nx− T 2y:

∥∥2
2
= λ2

(
|y1| − α

)2
+
(
2α+ λ

(
|y2| − α

))2
= λ2

((
|y1|+ α

)2
+
(
|y2| − α

)2)
+ 4α2 + 4λα

(
(1− λ)|y1| − α

)
6 λ2(2α+ ε+ δ)2 + 4α2 − 4α2λ2 < (2α+ ε)2.

Consequently, T is 4-cyclic orbital Meir–Keeler contraction map. It is easy to observe
that x is a best proximity point of T in A1.

We would like to point out that T is not a 4-cyclic Meir–Keeler map defined in [13].
This can be observed by taking U = (α+ 1, (1 + µ)α) and V = (α+ 1,−(1 + µ)α) for
µ > 0 small enough. The map T is not a p-cyclic orbital contraction in the sense of [14].
It can be observed by taking z = (−α, α), w = (α, (1 − µ)α) for µ > 0 converging to
zero.

If α = 0, then we get that T satisfies (4), and by Theorem 2 there is a unique fixed
point z0 ∈ ∩4i=1Ai. It can be observed in a similar fashion that T is not 4-cyclic Meir–
Keeler map and is not a p-cyclic orbital contraction.
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We will present an example in infinite dimensional Banach space, where the map T is
defined as an integral operator. We will need the fact that the inequality

g(ε) =

√(√
2√
3
+ ε

)2
− 1

3
− 1

3

(
5

6
+

1

6

(
2(1 + 2ε)2 − 1

)1/2)2
> 0 (19)

holds for every ε ∈ (0,+∞). First, we will show that g′(ε) > 0 for every ε ∈ (0,+∞).
Indeed, using the inequalities

√
2(1 + 2ε)2 − 1 > 1 + 2ε and

√
2/
√
3 + ε >√

(
√
2/
√
3 + ε)2 − 1/3, we get that the inequality

g
′
(ε) =

9
√

2(1 + 2ε)2 − 1(
√
2√
3
+ ε)− 4(1 + 2ε)

√
(
√
2√
3
+ ε)2 − 1

3

9(
√
(
√
2√
3
+ ε)2 − 1

3 )
√
2(1 + 2ε)2 − 1

> 0

holds for every ε ∈ (0,+∞), and therefore, g is strictly increasing in the interval (0,+∞).
From the equality g(0) = 0 it follows that g(ε) > 0 for every ε ∈ (0,+∞).

Let us recall that L2[−1, 1] is the space of all classes of measurable functions f such
that

∫ 1

−1f
2(s) ds<+∞. IfL2[−1, 1] is endowed with the norm ‖f‖2=(

∫ 1

−1f
2(s) ds)1/2,

it is a uniformly convex Banach space [7].

Example 2. Let us consider the space L2[−1, 1]. We denote the functions:

x1(s) =

{
0, s ∈ [−1, 0],
s, s ∈ [0, 1];

x2(s) = x1(−s);

x3(s) = −x1(s); x4(s) = −x1(−s).

Let us consider the setsAi ⊂ L2[−1, 1] defined byAi = {f ∈ L2[−1, 1]: f(s) > xi(s)},
i = 1, 2, and Aj = {f ∈ L2[−1, 1]: f(s) 6 xj(s)}, j = 3, 4. For any functions
f ∈ A1 ∪A2 and g ∈ A3 ∪A4, we will use the notation π(f) = 1 and π(g) = 2.

We define the map F : A1 → A1 by

F
(
f(s)

)
(t) = sign

(
f(t)

)(5

6
t+

1∫
0

ts

2
f(s) ds

)
=

{
5
6 t+

∫ 1

0
ts
2 f(s) ds, t > 0,

0, t < 0.

We define a cyclic map T (Ai) ⊆ Ai+1 by

T
(
fi(s)

)
(t) = (−1)i+π(fi)F

(
(−1)sign(fi)fi

(
(−1)i+1s

))(
(−1)it

)
(20)

for f ∈ Ai, i = 1, 2, 3, 4. It is easy to observe from (20) that for fi ∈ Ai, there hold
T (f1(s))(t)=F (f1(s))(−t)∈A2, T (f2(s))(t)=−F (f2(−s))(t)v ∈A3, T (f3(s))(t)=
−F (−f3(s))(−t) ∈ A4 and T (f4(s))(t)=F (−f4(−s))(t)∈A1.

First, we calculate that dist(Ai, Ai+1) = ‖xi − xi+1‖2 =
√
2/
√
3.
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We will show that T is a 4-cyclic orbital Meir–Keeler contraction map. It is easy to
see that T (xi) = xi+1, where we use the convention x4+i = xi. Let us choose x = x4.
Let ε > 0 be arbitrary. We put δ = (2

√
2/
√
3− 1)ε. Let y ∈ A4 be such that

∥∥T 4nx− Ty
∥∥
2
<

√
2√
3
+ ε+ δ. (21)

Let us put Ty = f ∈ A1. Then inequality (21) is equivalent to the inequality

1∫
0

f2(s) ds <
2

3
(1 + 2ε)2 − 1

3
. (22)

We will show that if inequality (22) holds, then there holds the inequality

∥∥T 4n+1x− Tf
∥∥
2
= ‖x1 − Tf‖2 <

√
2√
3
+ ε, (23)

i.e.
0∫
−1

(
−5

6
t−

1∫
0

ts

2
f(s) ds

)2
dt <

(√
2√
3
+ ε

)2
− 1

3
.

Using Hölder’s inequality and (19), we get the chain of inequalities

1∫
0

(
5

6
t+

1∫
0

ts

2
f(s) ds

)2
dt 6

1∫
0

(
5

6
t+

t

2

( 1∫
0

s2 ds

)1/2( 1∫
0

f2(s) ds

)1/2)2
dt

=
1

3

(
5

6
+

1

2
√
3

( 1∫
0

f2(s) ds

)1/2)2

<
1

3

(
5

6
+

1

6

(
2(1 + 2ε)2 − 1

)1/2)2
<

(√
2√
3
+ ε

)2
− 1

3
,

i.e. (23).
Consequently T is 4-cyclic orbital Meir–Keeler contraction map. It is easy to observe

that xi is a best proximity point of T in Ai.

The third example will be in infinite dimensional Banach space, which is not endowed
with an Euclidian metric.

Proposition 2. For any d > 0, ε > 0, q > 1, there exists δ = δ(ε) such that there holds
the inequality (d+ ε+ δ)q − (d+ ε)q/2 + dq/2 < (d+ ε)q .
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Proof. Let us consider the function f : [−ε, ε]→ R defined as follows:

f(δ) = (d+ ε+ δ)q − 3

2
(d+ ε)q +

dq

2
.

The function f is continuous, and f(0) = −(d + ε)q/2 + dq/2 < 0. Thus, there exists
δ0 such that f(δ) < 0 for every δ ∈ [−δ0, δ0]. Consequently, there exists δ > 0 such that
the inequality (d+ ε+ δ)q − (d+ ε)q/2 + dq/2 < (d+ ε)q holds true.

Example 3. Let us consider the space `q endowed with the norm ‖x‖ = (
∑∞
i=1 |xi|q)1/q .

It is well known that `p is a uniformly convex Banach space. Let {ei}∞i=1 be the unit
vector basis in `q . For any vector x =

∑∞
i=1 xiei, we will denote with supp(x) the set of

its nonzero coordinates. Let z = {zi}∞i=1 ∈ `q be such that zi > 0 for every i ∈ N. Let
p ∈ N, p > 3, and let us define the sets

Ak =

{
x ∈ `q: x =

∞∑
i=0

xi+1epi+k, xi > zi for i ∈ N

}
, k = 1, 2, . . . p.

It is easy to see thatAk are convex and closed sets, andAk∩Aj = ∅ for any k 6= j. Thus,
for any x(k) ∈ Ak, k = 1, 2, . . . p, there holds suppx(k) ∩ suppx(j) = ∅ provided that
k 6= j. Consequently, ‖x(k) ± x(j)‖ = (‖x(k)‖q + ‖x(j)‖q)1/q . It is easy to see that for
any x(k) ∈ Ak, there holds the inequality ‖x(k)‖ > ‖z‖. We will calculate the distance
dist(Ak, Ak+1). For any k = 1, 2, . . . , p, where we have that Ap+1 = A1, there holds

dist(Ak, Ak+1) = inf
{∥∥x(k) − x(k+1)

∥∥: x(k) ∈ Ak, x(k+1) ∈ Ak+1

}
= inf

{(∥∥x(k)∥∥q + ∥∥x(k+1)
∥∥q)1/q: x(k) ∈ Ak, x(k+1) ∈ Ak+1

}
>
(
2‖z‖q

)1/q
=

q
√
2‖z‖.

Thus, dist(Ak, Ak+1) =
q
√
2‖z‖. Therefore, we get that

dist(A1, A2) = dist(A2, A3) = · · · = dist(Ap−1, Ap) = dist(Ap, A1).

Let us denote d = dist(A1, A2) = q
√
2‖z‖. For x =

∑∞
j=0

∑p
i=1 xjp+iejp+i ∈ `q ,

let us put Tj(x) = (1/2)(x(j+1)p + zj+1)ejp+1 +
∑p
i=2(1/2)(xjp+i−1 + zj+1)ejp+i,

j = 0, 1, 2, . . . . We define a map T : `q → `q by T (
∑∞
j=0(

∑p
i=1 xjp+iejp+i)) =∑∞

j=0 Tj(x). For any x(k) ∈ Ak, k = 1, 2, . . . p−1, we have T (x(k)) = T (
∑∞
j=0 x

(k)
j+1×

ejp+k) =
∑∞
j=0(1/2)(x

(k)
j+1 + zj+1)ejp+k+1, and for k = p, we have T (x(p)) =

T (
∑∞
j=1 x

(p)
j ejp) =

∑∞
j=1(1/2)(x

(p)
j + zj)e(j−1)p+1. By the condition x

(k)
i > zi it

follows that (1/2))(x(k)i +zi) > zi, and therefore, T (Ak) ⊆ Ak+1 for any k = 1, 2, . . . , p.
Let us put for k = 1, 2, . . . , p, z(k) =

∑∞
j=1 zje(j−1)p+k. Then there hold ‖z‖ = ‖z(k)‖

for all k = 1, 2, . . . p.
Then, for any k = 1, 2, . . . , p− 1, there holds T (z(k)) = z(k+1) and T (z(p)) = z(1).

For any k, s ∈ N, there exist m, r ∈ N such that r < p and s + k = mp + r. Then
T s(z(k)) = z(r).
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We will show that the map T : ∪pk=1Ak → ∪pk=1Ak satisfies the conditions of
Theorem 2. The map T is a cyclic map, and dist(A1, A2) = dist(A2, A3) = · · · =
dist(Ap−1, Ap) = dist(Ap, A− 1).

It remains to show that T is a p-cyclic orbital Meir–Keeler contraction maps, i.e. it
satisfies condition (3). We choose x = z(1) ∈ A1, and let y ∈ A1 be arbitrary chosen.
Then supp(T pn+k−1z(1)) ∩ supp(T ky) = ∅. It is easy to see that Tnpx = Tnpz(1) =
z(1) and Tnp+kx = Tnp+kz(1) = z(k+1) for k = 1, 2, . . . , p− 1.

Let ε > 0 be arbitrary.
We will consider two cases:

Case 1. ‖T pn+k−1x− T ky‖ < dist(Ai+k−1, Ai+k) + ε;
Case 2. ‖T pn+k−1x, T ky‖ > dist(Ai+k−1, Ai+k) + ε.

Let us put u = T ky =
∑∞
j=0 uj+1ejp+k+1. Then supp z(k) ∩ suppu = ∅ and

supp z(k+1) ∩ suppTu = ∅. Then

‖Tu‖ =

∥∥∥∥∥
∞∑
j=0

uj+1 + zj+1

2
ejp+k+2

∥∥∥∥∥ =

( ∞∑
j=1

∣∣∣∣uj + zj
2

∣∣∣∣q
)1/q

=

∥∥∥∥u+ z(k+1)

2

∥∥∥∥
and ∥∥T pn+k−1x− u∥∥ =

(∥∥z(k)∥∥q + ‖u‖q)1/q.
Case 1. Let there holds∥∥T pn+k−1x− u∥∥ =

∥∥T pn+k−1x− T ky∥∥ < dist(Ai+k−1, Ai+k) + ε.

From the inequality∥∥T pn+kx− T k+1y
∥∥ =

∥∥z(k+1) − Tu
∥∥ =

(∥∥z(k+1)
∥∥q + ‖Tu‖q)1/q

=

(∥∥z(k+1)
∥∥q + ∥∥∥∥u+ z(k+1)

2

∥∥∥∥q)1/q
6

(
‖z(k+1)

∥∥q + ‖u‖q
2

+
‖z(k+1)‖q

2

)1/q
6
(∥∥z(k+1)

∥∥q + ‖u‖q)1/q = (‖z‖q + ‖u‖q)1/q
=
∥∥T pn+k−1x− u∥∥ < dist(Ai+k−1, Ai+k) + ε

it follows that condition (3) holds true.

Case 2. Let there hold the inequality

(d+ ε)q 6
∥∥T pn+k−1x− T ky∥∥q = ∥∥z(k) − u∥∥q

=
∥∥z(k)∥∥q + ‖u‖q = ‖z‖q + ‖u‖q.
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Consequently, we get the inequality

(d+ ε)q − 2‖z‖q 6 ‖u‖q − ‖z‖q. (24)

From Proposition 2 there exists δ > 0 such that

(d+ ε+ δ)q − 1

2

(
(d+ ε)q − dq

)
< (d+ ε)q.

Let y ∈ A1 be such that there hold the inequalities

(d+ ε)q 6
∥∥T pn+k−1x− T ky∥∥q = ∥∥z(k)∥∥q + ‖u‖q 6 (d+ ε+ δ)q.

Then using (24), we get that∥∥T pn+kx− T k+1y
∥∥q = ∥∥z(k+1) − Tu

∥∥q = ∥∥z(k+1)
∥∥q + ‖Tu‖q

= ‖z‖q +
∥∥∥∥z(k+1) + u

2

∥∥∥∥q 6 ‖z‖q + ‖z(k+1)‖q

2
+
‖u‖q

2

= ‖z‖q + ‖u‖q − 1

2

(
‖u‖q − ‖z‖q

)
6 (d+ ε+ δ)q − 1

2

(
(d+ ε)q − dq

)
< (d+ ε)q.

Consequently, T is p-cyclic orbital Meir–Keeler contraction map. It is easy to observe that
z(k) is a best proximity point of T in Ak because Tz(k) = z(k+1) and dist(Ak, Ak+1) =
d(z(k), z(k+1)) = d(z(k), T z(k)).

We would like to pose an open question. A recent results in [9] gives a Variational
principle, that can be applied for wide class of cyclic maps. Unfortunately, this result
could not be applied for cyclic orbital Meir–Keeler contraction map. It will be interesting
if the results from [9] can be generalized so that to be applied for cyclic orbital Meir–
Keeler contraction map.
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