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Abstract. This article considers a time-delayed mathematical model of immune response to
Plasmodium falciparum (Pf) malaria. Infected red blood cells display a wide variety of surface
antigens to which the body in turn responds by mounting specific immune responses as well as
cross-reactive immune responses. The model studied here tracks these infected red blood cells as
well as the two types of immune responses. It is assumed that the immune responses are time-
delayed, and hence a system of nonlinear delay differential equations is considered. The goal of the
paper is to provide a vigorous analysis of the stability and Hopf bifurcation of the non-zero uniform
endemic equilibrium of the mathematical model.
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1 Introduction

The present paper is a development and refinement of some of the ideas first presented
in [15] and [4]. For the sake of completeness, we reproduce here some portions of the
introduction of [15] – which provides the background of the mathematical model un-
der consideration. We consider a time-delayed modification of the seminal Recker et al.
[18] intra-host mathematical model of immune response to Plasmodium falciparum (Pf),
a species of parasites that cause malaria in humans. The model incorporates the effects of
time-delayed immune response (IR) mounted by the human host and was first introduced
in the work of Mitchell et al. [12–14] as a natural development of the model proposed by
Recker et al. [18]. Over the years, there has been considerable work conducted on this
type of model in the research literature (see [1–6,10–14,17] and [18] for example). In the
original work of [18], the authors proposed a mathematical model of immune response
to Plasmodium falciparum predicated on the hypothesis that a given antigenic variant
experiences two different types of immune response. These are the long-lasting variant-
specific immune response and the short-lived cross-reactive immune response mounted
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against a set of epitopes shared with other antigenic variants. The main achievement
of the model is its ability to replicate the sequential appearance of dominant antigenic
variants, each of which is the most immunologically distinct from its preceding types [18]
– this being a strategy employed by the parasite population to evade the host’s immune
system [14].

The time-delayed modification of the Recker et al. [18] is expressible in the form
[13, 14]

Y ′i (T ) = φYi(T )− αZi(T )Yi(T )− α′Wi(T )Yi(T ),

Z ′i(T ) = βYi(T − Td)− µZi(T ),

W ′i (T ) = β′
N∑
j

cijYj(T − Td)− µ′Wi(T ),

(1)

where Yi denotes the amount of antigenic variant i, Zi and Wi denote variant-specific
and cross-reactive immune responses, respectively, φ is the intrinsic parasite growth rate,
α and α′ are the removal rates associated with specific and cross-reactive immune re-
sponses, respectively, β and β′ are the proliferation rates of immune responses, µ and
µ′ are the decay rates of variant-specific and cross-reactive immune responses, and Td is
the discrete time-delay of the IR. The coefficients cij of the connectivity matrix charac-
terise cross-reactive inter-variant interactions [2, 6, 18]. Following in the footsteps of [13]
and [14], we assume that all of the variants have identical temporal dynamics, namely,
Yi(T ) = Y (T ), Zi(T ) = Z(T ), and Wi(T ) =W (T ) for all i.

Let us define dimensionless variables y, z, and w as deviations from the endemic
steady state and a new dimensionless time [14]:

Y = Ys(1 + y),

Z = Zs

[
1 +

1

q

(
pµ

φ

)1/2
z

]
,

W =Ws

[
1 +

µ′

µ

(
pµ

φ

)1/2
w

]
,

T =

(
p

µφ

)1/2
t.

(2)

We now recast (1) in the new dimensionless variables to obtain the system

y′ = −(z + w)(1 + y),

z′ = qy|τ − az,
w′ = y|τ − abw,

(3)

where y|τ := y(t− τ), τ is the rescaled time-delay, and

a :=

(
pµ

φ

)1/2
> 0, b :=

µ′

µ
> 0, q :=

αβ

α′nβ′
> 0. (4)
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Here, the term nβ′ denotes the growth rate of the cross-reactive immune response, and
n denotes the number of variants that share minor epitopes. In an effort to facilitate
the analysis, [14] introduced the new variable x = z + w representing the total IR.
Equation (3) thus becomes [14]

x′ = (1 + q)y|τ − abx− a(1− b)z,
y′ = −x(1 + y),

z′ = qy|τ − az.
(5)

System (5) has two different types of equilibria, namely: 1) a disease-free equilibrium
E0 := (x0, y0, z0) = (−(1 + qb)/(ab),−1,−q/a) and 2) a non-zero uniform (endemic)
equilibrium E1 := (x1, y1, z1) = (0, 0, 0). We must comment that system (5) describes
the dynamics of deviations from the uniform endemic equilibrium. The details of this
derivation can be found in [15, 18] and [4]. Thus, even though the equilibrium E1 of
system (5) has all its components identical to zero, it infact corresponds to the non-zero
uniform endemic equilibrium of the original system (1) [4]. Likewise, the equilibrium
E0 is the genuine disease-free equilibrium of (1) [4]. It is worth noting at the onset
that the studies presented in [12, 13] and [14] primarily focus on the dynamics of the
non-zero uniform endemic equilibrium. Employing asymptotics and perturbation analysis
techniques, the authors show that a range of interesting dynamics result as a consequence
of the time delay. The current paper seeks to investigate the stability and Hopf bifurcation
of the non-zero uniform endemic equilibrium from the viewpoint of the vigorous direct
analysis of the associated characteristic equation.

In this article, we study a mathematical model of Plasmodium falciparum malaria
[12–14,17,18], which is given by the system of DDEs given in (5). As established in [15],
when τ 6= 0, the linearisation of (5) about the non-zero uniform endemic equilibrium
E1 = (0, 0, 0) is given by

x′ = (1 + q)y(t− τ)− abx− a(1− b)z,
y′ = −x,
z′ = qy(t− τ)− az.

(6)

Consider solutions of (5) of the formyz
x

 =

c1c2
c3

 · eλt, (7)

where c1, c2, c3 ∈ R and λ ∈ C. Substituting (7) into (6) yields the system

c3λe
λt = (1 + q)c1e

λ(t−τ) − abc3eλt − a(1− b)c2eλt,

c1λe
λt = −c3eλt,

c2λe
λt = qc1e

λ(t−τ) − ac2eλt,
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which can be re-arranged and simplified to give the matrix equation(1 + q)e−λτ −a(1− b) −(ab+ λ)
λ 0 1

qe−λτ −(a+ λ) 0

c1c2
c3

 =

0
0
0

 ,

whose solutions c1, c2, and c3 are non-trivial if, and only if,

det

(1 + q)e−λτ −a(1− b) −(ab+ λ)
λ 0 1

qe−λτ −(a+ λ) 0

 = 0.

Denoting the above determinant by D(λ), we see that c1, c2, and c3 are non-trivial if, and
only if,

D(λ) := λ(λ+ a)(λ+ ab) +
[
(1 + q)λ+ a(1 + bq)

]
e−λτ = 0, (8)

which defines the characteristic equation of (6) about the non-zero uniform endemic
equilibrium point E1 = (x1, y1, z1) = (0, 0, 0), and where λ ∈ C is the characteristic
exponent.

2 Equilibria and Hopf bifurcation

Linear stability of the non-zero uniform (endemic) equilibrium in the case of instanta-
neous IR was studied in [12, 13] and [14]. In [12, 13] and [14], the authors also studied
the linear stability of the non-zero uniform (endemic) equilibrium in the case of delayed
IR, where the IR delay was taken to be discrete, very small, and fixed for all episodes of
infection. In the cited studies, the authors relied heavily on perturbation and asymptotic
analysis techniques. Their calculations were somewhat simplified by their assumption
that the IR delay τ is very small. In Blyuss et al. [3], the authors did consider the case
of an arbitrary immune response time delay and subsequently studied the phenomenon of
symmetry breaking. In this article, we systematically investigate the local stability and
Hopf bifurcation of the equilibrium E1 = (0, 0, 0). Our approach differs from previous
studies primarily because we rely on the direct analysis of the associated characteristic
equation (8).

We begin our study by noting that the characteristic equation (8) can be expressed in
the form

D(λ) =
[
λ3 + a(1 + b)λ2 + a2bλ

]
eλτ + (1 + q)λ+ a(1 + bq) = 0. (9)

Setting τ = 0 in (9) leads to the equation

D(λ) = λ3 + a(1 + b)λ2 +
(
a2b+ 1 + q

)
λ+ a(1 + bq) = 0. (10)

Using the well-known Routh–Hurwitz criterion, we conclude that polynomial (10) is
stable if, and only if,

a(1 + b) > 0, a3b2 + a3b+ ab+ aq > 0,

a(1 + bq)
(
a3b2 + a3b+ ab+ aq

)
> 0.

(11)
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Because of the fact that all of the parameters in the Recker et al. model [18] are strictly
positive, it follows that conditions (11) are always valid. Let λ = iω (ω > 0) in (9), and
decompose into real and imaginary components to get

D(iω) = F (ω) + iG(ω),

where

F (ω) : = a(1 + bq)−
(
a2bω − ω3

)
sin(ωτ)− a(1 + b)ω2 cos(ωτ) = 0,

G(ω) : = (1 + q)ω +
(
a2bω − ω3

)
cos(ωτ)− a(1 + b)ω2 sin(ωτ) = 0.

(12)

We obtain from (12) that

cos(ωτ) =
a2b2q + (1 + q)ω2 + a2

ω4 + (1 + b2)ω2 + a4b2
,

sin(ωτ) =
a[(b+ q)ω2 + a2b2q + a2b]

ω[ω4 + a2(1 + b2)ω2 + a4b2]
.

(13)

Using the identity sin2(ωτ) + cos2(ωτ) = 1, equation (13) yields the polynomial

H(ω) := ω10 + q1ω
8 + q2ω

6 + q3ω
4 + q4ω

2 + q5 = 0, (14)

where

q1 = 2a2
(
b2 + 1

)
> 0,

q2 = a4
(
b4 + 4b2 + 1

)
− (q + 1)2,

q3 = a2
(
2a4b4 + 2a4b2 − 2b2q2 − 2b2q − b2 − 2bq − q2 − 2q − 2

)
,

q4 = a4
(
a4b4 − b4q2 − 2b3q − 2b2q2 − 2b2q − 2b2 − 2bq − 1

)
,

q5 = −a6b2(bq + 1)2 < 0.

(15)

When the Recker et al. model [18] is derived, all parameters are taken to be positive with
a very specific biological meaning. The implication of this fact is that the parameters
a, b, and q defined in equation (4) are positive. As a consequence of this, q5 defined in
equation (15) is always negative. Let us introduce the change of variable z = ω2 in (14)
to obtain

H(z) := z5 + q1z
4 + q2z

3 + q3z
2 + q4z + q5 = 0. (16)

Assume that qk > 0, k = 2, 3, 4. Since all the parameters in system (5) are positive, it is
clear that

H(0) = q5 < 0.

Furthermore, we note that H ′(z) = 5z4 +4q1z
3 +3q2z

2 +2q3z+ q4 > 0 in the interval
(0,+∞). This implies thatH(z) is monotonically increasing in the interval (0,+∞). It is
also straightforward to establish that limz→+∞H(z) = +∞. We arrive at the following
result.

Lemma 1. Since H(0) = q5 < 0 and H(∞) = ∞, it follows that equation (16) has at
least one positive real root.
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We assume without loss of generality that (16) has five positive roots, which we denote
by z1, z2, z3, z4, and z5. It follows that equation (14) has five positive real roots, namely:
ω1 =

√
z1, ω2 =

√
z2, ω3 =

√
z3, ω4 =

√
z4, and ω5 =

√
z5. We substitute the roots

ωk, k = 1, 2, . . . , 5, into equation (13) to get the sequence of critical time delays

τ
(j)
k = cos−1

a2b2q + (1 + q)ω2
k + a2

ω4
k + (1 + b2)ω2

k + a4b2
+

2jπ

ωk
, k = 1, 2, . . . , 5, j = 0, 1, 2, . . . .

Thus, when τ = τ
(j)
k , the characteristic equation (9) has a pair of purely imaginary roots

λ = ±iωk. Let us define

τ0 = min
{
τ
(j)
k

∣∣ k = 1, 2, . . . , 5, j = 0, 1, 2, . . .
}
.

We suppose that λ(τ) = ν(τ)+ iω(τ) is a root of (9) near τ = τ
(j)
k such that ν(τ (j)k ) = 0

and ω(τ
(j)
k ) = ω0 with k = 1, 2, . . . , 5, j = 0, 1, 2, . . . . By recourse to the well-

known theory on functional differential equations [8, 9], we have that for every τ
(j)
k

(k = 1, 2, . . . , 5, j = 0, 1, 2, . . .), there exists an ε > 0 such that λ(τ) is continuously
differentiable in τ for |τ − τ

(j)
k | > 0. With the help of the computer algebra package

MAPLE, we establish that

dλ

dτ
=

−λ2[λ2 + a(1 + b)λ+ a2b]eλτ

[τλ3 + (abτ + aτ + 3)λ2 + (a2bτ + 2ab+ 2a)λ+ a2b]eλτ + q + 1
,

from which we obtain the usual transversality condition

Re

(
dλ(τ)

dτ

∣∣∣∣
τ=τ

(j)
k

)
6= 0, k = 1, 2, . . . , 5, j = 0, 1, 2, . . . .

Using MAPLE, we find that the transversality condition is satisfied if, and only if,[
1 + q + φ1 sin(ωkτk) + φ2 cos(ωkτk)

][
φ3 cos(ωkτk)− φ4 sin(ωkτk)

]
6= 0, (17)

where
φ1 = τkω

3
k − a2bτkωk − 2abωk − 2aωk,

φ2 = a2b− abτkω2
k − aτkω2

k − 3ω2
k,

φ3 = a2bω2
k − ω4

k,

φ4 = abω3
k + aω3

k.

In order to simplify (17), one would typically substitute (13) into the expression. However,
in this case, the resulting expression is too lengthy to include here. In the light of the
foregoing discussion and the general Hopf bifurcation theorem of functional differential
equations [8], we arrive at the following result concerning the stability of the non-zero
uniform endemic equilibrium of system (5) when τ > 0.

Theorem 1. Suppose that condition (17) is satisfied. Since the conditionsH(0) = q5 < 0
and (11) are always fulfilled, it follows that the equilibrium E1 is asymptotically stable
when τ < τ0 and unstable when τ > τ0. When τ = τ0, system (5) undergoes a Hopf
bifurcation at E1.
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3 Stability region in an appropriate two-parameter space

In this section, we discuss the asymptotic stability boundary of the equilibrium E1 in the
(b, q)-parameter space. We note at the onset that the parameters b and q appear directly
in system (5). To achieve this goal, we attempt to go via an intermediate step in which
we may conduct our analysis in an intermediary two-parameter space [7]. This approach
is along the lines of the work of [7], who did a similar analysis for a nonlinear scalar
delay differential equation arising in the work of [16]. Unfortunately, the generalisation
of their technique to systems of delay differential equations remains an open problem –
this article is a modest attempt to address this problem in the particular case of a system
of three nonlinear delay differential equations.

To begin, we now prepare system (5) for the analysis to come by rescaling some of its
parameters. In particular, let t̃ := t/τ , q̃ := qτ , ã := aτ , and b̃ := bτ . As a consequence
of this, we obtain the following rescaled system:

x′(t̃) = (τ + q̃)y(t̃− 1)− ãb̃

τ
x(t̃)− ã

τ
(τ − b̃)z(t̃),

y′(t̃) = −τx(t̃)
[
1 + y(t̃)

]
,

z′(t̃) = q̃y(t̃− 1)− ãz(t̃).

(18)

For notational convenience, we now drop the tilde’s from system (18), leading to its less
cluttered counterpart

x′(t) = (τ + q)y(t− 1)− ab

τ
x(t)− a

τ
(τ − b)z(t),

y′(t) = −τx(t)
[
1 + y(t)

]
,

z′(t) = qy(t− 1)− az(t).

(19)

The linearisation of (19) about the equilibrium E1 = (0, 0, 0) is given by

x′(t) = (τ + q)y(t− 1)− ab

τ
x(t)− a

τ
(τ − b)z(t),

y′(t) = −τx(t),
z′(t) = qy(t− 1)− az(t),

(20)

and the corresponding characteristic equation is[(
qτ + τ2

)
λ+ a

(
bq + τ2

)]
e−λ +

1

τ

(
τλ3 + a(b+ τ)λ2 + a2bλ

)
= 0. (21)

Instead of directly analysing the characteristic equation (21), we shall now digress and
investigate whether we can, instead, work with an intermediary characteristic equation,
as suggested and discussed in [7]. To begin, let us express (20) using matrix notation to
obtain

χ′(t) = Aχ(t) +Bχ(t− 1), (22)

Nonlinear Anal. Model. Control, 21(6):851–860
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where

A =

−abτ 0 −a(τ−b)τ
−τ 0 0
0 0 −a

 , B =

0 τ + q 0
0 0 0
0 q 0

 , and χ(t) =

x(t)y(t)
z(t)

 .

Equation (22) admits non-trivial solutions of the form χ(t) = ceλt, λ ∈ C, and c =
(c1, c2 c3)

T 6= 0, with c1, c2, c3 ∈ R, if, and only if, λ satisfies the characteristic equation

det
(
λI−A−Be−λ

)
= 0, (23)

where I is the 3 × 3 identity matrix. Equation (10) in [7] is a scalar analogue of (22).
Comparison of these two equations makes it abundantly clear that the two-parameter
technique championed in [7] may not be possible in dealing with characteristic equations
associated with systems of dimension greater than one. We must remark that equation (23)
is equivalent to (21). It is evident that (21) is complicated, and any attempt aimed at
studying the distribution of its zeroes directly is bound to be laborious. The idea behind
the derivation of an equivalent and ‘simpler’ intermediate characteristic equation such as
(23) (or equation (2) in [7]) is so that we may be able to obtain some insight about (21)
by studying (23) in some appropriate ‘intermediate’ two-parameter space. In the one
dimensional case, the intermediate parameters used in the two-parameter analysis would
typically be selected to be the coefficients of χ(t) and χ(t − 1) in (22). This idea is
well-articulated for the one-dimensional case studied in [7], and where the intermediate
characteristic equation takes a very simple and prototypical form. The current effort
investigates whether idea of a two-parameter analysis promulgated in [7] is extensible
to systems of dimension higher than one. It is now clear that analysis of (23) in an
appropriate intermediary two-parameter space as posited in [7] is not straightforward in
the three-dimensional case, primarily because our two intermediate ‘parameters’ A and
B are matrices (not scalars as in equations (2) and (10) derived in [7]), and computing the
determinant in (23) will not preserve the matrix structure of these parameters – they will
simply disappear during the ensuing calculation.

At this point, we turn to looking at (21) directly. Let λ = iω, ω > 0, in (21) and
decompose the resulting expression into its real and imaginary components, thus:

(
abq + aτ2

)
cosω +

(
qτω + ωτ2

)
sinω =

aω2b

τ
+ aω2,(

qτω + ωτ2
)
cosω −

(
abq + aτ2

)
sinω = ω3 − a2bω

τ
.

(24)

We then solve (24) for the parameters (b, q) as functions of the frequency ω. We men-
tion that two sets of values of the 2-tuple (b, q) are obtained, as clearly b and q occur
nonlinearly in (24). Let us denote the pair of solutions so obtained as (b1(ω), q1(ω)) and
(b2(ω), q2(ω)). Furthermore, let us denote

ξ :=
1

2

√
ξ1 + ξ2,

http://www.mii.lt/NA
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where
ξ1 = 4ω4 cos2 ω + 4aω3 sin(2ω) + 4a2ω2 sin2 ω,

ξ2 = 4a2τ2 cosω − 4aτ2ω sinω − 4a2ω2 + τ4 − 4ω4.

Then, we have the following solutions (b(ω), q(ω)) of (24):

b1(ω) =
τ [τ2ω cosω − aτ2 sinω + (ω2 cosω + aω sinω − 1

2τ
2 + ξ)ω cosω − ω3]

a[(ω2 cosω + aω sinω − 1
2τ

2 + ξ) sinω − aω]
,

q1(ω) =
ω2 cosω + aω sinω − 1

2τ
2 + ξ

τ
,

and

b2(ω) =
τ [τ2ω cosω − aτ2 sinω + (ω2 cosω + aω sinω − 1

2τ
2 − ξ)ω cosω − ω3]

a[(ω2 cosω + aω sinω − 1
2τ

2 − ξ) sinω − aω]
,

q2(ω) =
ω2 cosω + aω sinω − 1

2τ
2 − ξ

τ
.

When b = 0 = q, the characteristic equation (21) simplifies to

(λ+ a)
(
λ2 + τ2e−λ

)
= 0,

whose only root is λ = −a < 0. This implies that any region containing (0, 0) in the
(b, q)-parameter space is necessarily the asymptotic stability region. In such a region, the
quasi-polynomial (21) has no roots whose real part is located in the right half-plane. As
one crosses the boundary of the stability region, two roots whose real part is in the right
half-plane appear via a Hopf bifurcation of the equilibrium E1 = (0, 0, 0).

4 Conclusion

This article has focussed on the non-zero uniform endemic equilibrium E1 of the cele-
brated Recker et al. model [18] endowed with an arbitrary immune response time delay. In
the process, we were able to establish concrete conditions under which a Hopf bifurcation
occurs at the equilibriumE1. In Section 3 of the article, we attempted to give a description
of the asymptotic stability boundary of E1 in an appropriate two-parameter space. In
carrying out this analysis, we also showed that the technique advertised vigorously in the
work of [7] may not be extensible to higher dimensional systems, unfortunately.
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