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Abstract. We study some estimators of the Hurst index and the diffusion coefficient of the fractional
Gompertz diffusion process and prove that they are strongly consistent and most of them are
asymptotically normal. Moreover, we compare the asymptotic behavior of these estimators with
the aid of computer simulations.
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1 Introduction

Many applications make use of processes that are described by stochastic differential
equations (SDEs). Recently, much attention has been paid to SDEs driven by the fractional
Brownian motion (fBm) and to the problems of statistical estimation of model parameters.
Statistical aspects of the models driven by the fBm have been studied in many articles.
Especially much attention has been paid to the estimation of the parameters of drift. We
focus on estimators of the Hurst index and the diffusion coefficient. Recently, some new
estimators of the Hurst index and of the diffusion coefficient have been proposed (see
[1,2,13,14]). This paper aims to compare them using discrete observations of the sample
paths of the solution of the SDE.

As the test process, we will consider the fractional Gompertz diffusion process (fGd)

Xt =

t∫
0

(αXs − βXs lnXs) ds+ σ

t∫
0

Xs dBHs , X0 = x0 > 0, 0 6 t 6 T, (1)
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where α, β 6= 0, and σ are real parameters and BH is a fBm with the Hurst index H ∈
(1/2, 1). Almost all sample paths of BH have bounded p-variation for each p > 1/H
on [0, T ] for every T > 0. The second integral in (1) is the pathwise Riemann–Stieltjes
integral with respect to the process having finite p-variation.

The reasons we have chosen fGd as the test process are as follows. Firstly, it is a non-
linear process. To equation (1) it is possible to apply a pathwise approach and use a chain
rule for the composition of a smooth function and a function of bounded p-variation
with 1 < p < 2. This approach allows to easily obtain the unique explicit solution of
equation (1) for H ∈ (1/2, 1) in the class of processes, almost all sample paths of which
have bounded p-variation with 1 < p < 2. Secondly, the structure of the increments of
fGd allows us to apply a wider class of estimators without imposing additional restrictions
on the process. The normalization of quadratic variation by the square of the process value
at a fixed point allows us to derive the asymptotic normality of these estimators. The
application of this approach allows to consider similar statistics for the equations with
time-dependent coefficients. Moreover, in case of the standard Brownian motion, i.e., for
H = 1/2, this process plays an important role in the modeling of population growth.

Dung [7] proved that a class of fractional geometric mean reversion processes ex-
pressed by a fractional SDE of the form

Xt =

t∫
0

(αsXs − βsXs lnXs) ds+

t∫
0

σsXs dWH
s , X0 = x0 > 0, 0 6 t 6 T,

where WH is a fractional Brownian motion of the Liouville form, has a unique solution.
It follows from his results that, if the coefficients in the equation above are constant, its
solution will be of the form

Xt = exp

{
e−βt lnx0 + α

t∫
0

e−β(t−s) ds+ σ

t∫
0

e−β(t−s) dWH
s

}
. (2)

In the Appendix, it will be shown that equation (1) has the solution of the same form even
without the assumption required by Dung.

In case of the fractional Ornstein–Uhlenbeck process and the geometric Brownian
motion, a comparison of various estimators of the Hurst index was presented in [11].
The estimators based on quadratic variations were compared to some of the other known
estimators. It should be noted that these estimators are not asymptotically normal. More-
over, only one of the estimators considered in the aforementioned paper is included in the
comparison presented in this article.

A reader interested in the existence of the solution of the Gompertz diffusion process
with respect to the standard Brownian motion and the estimation of its parameters is
encouraged to read [15, 9, 8] and the references therein.

The structure of the paper is as follows. Section 2 presents the estimators considered
in the rest of the paper. Section 3 contains the numerical comparison of the estimators’
performance. Sections 4–6 are dedicated to proofs of strong consistency of the considered
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estimators in case of the fractional Gompertz diffusion process. In the Appendix, the
existence and uniqueness of the solution of equation (1) is proved.

2 Estimators

In the rest of the paper, we will deal with the problem of estimating the Hurst index and
the diffusion coefficient of the fractional Gompertz diffusion process based on discrete
observations of its sample paths. The estimation of the trend parameters α and β, although
not included in the present paper, can be performed using the least squares method. Using
the change of variable Zt = lnXt, equation (1) can be reduced to the fractional Vasicek
model, to which the least squares method is then applied (see, e.g., [17]).

2.1 Hurst index estimators

Let πn = {τmn

k , k = 0, . . . ,mn}, n > 1, N 3 mn ↑ ∞, be a sequence of partitions of the
interval [0, T ]. If partition πn is uniform, then τmn

k = kT/mn for all k ∈ {0, . . . ,mn}.
If mn ≡ n, we write tnk instead of τmn

k . Let (Xt)t∈[0,T ] be a stochastic process and

∆(1)X
(
τmn

k

)
= X

(
τmn

k

)
−X

(
τmn

k−1
)
,

∆(2)X
(
τmn

k

)
= X

(
τmn

k+1

)
− 2X

(
τmn

k

)
+X

(
τmn

k−1
)
,

k = 1, . . . ,mn − (i− 1), i = 1, 2. Denote

V
(i)
mn,T

=

mn−(i−1)∑
k=1

(
∆(i)X(τmn

k )

X(τmn

k−1)

)2
, i = 1, 2,

and

Wn,k =

kn−1∑
j=−kn+1

(
∆(2)Xsnj +t

n
k

)2
=

kn−1∑
j=−kn+1

(
Xsnj+1+t

n
k
− 2Xsnj +t

n
k

+Xsnj−1+t
n
k

)2
,

where snj = jT/mn, mn = nkn, and kn = n2.

Theorem 1. Assume that X is a solution of the fractional Gompertz SDE and 1/2 <
H < 1. Then

Ĥ(j)
n

a.s.→ H, j = 1, 2, 3, 4,

and

2 ln 2
√
n
(
Ĥ(1)
n −H

) d→ N
(
0, σ2
∗
)
, 2

√
n ln

n

T

(
Ĥ(2)
n −H

) d→ N
(
0;σ2

H

)
,

√
n
(
Ĥ(3)
n −H

) d→ N
(

0, σ2
`

(
r,

z

2
√
r

))
,

with

σ2
∗(H) =

3

2
σ2(H)− 2σ1,2(H)
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and known variances σ2
H , σ1,2(H), σ2

` (r, (z/
√
r)/2) defined in Section 4.2, where

Ĥ(1)
n =

1

2
− 1

2 ln 2
ln
V

(2)
2n,T

V
(2)
n,T

, (3)

Ĥ(2)
n =

1

2
+

1

2 ln kn
ln

(
2

n

n∑
k=2

(
∆(2)X(tnk )

)2
Wn,k−1

)
, (4)

Ĥ(3)
n = −1

2

∑̀
j=1

zj ln
V

(2)
nj ,T

nj − 1
, nj = rjn, rj ∈ N, j = 1, . . . , `, ` 6= 1, (5)

zi =
yi∑`
i=1 y

2
i

, and yi = ln ri −
1

`

∑̀
i=1

ln ri,

Ĥ(4)
n =

1

0.1468

(
1

n4 − 2

n4−2∑
k=1

|∆(2)X(tn
4

k ) + ∆(2)X(tn
4

k+1)|
|∆(2)X(tn

4

k )|+ |∆(2)X(tn
4

k+1)|
− 0.5174

)
. (6)

Remark 1. The estimators Ĥ(i)
n , i = 1, 2, 3, 4, were considered in [14,13,2] and [1]. The

estimator Ĥ(2)
n can be used to estimate the Hurst index of the generic form of the SDE

with an additional restriction on the diffusion coefficient.

2.2 Diffusion coefficient estimators

In this section, we describe four estimators of the diffusion coefficient. The application
of the fourth is not explicitly justified, however, this can be performed. It was proposed
in [2] for the fractional geometric Brownian motion. The aforementioned paper shows it
to be a weakly consistent estimator of the diffusion coefficient σ2.

Theorem 2. Assume that X is a solution of the fractional Gompertz SDE, 1/2 < H < 1,
and Ĥn = H + oω(φ(n)), where oω is defined in Section 5. If φ(n) = o(ln−1n), then

σ̂2
1,n =

n2Ĥn−1

T 2Ĥn

V
(1)
n,T

a.s.→ σ2,

σ̂2
2,n =

n2Ĥn−1

T 2Ĥn(4− 22Ĥn)
V

(2)
n,T

a.s.→ σ2,

σ̂2
3,n =

∑n
k=1(∆(1)X(tnk ))2

(Tn )2Ĥn
∑n
k=1X

2(tnk−1)

a.s.→ σ2.

If φ(n) = o(n−1/2ln−1n), then

√
n
(
σ̂2
2,n − σ2

) d→ N
(
0;σ4σ2(H)

)
for 0 < H < 1,

where variance σ2(H) are defined in Section 4.2.
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For the purposes of comparison, we shall also consider

σ̂4,n =
exp(B̂)

4− 22Ĥ
(3)
n

, B̂ =
1

2

(
1

`

∑̀
i=1

ln
V

(2)
ni,T

ni − 1

)
+ Ĥ(3)

n

(
1

`

∑̀
i=1

lnni

)
,

where ni and Ĥ(3)
n are defined in Theorem 1.

Remark 2. The estimators σ̂2
i,n, i = 1, 2, are similar to the estimators used in the

book [2] for the evaluation of the diffusion coefficient σ of the solutions of linear SDE
when H is known. The estimator σ̂2

3,n is used to estimate the diffusion coefficient of the
fractional Ornstein–Uhlenbeck process when H is known (see [17]). We have shown that
this restriction can be lifted.

3 Modeling of the estimators

The goal of this section is to describe the numerical simulations that were performed in
order to compare the behavior of the estimators considered in this paper.

The sample paths of the fractional Brownian motion, which were further used to con-
struct the sample paths of the fractional Gompertz diffusion process, were simulated using
the Wood–Chan circulant matrix embedding method [16]. The values of the constants
involved in these simulations were, unless explicitly stated otherwise, X0 = 3, α = 0.5,
β = 2, and σ = 1.5. We considered these sample paths on the unit interval, hence, T = 1.
The number of replicates was 300 in all of the considered cases. In what follows, we
present the dependencies of the estimators both on the true parameter values (H , σ) and
on the sample size (n). We have also checked for possible dependencies of the estimators
of the Hurst index and the diffusion coefficient on the values of the other parameters of the
considered equation, namely, the drift coefficients α and β and the initial condition X0.
No such dependencies of significant impact have been observed.

3.1 Modeling of the Hurst index estimators

Figures 1 and 2 display, respectively, the dependence of the four estimators of the Hurst
index H on its true value and on the sample size (length of the sample path) n. In Fig. 1,
the same sample sizes n = 210 were used for all of the considered estimators, which does
suggest that the estimators Ĥ(4)

n and Ĥ(2)
n would be a priori less efficient. However, in

practical applications, the sample size is usually fixed, hence, the motivation was to see
what kind of performance the considered estimators would show given the exact same
number of observations. In Fig. 2, the value of the Hurst index was chosen as H =
0.75. The values of rj were taken to be powers of 2 (more precisely, rj = 2j−1, j =
1, . . . , l) and, further, the values of ni were taken as ni = n/ri, where n denotes the
(fixed) maximum sample size length. The value of l was (arbitrarily) taken to be 4, as
simulation results suggested that both considerably smaller (e.g., 2) and considerably
larger (e.g., log2 n − 1) values yielded inferior performance. It does appear plausible
that for much bigger sample sizes, it might be beneficial to increase this value further,

Nonlinear Anal. Model. Control, 21(6):861–882
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Figure 1. Dependence of the absolute error on H .
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Figure 2. Dependence of the absolute error on n.

however, in this study, sample sizes exceeding 6400 points were not considered. It can
be seen that the performance of the estimator Ĥ(4)

n is slightly lacking compared to that of
the other estimators, which, despite imposing rather different requirements on the sample
sizes, show similar precision.

3.2 Modeling of the diffusion coefficient estimators

In order to calculate the estimators σ̂2
1,n, σ̂2

2,n, and σ̂2
3,n, we need to supply them with

the estimated values of the Hurst index. In Figs. 3 and 4 presented below, the diffusion
coefficient estimator σ̂2

i,n, using the Hurst index estimator Ĥ(j)
n , is denoted as ‘si_hj’,

i, j = 1, 2, 3. The estimator σ̂2
4,n is denoted as ‘s4’. The graphs present the relative

differences, namely, (σ̂i,n − σ)/σ. In Fig. 3, the sample size was chosen to be n = 210
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Figure 3. Dependence of the relative error on σ.
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Figure 4. Dependence of the relative error on n.
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for all of the considered estimators. In Fig. 4, the value of the diffusion coefficient was
chosen as σ = 1. It can be seen that the performance of all the considered estimators
is roughly similar. The convergence rate of σ̂2

4,n appears slower, although it seems to
perform better for the values of σ close to zero. For the other estimators, it appears that
using Ĥ(3)

n yields better numerical characteristics.

4 Preliminaries

4.1 Variation

Let p > 0, −∞ < a < b <∞ be fixed and K = {{x0, . . . , xn} | a = x0 < x1 < · · · <
xn = b, n > 1} denotes the set of all possible partitions of [a, b]. For any f : [a, b]→ R,
define

vp
(
f ; [a, b]

)
= sup

κ∈K

n∑
k=1

∣∣f(xk)− f(xk−1)
∣∣p, Vp

(
f ; [a, b]

)
= v1/pp

(
f ; [a, b]

)
.

If vp(f ; [a, b]) <∞, f is said to have a bounded p-variation on [a, b].
In the rest of the paper, Wp([a, b]) denotes the class of functions on [a, b] with

bounded p-variation and CWp([a, b]) = {f ∈ Wp([a, b]) | f is continuous}. In case
of a fixed interval [a, b], we abbreviate the notations and write vp(f), Vp(f), etc. instead
of vp(f ; [a, b]), Vp(f ; [a, b]).

Below we list several facts used in the sequel. For details, we refer the reader to [6].

• p > 1 ⇒ f 7→ Vp(f) is a semi-norm onWp.
• f = const ⇔ Vp(f) = 0.
• f ∈ Wp ⇒ supx∈[a,b] |f(x)| <∞.
• p > 1, f ∈ Wp ⇒ f ∈ Wq for all q > p.
• f, g ∈ Wp ⇒ fg ∈ Wp.
• Let f ∈ Wq and h ∈ Wp with p, q ∈ (0,∞): 1/p + 1/q > 1. Then an integral∫ b

a
f dh exists as the Riemann–Stieltjes integral provided f and h have no common

discontinuities. If the integral exists, the Love–Young inequality∣∣∣∣∣
b∫
a

f dh− f(y)
[
h(b)− h(a)

]∣∣∣∣∣ 6 Cp,qVq(f)Vp(h) (7)

holds for all y ∈ [a, b], where Cp,q = ζ(p−1 + q−1) and ζ(s) =
∑
n>1 n

−s.
Moreover,

Vp

( ·∫
a

f dh

)
6 Cp,qVq,∞(f)Vp(h),

where Vq,∞(f) = Vq(f) + supa6x6b |f(x)|. Note that f 7→ Vq,∞(f) is a norm on
Wq , q > 1.

Nonlinear Anal. Model. Control, 21(6):861–882
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• h ∈ CWp ⇒ g(y) =
∫ y
a
f dh, y ∈ [a, b], is continuous.

• Let φ be a locally Lipschitz function and let f ∈ Wp([a, b]). Then the compos-
ite function φ ◦ f has bounded p-variation, that is, φ ◦ f ∈ Wp([a, b]), where
(φ ◦ f)(x) = φ(f(x)).

The chain rule is based on the Riemann–Stieltjes integrals.

Theorem 3 [Chain rule]. (See [6].) Let p ∈ [1; 2) and f = (f1, . . . , fd): [a, b] → Rd
be such a function that for each k = 1, . . . , d, fk ∈ CWp([a, b]). Let g : Rd → R be
a differentiable function with locally Lipschitz partial derivatives g′k, k = 1, . . . , d. Then
each g′l ◦ f is Riemann–Stieltjes-integrable with respect to fk and

(g ◦ f)(b)− (g ◦ f)(a) =

d∑
k=1

b∫
a

(g′k ◦ f) dfk.

Proposition 1 [Substitution rule]. (See [6].) Let f, g, h ∈ CWp([a, b]), 1 6 p < 2.
Then

b∫
a

f(x) d

( x∫
a

g(y) dh(y)

)
=

b∫
a

f(x)g(x) dh(x).

4.2 Several results on fBm

Recall that the fBm (BHt )t∈[0,T ] with the Hurst index H ∈ (0, 1) is a real-valued contin-
uous centered Gaussian process with the covariance given by

E
(
BHt B

H
s

)
=

1

2

(
s2H + t2H − |t− s|2H

)
.

In order to consider the strong consistency and asymptotic normality of the given estima-
tors, we need several facts about BH (see [3, 2, 4, 10]).

Limit results. For consideration of the asymptotic properties of the estimators Ĥ(i)
n ,

i = 1, 2, we shall use the following results. Let

V̂
(i)BH

n,T =
n2H−1

ci

n−1∑
k=1

(
T−H∆(i)BH

(
tnk
))2

, H 6= 1

2
, i = 1, 2,

where c1 = 1, c2 = 4− 22H . Then

V̂
(i)BH

n,T
a.s.→ 1 as n→∞, i = 1, 2;

√
n
(
V̂

(1)BH

n,T − 1
) d→ N

(
0, σ2
∗(H)

)
, H ∈ (0, 3/4),

√
n

(
V̂

(2)BH

n,T − 1

V̂
(2)BH

2n,T − 1

)
d→ N

((
0
0

)
,

(
σ2(H) σ1,2(H)
σ1,2(H) σ2(H)/2

))
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with

σ2
∗(H) = 2

(
1 + 2

∞∑
j=1

ρ̂2H(j)

)
, σ2(H) = 2

(
1 + 2

∞∑
j=1

ρ2H(j)

)
,

σ1,2(H) =
∑
j∈Z

ρ̃2H(j),

ρ̂H(j) = −1

2

[
−|j − 1|2H + 2|j|2H − |j + 1|2H

]
,

ρH(j) =
1

2(4− 22H)

(
−6|j|2H −

(
|j − 2|2H + |j + 2|2H

)
+ 4
(
|j − 1|2H + |j + 1|2H

))
,

ρ̃H(j) =
1

2(4− 22H)2H
(
−|j − 2|2H + 2|j − 1|2H + |j|2H

− 4|j + 1|2H + |j + 2|2H + 2|j + 3|2H − |j + 4|2H
)
.

In order to prove the asymptotic normality of the estimator Ĥ(3)
n , we need the fol-

lowing result obtained in [2]. Let ni = rin, i = 1, . . . , `, where ri, n ∈ N, and zi,
i = 1, . . . , `, are defined in Theorem 1. Then

1

2

∑̀
i=1

zi√
ri

√
ni
(
V̂

(i)BH

ni,T
− 1
) d→ N

(
0, σ2

2,`

(
r,

z

2
√
r

))
,

where r = (r1, . . . , r`), z = (z1, . . . , z`),

σ2
2,`(k,d) =

∑̀
i=1

∑̀
j=1

didjρ2(ki, kj), k = (k1, . . . , k`) ∈ N`, d = (d1, . . . , d`) ∈ R`,

ρ2(ki, kj) =
1√
kikj

+∞∑
p=1

c22p,2 · (2p)!

(
ki−1∑
s=0

+∞∑
r=−∞

ρ2pki,kj (kir + kjs)

)
,

c2p,2 =
1

(2p)!

p−1∏
i=0

(2− 2i),

ρb,c(x) =
1

2(4− 22H)
(bc)−H

[
−|x|2H + 2|x− b|2H − |x− 2b|2H

+ 2|x+ c|2H − 4|x+ c− b|2H + 2|x+ c− 2b|2H

− |x+ 2c|2H + 2|x+ 2c− b|2H − |x+ 2c− 2b|2H
]
.

If ki = kj , then

ρ2(k, k) = 2

+∞∑
r=−∞

ρ2H(r) = 2

(
1 + 2

∞∑
j=1

ρ2H(j)

)
.
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Variation of BH . It is known that almost all sample paths of BH are locally Hölder
of order strictly less than H , 0 < H < 1. To be more precise, for all 0 < ε < H and
T > 0, there exists a nonnegative random variable Gε,T such that E(|Gε,T |p) < ∞ for
all p > 1 and

sup
s,t∈[0;T ]

∣∣BHt −BHs ∣∣ 6 Gε,T |t− s|H−ε a.s. (8)

Thus, BH ∈ CWHε
([0, T ]), Hε = 1/(H − ε).

The rate of convergence of the Hurst index.

Theorem 4. (See [12, Thm. 3].) For any t ∈ [0;T ], define rnt = [tn/T ], ρnt = (rnt/n)T
and

V̂
(2)BH

nt =
n2H−1

T 2H−1(4− 22H)

rnt∑
k=i

(
∆(2)BH

(
tnk
))2

.

Then
sup
t∈[0;T ]

∣∣V̂ (2)BH

nt − ρnt
∣∣ = Oω

(
n−1/2 ln1/2 n

)
, (9)

where Oω is defined in Section 5.

5 Properties of the increments of the Gompertz diffusion process

The fractional Gompertz diffusion process X has the explicit solution given by

Xt = exp

{
e−βt lnx0 +

α

β

(
1− e−βt

)
+ σ

t∫
0

e−β(t−s) dBHs

}
, 0 6 t 6 T.

Moreover, it is unique in CW1/(H−ε)([0, T ]) for all ε ∈ (0, H − 1/2). The proof of this
can be found in the Appendix. Now we will consider the structure of increments of the
Gompertz diffusion process.

To avoid cumbersome expressions, we introduce the symbols Oω and oω . Let (Yn)
be a sequence of r.v.s, ς is an a.s. nonnegative r.v. and (an) ⊂ (0,∞) vanishes. Yn =
Oω(an) means that |Yn| 6 ς ·an; Yn = oω(an) means that |Yn| 6 ς ·bn with bn = o(an).
In particular, Yn = oω(1) corresponds to the sequence (Yn), which tends to 0 a.s. as
n→∞.

Lemma 1. Suppose thatX satisfies (1), ε ∈ (0, H−1/2), and partition πn of the interval
[0, T ] is uniform. Then the following relations hold:

∆Xτmn
k

=Xτmn
k−1

[
σ∆BHτmn

k
+Oω(dn)

]
=Xτmn

k−1
Oω
(
dH−εn

)
, k = 1, . . . ,mn, (10)

∆(2)Xτmn
k

=Xτmn
k−1

[
σ∆(2)BHτmn

k
+Oω

(
d2(H−ε)n

)]
, k = 2, . . . ,mn, (11)

where dn = τmn

k − τmn

k−1 and dn → 0 as n→∞. Moreover, EOω(1) <∞.
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Proof. For the sake of simplicity, we will omit the index mn for the points τmn

k . Let the
sample path t 7→ Xt be continuous. We first prove (10). Note that

∆Xτk = Xτk −Xτk−1
and Xτk = Xτk−1

exp{∆Yτk},

where

Yt = e−βt lnx0 +
α

β

(
1− e−βt

)
+ σ

t∫
0

e−β(t−s) dBHs .

It is clear that

∆Yτk = e−βτk−1
(
e−β(τk−τk−1) − 1

)(
lnx0 −

α

β
+ σ

τk−1∫
0

eβs dBHs

)

+ σe−βτk

τk∫
τk−1

[
eβs − eβτk

]
dBHs + σ

τk∫
τk−1

dBHs .

From the Chain rule it follows that
t∫

0

eβs dBHs = eβtBHt − β
t∫

0

eβsBHs ds.

Thus,∣∣∣∣∣
τk−1∫
0

eβs dBHs

∣∣∣∣ =

∣∣∣∣∣eβτk−1BHτk−1
− β

τk−1∫
0

eβsBHs ds

∣∣∣∣∣ 6 e|β|T
(
|β|T + 1

)
sup
t6T

∣∣BHt ∣∣.
Provided

e−β(τk−τk−1) = 1 +O(dn),

it follows that

Zk−1 := e−βτk−1
(
e−β(τk−τk−1) − 1

)[
lnx0 −

α

β
+ σ

τk−1∫
0

eβs dBHs

]
= Oω(dn).

Further,∣∣∣∣∣
τk∫

τk−1

[
eβs − eβτk

]
dBHs

∣∣∣∣∣ 6 C1,Hε
V1
(
eβ·; [τk−1, τk]

)
VHε

(
BH ; [τk−1, τk]

)
6 C1,Hε

e2|β|T |β|(τk − τk−1)VHε

(
BH ; [τk−1, τk]

)
6 C1,HεGε,T e2|β|T |β|(τk − τk−1)1+H−ε

= Oω
(
d1+H−εn

)
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since |ex − 1| 6 |x|e|x| for all x ∈ R. Consequently,

Xτk = Xτk−1
exp
{
Zk−1 +Oω

(
d1+H−εn

)
+ σ∆BHτn

k

}
= Xτk−1

[
1 + Zk−1 +Oω

(
d1+H−εn

)
+ σ∆BHτn

k
+Oω

(
d2(H−ε)n

)]
(12)

and

∆Xτk = Xτk−1

[
Zk−1 +Oω

(
d2(H−ε)n

)
+ σ∆BHτn

k

]
= Xτk−1

Oω
(
dH−εn

)
. (13)

Since (see Section 4.2 and [5])

E
(

sup
t6T

∣∣BHt ∣∣)p <∞ and E|Gε,T |p <∞

for all p > 1, then EOω(1) <∞.
Next, we prove (11). Taking into account (12) and (13) we get

∆(2)Xτk = Xτk

[
Zk +Oω

(
d2(H−ε)n

)
+ σ∆BHτn

k+1

]
−Xτk−1

[
Zk−1 +Oω

(
d2(H−ε)n

)
+ σ∆BHτn

k

]
= Xτk−1

[
1 + Zk−1 +Oω

(
d2(H−ε)n

)
+ σ∆BHτn

k

]
×
[
Zk +Oω

(
d2(H−ε)n

)
+ σ∆BHτn

k+1

]
−Xτk−1

[
Zk−1 +Oω

(
d2(H−ε)n

)
+ σ∆BHτn

k

]
= Xτk−1

[
(Zk − Zk−1) +Oω

(
d2(H−ε)n

)
+ σ∆(2)BHτn

k

]
+Xτk−1

Oω
(
d2(H−ε)n

)
.

Since

Zk − Zk−1 =
(
e−βτk − e−βτk−1

)(
e−βdn − 1

)[
lnx0 −

α

β
+ σ

τk−1∫
0

eβs dBHs

]

+ σe−βτk
(
e−βdn − 1

) τk∫
τk−1

eβs dBHs

= Oω
(
d2(H−ε)n

)
,

then ∣∣∣∣∣
τk∫

τk−1

eβs dBHs

∣∣∣∣∣ 6 C1,Hε
V1,∞

(
eβ·; [τk−1, τk]

)
VHε

(
BH ; [τk−1, τk]

)
6 2C1,Hε

e|β|TVHε

(
BH ; [τk−1, τk]

)
6 2C1,Hε

Gε,T e|β|T |β|(τk − τk−1)H−ε

= Oω
(
dH−εn

)
.

Thus,

∆(2)Xτk = Xτk−1

[
σ∆(2)BHτn

k
+Oω

(
d2(H−ε)n

)]
.
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6 Proofs of the main theorems

6.1 Proof of Theorem 1

(i) The convergence of the statistics Ĥ(1)
n and Ĥ(2)

n considered in Theorem 1 follows from
Lemma 1. Indeed, the asymptotics of the increments of the solution X of equation (1)
are the same as the asymptotics of the increments of the solution of the equation with
polynomial drift in [14]. Thus, in order to establish the convergence of the estimator Ĥ(1)

n ,
it suffices to repeat the proof of Theorem 2 in [14]. Further, note that hypotheses (H) and
(H1) in [13] are satisfied for the solution of equation (1), i.e.,

∆Xτmn
k

= Oω
(
dH−εn

)
, k = 1, . . . ,mn,

∆(2)Xτmn
k

= σXτmn
k−1

∆(2)BHτmn
k

+Oω
(
d2(H−ε)n

)
, k = 2, . . . ,mn.

It follows from Lemma 1 and the a.s. continuity of t 7→ Xt. Thus, it suffices to apply
Theorem 2.2 in [13].

(ii) Now we prove the convergence of the statistic Ĥ(3)
n . The proof presented below

follows the outline of the proof of Theorem 3.18 in [2]. By Lemma 1 we get(
nH

σTH
√

4− 22H

)2 V (2)
n,T

n− 1

=

(
nH

TH
√

4− 22H

)2
1

n− 1

n−1∑
i=1

[(
∆(2)
n BHi

)2
+Oω

(
n−3(H−ε)

)]
=

n

n− 1
V̂

(2)BH

n,T +
1

4− 22H
Oω
(
n−H+3ε

) a.s.→ 1. (14)

Assume that 3ε < H − 1/2. By (14) and Theorem 4 we get

ln
V

(2)
n,T

n− 1
= −2H ln

n

T
+ 2 ln

(
σ
√

4− 22H
)

+ ln
n

n− 1

+ ln

[(
V̂

(2)BH

n,T − 1
)

+ 1 +
n− 1

n(4− 22H)
Oω
(
n−H+3ε

)]
= −2H ln

n

T
+ 2 ln

(
σ
√

4− 22H
)

+ ln
n

n− 1

+ ln
[
Oω(n−1/2 ln1/2 n) + 1 +Oω

(
n−H+3ε

)]
= −2H ln

n

T
+ 2 ln

(
σ
√

4− 22H
)

+Oω
(
n−1/2 ln1/2 n

)
.

Thus,

Ĥ(3)
n = −1

2

∑̀
i=1

zi

[
−2H ln

ni
T

+ 2 ln
(
σ
√

4− 22H
)]

+Oω
(
n−1/2 ln1/2n

)
.
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We will notice the following properties:∑̀
i=1

yi = 0,
∑̀
i=1

ziyi = 1,
∑̀
i=1

zi =

∑`
i=1 yi∑`
i=1 y

2
i

= 0.

Using those, we get

Ĥ(3)
n = H

∑̀
i=1

zi ln(rin)− ln
(
σ
√

4− 22H
)∑̀
i=1

zi +Oω
(
n−1/2 ln1/2n

)
= H

∑̀
i=1

zi ln(rin) +Oω
(
n−1/2 ln1/2n

)
= H

∑̀
i=1

zi
[
yi − yi + ln(rin)

]
+Oω

(
n−1/2 ln1/2n

)
= H +H

∑̀
i=1

zi

[
lnn+

1

`

∑̀
i=1

ln ri

]
+Oω

(
n−1/2 ln1/2n

)
= H +Oω

(
n−1/2 ln1/2n

)
. (15)

So the estimator Ĥ(3)
n is strongly consistent.

Now we prove the asymptotic normality of the estimator Ĥ(3)
n . From (14) and (15) it

follows that

Ĥ(3)
n = H − 1

2

∑̀
i=1

zi
(
V̂

(2)BH

ni,T
− 1
)

+Oω
(
n−H+3ε

)
.

Thus,

√
n
(
Ĥ(3)
n −H

)
= −1

2

∑̀
i=1

zi√
ri

[
1
√
rin

rin−1∑
k=1

((
(rin)H

TH
√

4−22H
∆(2)BH

(
trink

))2
−1

)]
+Oω

(
n1/2−H+3ε

)
,

and we obtain the asymptotic normality of the estimator Ĥ(3)
n by the application of the

limit results from Section 4.2.

(iii) It remains to determine the convergence of Ĥ(4)
n . Denote

R2,n(X) =
1

n4 − 2

n4−2∑
k=1

|∆(2)X(τmn

k ) + ∆(2)X(τmn

k+1)|
|∆(2)X(τmn

k )|+ |∆(2)X(τmn

k+1)|
,

Λ2(H) = E
|∆(2)BH1 + ∆(2)BH2 |
|∆(2)BH1 |+ |∆(2)BH2 |

,

where ∆(2)BHj = BH(j + 1) − 2BH(j) + BH(j − 1), j = 1, 2. This statistic was
introduced in [1]. Further on, we will require the following lemma, which is a simple
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modification of Lemma 3.1 in [1]. In this lemma, we have lifted the requirement for
the random variables Z1 and Z2 to be independent. This became possible due to the
application of less precise estimators of the partial derivatives.

Lemma 2. Let ψ(x1, x2) = (|x1 + x2|)/(|x1| + |x2|), x1, x2 ∈ R, and let (Z1, Z2) be
a Gaussian vector with zero mean and variance EZ2

i = 1, i = 1, 2. Then for any r.v. ξi,
i = 1, 2, with finite second moments, we have

E
∣∣ψ(Z1 + ξ1, Z2 + ξ2)− ψ(Z1, Z2)

∣∣ 6 23 max
i=1,2

3

√
Eξ2i . (16)

Let us proceed to the following claim.

Proposition 2. Let X be the solution of the fractional Gompertz SDE observed at times
τmn

k = (k/n4)T , k = 0, 1, . . . , n4. Then

R2,n(X)
a.s.→ Λ2(H) as n→∞ for H ∈ (1/2, 1).

Proof. For the sake of simplicity, we will omit the index mn for the points τmn

k and
denote dn = T/n4. From Lemma 1 it follows that

∆(2)Xτk + ∆(2)Xτk+1
= σXτk

[
∆(2)BHτk + ∆(2)BHτk+1

+ ζ1 + ζ2
]

for every ε ∈ (0, H − 1/2), where

ζ1 = Oω
(
d2(H−ε)n

)
,

ζ2 = Oω
(
dH−εn

)[
σ∆(2)BHτk+1

+Oω
(
d2(H−ε)n

)]
= Oω

(
d2(H−ε)n

)
.

Therefore

R2,n(X) =
1

n4 − 2

n4−2∑
k=1

|Z1 + Z2 + ξ1 + ξ2|
|Z1 + ξ1|+ |Z2 + ξ2|

,

where

Z1 =
1

dHn
√

4− 22H
∆(2)BHτk , ξ1 =

ζ1

dHn
√

4− 22H
,

Z2 =
1

dHn
√

4− 22H
∆(2)BHτk+1

, ξ2 =
ζ2

dHn
√

4− 22H
,

and

EZ2
1 =

n8H

T 2H(4− 22H)
E
(
∆(2)BHτk

)2
= 1.

Let us apply Lemma 2. From the inequality (16) it follows that

E
∣∣R2,n(X)−R2,n

(
BH
)∣∣ =

(
d
2(H−2ε)
n

4− 22H

)1/3
3
√
EOω(1)

= d2(H−2ε)/3n
3
√
EOω(1).
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Then the Chebyshev’s inequality yields

P
(∣∣R2,n(X)−R2,n(BH)

∣∣ > n−β
)
6 nβd2(H−2ε)/3n

3
√

EOω(1)

< T 2(H−2ε)/3nβ−8(H−2ε)/3 3
√
EOω(1)

for ε ∈ (0, (H − 1/2)/2), 0 < β < 1/3 and

∞∑
n=1

P
(∣∣R2,n(X)−R2,n

(
BH
)∣∣ > n−β

)
6 3
√
EOω(1)

∞∑
n=1

nβ−8(H−2ε)/3 <∞.

According to the Borel–Cantelli lemma,

P
(

lim sup
n→∞

{∣∣R2,n(X)−R2,n
(
BH
)∣∣ > n−β

})
= 0,

which implies that R2,n(X)
a.s.→ R2,n(BH), n→∞.

The convergence R2,n(BH)
a.s.→ Λ2(H), n → ∞ is established in [1] and holds

for H ∈ (0; 1). Clearly, provided R2,n(X)
a.s.→ R2,n(BH) and R2,n(BH)

a.s.→ Λ2(H),
n→∞, it follows that R2,n(X)

a.s.→ Λ2(H), n→∞, which completes the proof.

The estimator Ĥ(4)
n based on R2,n(X) can be obtained using the approximation for-

mula provided in [1, Remark 4.3].

6.2 Proof of Theorem 2

The proof of the convergence of σ̂2
2,n is analogous to that of ĉ2n in [14]. Let us prove that

σ̂2
1,n

a.s.→ σ2 as n→∞. Suppose that dn = T/n. From Lemma 1 it follows that

d−2Hn n−1V
(1)
n,T = σ2d−2Hn n−1

n∑
i=1

(
∆BHtnk

)2
+ d−2Hn Oω

(
d1+H−ε)n

)
= σ2V̂

(1)BH

n,T +Oω
(
d1−H−εn

)
.

Since

V̂
(1)BH

n,T
a.s.→ 1 and

n2(H−Ĥn)

T 2(H−Ĥn)
= exp

{
oω(φ(n)) ln

(
n

T

)2}
→ 1, (17)

it can be concluded that

σ̂2
1,n =

n2Ĥn−1

T 2Ĥn

V
(1)
n,T

a.s.→ σ2.

Further, let us prove that σ̂2
3,n

a.s.→ σ2. Denote dn = T/n. By (17) it suffices to show
that

σ̃2
n =

∑n
k=1(∆(1)Xtnk

)2

d2Hn
∑n
k=1X

2
tnk−1

a.s.→ σ2.
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Notice that ∑n
k=1

(
∆(1)Xtnk

)2
d2Hn

∑n
k=1X

2
tnk−1

=
d1−2Hn

∑n
k=1

(
∆(1)Xtnk

)2
dn
∑n
k=1X

2
tnk−1

and

d1−2Hn

n∑
k=1

(
∆(1)Xtnk

)2
= σ2d1−2Hn

n∑
k=1

X2
tnk−1

(
∆BHtnk

)2
+Oω

(
d1−H−εn

)
. (18)

In order to estimate (18), observe that

d1−2Hn

n∑
k=1

X2
tnk−1

(
∆BHtnk

)2
=

T∫
0

X2
t dV̂

(1)BH

nt

and (see [12, Thm. 7])

d1−2Hn

n∑
k=1

X2
tnk−1

[(
∆BHtnk

)2 −E
(
∆BHtnk

)2]
=

T∫
0

X2
t d
(
V

(1)BH

nt −EV
(1)BH

nt

) a.s.→ 0.

Since

d1−2Hn

n∑
k=1

X2
tnk−1

E
(
∆BHtnk

)2
= dn

n∑
k=1

X2
tnk−1

a.s.→
T∫

0

X2
t dt,

then
σ̃2
n

a.s.→ σ2.

6.3 The convergence rate of Ĥ(i)
n , i = 1,2,3

Theorem 2 makes use of the conditions Ĥn = H+oω(φ(n)), φ(n) = o(ln−1n) for strong
consistency. Let us show that this indeed holds for Ĥ(i)

n , i = 1, 2, 3.

The convergence rate of Ĥ(1)
n . From Lemma 1 and the proof of Theorem 2 in [14] it

follows that
Ĥ(1)
n = H̃n +Oω

(
n−H+3ε

)
,

where

H̃n =
1

2
− 1

2 ln 2
ln

V̂
(2)BH

2n,T

22H−1V̂
(2)BH

n,T

= H − 1

2 ln 2
ln
V̂

(2)BH

2n,T

V̂
(2)BH

n,T

. (19)

It suffices to consider the convergence rate of the logarithmic term in equation (19). Using
Theorem 4, we get

ln
V̂

(2)BH

2n,T

V̂
(2)BH

n,T

= ln
1 +Oω((2n)−1/2 ln1/2(2n))

1 +Oω(n−1/2 ln1/2 n)
= ln

(
1 + oω

(
n−1/2 lnn

))
= oω

(
n−1/2 lnn

)
.
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Then the statistic H̃n has the convergence rate of oω(n−1/2 lnn). Consequently, Ĥ(1)
n

satisfies the required condition if ε < (H − 1/2)/3.

The convergence rate of Ĥ(2)
n . Denote

Sn,T :=
2

nk2H−1n

n∑
k=2

(∆(2)Xtnk
)2

Wn,k−1
.

Then

Ĥ(2)
n = H +

lnSn,T
2 ln kn

= H +
lnSn,T
4 lnn

.

Proceeding along the lines of the proof of Theorem 2.2 from [13], it can be concluded
that

Sn,T =
Ṽ B

H

n,T +Oω(n−(H−3ε))

1 +Oω(k
−1/2
n ln1/2n) +Oω(m2ε

n n
−(H−ε))

=
Ṽ B

H

n,T +Oω(n−(H−3ε))

1 +Oω(n−1 ln1/2n) +Oω(n−(H−7ε))
.

If ε < (H − 1/2)/7, then

Sn,T =
1 +Oω(n−1/2 ln1/2n)

1 +Oω(n−(H−7ε))
= 1 +Oω

(
n−1/2 lnn

)
.

Hence, Ĥ(2)
n = H + oω(1/ lnn) if ε < (H − 1/2)/7.

The convergence rate of Ĥ(3)
n was obtained in the proof of Theorem 1.

Acknowledgment. The authors would like to thank the referees for many valuable
comments, which allowed us to improve this paper.

Appendix

A.1 Auxiliary results

Firstly, we consider a non-random integral equation

xt = x0 +

t∫
0

(αxs − βxs lnxs) ds+ σ

t∫
0

xs dhs, x0 > 0, β 6= 0, 0 6 t 6 T, (A.1)

where h ∈ CWp([0, T ]), 1 < p < 2, and prove two auxiliary theorems used in the sequel.
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Theorem A.1. The function

xt = exp

{
e−βt lnx0 +

α

β

(
1− e−βt

)
+ σ

t∫
0

e−β(t−s) dhs

}
, t ∈ [0, T ], (A.2)

is an element of CWp([0, T ]), 1 < p < 2, and satisfies equation (A.1).

Proof. We show that x ∈ CWp([0, T ]), 1 < p < 2. Let

zt = e−βt lnx0 +
α

β

(
1− e−βt

)
+ σ

t∫
0

e−β(t−s) dhs.

It is evident that z ∈ CWp([0, T ]), 1 < p < 2. Thus, by the property of composition of
functions (see Section 4.1) we get x ∈ CWp([0, T ]), 1 < p < 2.

Now we verify that the function (A.2) satisfies (A.1). This statement can be checked
by the application of the Chain rule and the Substitution rule. Namely, let F (t, x, y) =
exp{e−βt(lnx0 + αx+ σy)} and denote

At =

t∫
0

eβs ds, Ct =

t∫
0

eβs dhs.

Note that xt = F (t, At, Ct) and

F (t, At, Ct) = F (0; 0; 0) +

t∫
0

∂tF (s,As, Cs) dAs +

t∫
0

∂xF (s,As, Cs) dCs

+

t∫
0

∂yF (s,As, Cs) ds. (A.3)

It follows from (A.3) and Proposition 1

xt = x0 − β
t∫

0

xs lnxs ds+ α

t∫
0

xse
−βs dAs + σ

t∫
0

xse
−βs dCs

= x0 − β
t∫

0

xs lnxs ds+ α

t∫
0

xs ds+ σ

t∫
0

xs dhs

since dAs = eβs ds, dCs = eβs dhs.

Theorem A.2. The integral equation (A.1) has a unique solution in CWp([0, T ]), 1 <
p < 2.

Nonlinear Anal. Model. Control, 21(6):861–882
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Proof. We have already shown that at least one solution x ∈ CWp([0, T ]) exists. Assume
it is not unique and y ∈ CWp([0, T ]) is a different one.

Further, one can find a set of points 0 = τ0 < τ1 < τ2 < · · · < τn = T , which
satisfies

Vp
(
h; [τk−1, τk]

)
6

1

4|σ|Cp,p
for all k. Assume we have proved that xτk−1

= yτk−1
.

Using the well-known inequality ln(1 + x) 6 x, x > 0, we get

|lnxs − ln ys| =
∣∣∣∣ ln(1 +

yt − xt
xt

)∣∣∣∣ 6 ∣∣∣∣yt − xtxt

∣∣∣∣ 6 Lx,T |yt − xt|

and
|lnxs| 6

∣∣∣ ln( max
06t6T

xs

)∣∣∣ =: L̂x,T ,

where Lx,T = (min06t6T |xt|)−1 > 0. Then

Vp,∞
(
x− y; [τk−1, τk]

)
= Vp,∞

(
x− y − (xτk−1

− yτk−1
); [τk−1, τk]

)
6 2|α|

τk∫
τk−1

|xt − yt|dt+ 2|β|
τk∫

τk−1

|xt lnxt − yt ln yt|dt

+ 2|σ|Cp,pVp,∞
(
x− y; [τk−1, τk]

)
Vp
(
h; [τk−1, τk]

)
6 2
(
|α|+ |β|L̂x,T + |β|Lx,T

) τk∫
τk−1

|xt − yt|dt

+ 2|σ|Cp,pVp,∞
(
x− y; [τk−1, τk]

)
Vp
(
h; [τk−1, τk]

)
and

Vp,∞
(
x− y; [τk−1, τk]

)
6 4
(
|α|+ |β|L̂x,T + |β|Lx,T

) τk∫
τk−1

|xt − yt|dt

6 4
(
|α|+ |β|L̂x,T + |β|Lx,T

) τk∫
τk−1

Vp,∞
(
x− y; [τk−1, t]

)
dt.

Therefore by Gronwall’s inequality Vp,∞(x − y; [τk−1, τk]) = 0, and we can conclude
that x = y on [τk−1, τk]. Since xτ0 = x0 = yτ0 , the claim of the theorem follows from
the repetitive application of the reasoning explained above.
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A.2 The solution of SDE

Since almost all sample paths of BH , 1/2 < H < 1, are continuous and have bounded
Hε = 1/(H − ε)-variation, ε ∈ (0, H − 1/2), the pathwise Riemann–Stieltjes integral∫ t
0
Xs dBHs exists for X ∈ CWHε

([0, T ]). So SDE (1) is well defined for almost all ω,
and the obtained result for a non-random integral equation can be applied to an equation
driven by fBm.

Theorem A.3. Suppose that X0 > 0 and m > 2. The stochastic process

Xt = exp

{
e−βt lnx0 +

α

β

(
1− e−βt

)
+ σ

t∫
0

e−β(t−s) dBHs

}
, β 6= 0, 0 6 t 6 T,

for almost all ω belongs to CWHε([0, T ]) and is the unique solution of (1).
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