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Abstract. It is well known that an alone linear controller is difficult to control a chaotic system,
because intensive nonlinearities exist in such system. Meanwhile, depending closely on a precise
mathematical modeling of the system and high computational complexity, model predictive control
has its inherent drawback in controlling nonlinear systems. In this paper, a unified linear time-
invariant model predictive control for intensive nonlinear chaotic systems is presented. The
presented model predictive control algorithm is based on an extended state observer, and the precise
mathematical modeling is not required. Through this method, not only the required coefficient
matrix of impulse response can be derived analytically, but also the future output prediction
is explicitly calculated by only using the current output sample. Therefore, the computational
complexity can be reduced sufficiently. The merits of this method include, the Diophantine equation
needing no calculation, and independence of precise mathematical modeling. According to the
variation of the cost function, the order of the controller can be reduced, and the system stability is
enhanced. Finally, numerical simulations of three kinds of chaotic systems confirm the effectiveness
of the proposed method.

Keywords: chaos, extended state observer, predictive control, synchronization.

1 Introduction

Chaos is one of the important properties for some nonlinear systems, which show bounded
instability. A chaotic system has several remarkable characteristics, for instance, positive
Lyapunov exponent, aperiodic trajectory, sensitivity to initial conditions, unpredictability
of long-range behavior and ergodicity [24]. Along with the invention of several novel
chaotic systems [9, 28], chaos control and synchronization have also been extensively
investigated since the pioneering OGY method [14] was proposed. In this field, many
schemes, including delayed feedback control [2, 4, 15], backstepping control [21], fuzzy
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control [5, 12, 25], adaptive control [18, 22], neural network control [8, 19], sliding mode
control [20, 26, 27], etc., have already been employed. Note that all these methods are
nonlinear. Generally, nonlinear control methods have played dominant role in control-
ling chaotic systems because of their nonlinear nature. Few completely linear control
approaches were also utilized to control chaos [13]. The core philosophy of [13] is to
eliminate the original nonlinear dynamics by using observer. This strategy is effective
in many industrial applications [29, 30]. Therefore, it is possible to control an intensive
nonlinear system by using a linear time-invariant controller, providing that an appealing
alternative in practice wherein simple control mechanisms are always sought.

Model predictive control (MPC) is an important option for industrial applications in
recent years. Generalized predictive control (GPC) [3], which was combined with iden-
tification and self-tuning algorithm, was proposed in 1987. GPC can be used to control
a wide range of complicated systems with non-minimum-phase, open-loop unstable and
time-delay characteristics. GPC was also utilized to control chaos [11], however there
are two controversial issues: firstly, traditional MPC is closely dependent on precise
system modeling, and this method exhibits an intrinsic drawback of insufficient robustness
to model uncertainties; secondly, the high computational complexity caused by output
prediction or parameter identification is intolerable in many scenarios. For the intensive
nonlinear chaotic system, these calculation procedures are more burdensome. Therefore,
a simple and effective MPC approach is required to handle such sophisticated chaotic
nonlinear systems.

In this paper, a unified linear time-invariant (LTI) MPC independent of system mod-
eling is proposed to control the chaos. An extended state observer (ESO) [7] is adopted
to transform the chaotic system into an approximate integrator, which serves as the pre-
dictive model. Then GPC can be designed for the integrator such that the characteristic
parameters of the chaotic systems are not necessary. On the other hand, the Diophantine
equations are not required, and the future output predictions can be explicitly calculated.
Generally, this method is a unified manner to achieve control and synchronization of
chaotic systems.

This paper is organized as follows. Section 2 presents the linearization procedure for
a chaotic system via ESO. Section 3 gives the design of a unified LTI MPC with further
simplifications. The simulation results are provided in Section 4. Section 5 summarizes
the concluding remarks.

2 Linearization of chaos with dynamic compensation

The dynamic model of a n-dimensional chaotic system can be described as follows:

Ẋ = F (X), (1)

where X = [x1, x2, . . . , xn]
T is the state vector, F = [f1, f2, . . . , fn]

T is a function
vector, and fi (i = 1, 2, . . . , n) are continuous functions. Assume that the number of
states that can be controlled directly ism (m 6 n), and their subscripts are r1, r2, . . . , rm,
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respectively. Then, the controllable subsystem can be written as

ẋrk = frk(X) + urk , (2)

where urk is the corresponding control input. The state-space form of each controllable
subsystem can be represented as

ẋk,1 = xk,2 + urk ,

ẋk,2 = ḟrk(X),

yrk = xk,1,

(3)

where xk,1 = xrk and xk,2 = frk(X). Here, xk,2 is defined as an extended state [7]. It
should be noted that this innovative extended state is just an intermediate signal rather than
a practical state, and it has no physical meaning. For model-based control approaches, for
instance, the well-known pole-placement method for linear time-invariant systems and
the feedback linearization method for nonlinear systems, it is assumed that the analytical
expression of xk,2 sufficiently approaches to its corresponding part in physical reality.
Specifically, xk,2 is generally nonlinear and time-varying. In fact, when this model-based
approach was put into practice, it was often found that the engineers spent much time
on modeling rather than on controller design. The advantage of the extended state is
that it treats xk,2 as a whole without any distinction of its originality. In modern control
theory, the state observer is used in the full-state feedback strategy when not all states are
measurable. A full-order state observer for (3) is designed as

żk,1 = zk,2 + l1(yrk − ŷrk) + urk ,

żk,2 = l2(yrk − ŷrk),
ŷrk = zk,1.

(4)

Moreover, to simplify the tuning process, the observer gains l1, l2 can be parameterized
as a bandwidth ωo

[l1, l2] =
[
2ωo, ω

2
o

]
. (5)

In (4), the second state zk,2 approximates to the nonlinear dynamics of controllable
subsystem, or to the extended state xk,2, which will be used in the subsequent control
design. Because of the linear observer gains, this observer is called as the linear extended
state observer (LESO) [6].

There is a redundancy for the full-order LESO since xk,1 can be measured directly.
To reduce complexity and the phase lag, a reduced-order LESO [16, 23] can be designed
for xk,2. According to (3), one has

ẋk,2 = ḟrk(X),

y′rk = xk,2,
(6)

where the new measurement variable y′rk can be expressed as

y′rk = ẋk,1 − urk . (7)
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In terms of (6) and (7), the observer for xk,2 can be written as

ż′k,2 = ωo(−urk − z′k,2 + ẋk,1). (8)

Because ẋk,1 is not available, a new state is defined as

z′k,c = z′k,2 − ωoxk,1, (9)

which can yield a linear reduced-order state observer for (3), i.e.,

ż′k,c = −ωoz
′
k,2 − ωourk . (10)

With a well-tuned observer bandwidth, an estimate is obtained as z′k,2 ≈ xk,2 =
frk(X). Hence, we can design urk as

urk = u0,k − z′k,2, (11)

where u0,k is a virtual control variable. Therefore, the original plant (2) can be trans-
formed into an integrator, i.e.,

ẋrk ≈ u0,k. (12)

In the process, the characteristic parameters of chaotic system are not required any
more, so the dependence on the precise modeling can be ignored. This ESO is linear
time-invariant but its design concept is totally different: it applies to nonlinear, time
varying, uncertain process with very little model information. Thus, The MPC design
can be performed for the simple integrator while the nonlinear dynamics vanishes. This
offers a possibility to enhance the robustness of MPC considerably.

3 The unified LTI MPC for chaos

As mentioned above, the chaotic system can be reformulated as an integrator with feed-
back linearization by using ESO. Then, the unified LTI GPC independent of nonlinear
dynamic model can be implemented for this integrator. The block diagram is shown in
Fig. 1.

ESO

unified LTI GPC ( )
k k kr r rx f u= +ɺ X

,2k
z

ry kr
y

0,ku kr
u

+

−

Figure 1. Block diagram of the proposed scheme.
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The discrete-time form of the integrator (12) is

xrk(z
−1)

u0,k(z−1)
≈ z−1B(z−1)

A(z−1)
, (13)

where A(z−1) = 1− z−1, B(z−1) = h, h is the sampling time. The cost function is

J =

N∑
j=1

[
ŷrk(k + j | k)− yrk−d(k + j)

]2
+ λ

Nu∑
j=1

[
u0,k(k + j − 1)

]2
. (14)

Here λ (λ > 0) is a weight coefficient on control variable, N and Nu are the predictive
horizon and the control horizon, and when j > Nu, the following relation holds:

u0,k(k + j − 1) = 0. (15)

ŷrk(k + j | k) is the future output prediction at time k + j according to the known
information at the current instant k, and yrk−d

(k + j) is a reference, which is given by

yrk−d(k) = yrk(k),

yrk−d(k + j) = αyrk−d(k + j − 1) + (1− α)yr(k),
(16)

where yr(k) is the current set-point, and α (0 6 α 6 1) is a smoothing factor. It is noted
that, due to the existence of an integrator in (13) after ESO compensation, the absolute
value of control action instead of its increment as done in [3] is penalized. The order of
the controller can be reduced such that the system stability can be enhanced.

Theorem 1. When all the future virtual controls are zero, the future output predictions
are independent of the input, that is ŷrk(k + j | k) = yrk(k), j = 1, 2, . . . , N .

Proof of Theorem 1. In order to obtain the jth step-ahead output prediction, consider the
Diophantine equation as

1 = Ej

(
z−1
)
A
(
z−1
)
+ z−jFj

(
z−1
)
, (17)

where Ej , Fj are the polynomials in terms of z−1, i.e.,

Ej

(
z−1
)
= e0 + e1z

−1 + · · ·+ ej−1z
−(j−1),

Fj

(
z−1
)
= fj0.

(18)

Because the forms of A(z−1) and B(z−1) are simple, the solution of (18) can be readily
obtained by employing mathematical induction method as follows:

Ej

(
z−1
)
= 1 + z−1 + · · ·+ z−(j−1),

Fj

(
z−1
)
= 1.

(19)

Premultiplying (17) by B(z−1) gives

B
(
z−1
)
= B

(
z−1
)
Ej

(
z−1
)
A
(
z−1
)
+B

(
z−1

)
z−jFj

(
z−1
)

(20)
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and
B
(
z−1
)
Ej

(
z−1
)
= Gj

(
z−1
)
+ z−jHj

(
z−1
)
, (21)

where the orders of Gj and Hj are, respectively,

deg
(
Gj

(
z−1
))

= j − 1,

deg
(
Hj

(
z−1
))

= 0.
(22)

By using (20) and (21), Gj can be expressed as

Gj

(
z−1
)
=
B(z−1)

A(z−1)
. (23)

Hence, the coefficients of Gj(z
−1) are just the first j terms of the impulse response for

the plant (13), and

Gj

(
z−1
)
= h+ hz−1 + · · ·+ hz−(j−1). (24)

Combining (21), (22) and (24) leads to

Hj

(
z−1
)
= 0. (25)

Consequently, the future output prediction can be written as

ŷrk(k + j | k)
= Gj

(
z−1
)
u0,k(k + j − 1) + Fj

(
z−1
)
yrk(k) +Hj

(
z−1
)
u0,k(k − 1)

= Gj

(
z−1
)
u0,k(k + j − 1) + Fj

(
z−1)yrk(k). (26)

In case of {u0,k(k + j − 1), j = 1, 2, . . . , N} being zero, (26) becomes

ŷrk(k + j | k) = Fj

(
z−1
)
yrk(k) = yrk(k), j = 1, 2, . . . , N. (27)

This concludes the proof.

In addition, the coefficient matrix G of impulse response can be directly expressed as

G(i, j)N×Nu =

{
h, i > j,

0, i < j,
(28)

and
GTG(i, j) = h2

(
N −

(
max(i, j)− 1

))
. (29)

In order to optimize the cost function, the optimal prediction ŷrk(k + j | k) can be
reformulated as

Ŷrk(k) = Ŷrk−0
(k) +GU0,k(k). (30)
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where

Ŷrk(k) =
[
ŷrk(k + 1 | k), ŷrk(k + 2 | k), . . . , ŷrk(k +N | k)

]T
, (31)

Ŷrk−0(k) =
[
ŷrk−0(k + 1 | k), ŷrk−0(k + 2 | k), . . . , ŷrk−0(k +N | k)

]T
, (32)

Yrk−d(k) = =
[
yrk−d(k + 1), yrk−d(k + 2), . . . , yrk−d(k +N)

]T
, (33)

U0,k(k) =
[
u0,k(k), u0,k(k + 1), . . . , u0,k(k +Nu − 1)

]T
. (34)

Here Ŷrk−0(k) is the zero input response component, and GU0,k(k) is the zero state
response one. Then the cost function can be rewritten as

J =
[
Ŷrk−0

(k) +GU0,k(k)− Yrk−d
(k)
]T[

Ŷrk−0
(k) +GU0,k(k)− Yrk−d

(k)
]

+ λ
[
U0,k(k)

]T[
U0,k(k)

]
. (35)

By letting
∂J

∂U0,k(k)
= 0, (36)

one can obtain

U0,k(k) =
(
GTG+ λI

)−1
GT
[
Yrk−d(k)− Ŷrk−0(k)

]
, (37)

and u0,k(k) is the first component of U0,k(k), i.e.,

u0,k(k) = [1, 0, . . . , 0]U0,k(k)

= [1, 0, . . . , 0]
(
GTG+ λI

)−1
GT
[
Yrk−d(k)− Yrk−0(k)

]
. (38)

Only u0,k(k) is put into the operation. In the next sampling time interval, this procedure
is repeated.

4 Simulation result

In this section, a continuous chaotic system and a switching chaotic system are adopted,
respectively, to confirm the effectiveness of the proposed method.

4.1 Control of a continuous chaotic system

In [17], a novel continuous chaotic model was presented as

ẋ = a(y − x) + yz,

ẏ = bx− y − xz,
ż = cy − dz + xy,

(39)

where a, b, c, d are constants, and x, y, z are the state variables. When a = 16, b = 50,
c = 8 and d = 4, the chaotic behavior is exhibited.

Nonlinear Anal. Model. Control, 21(5):587–599
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Figure 2. Responses of the three states. Figure 3. Control signals.

Figure 4. ESO estimations.

We select u11, u12 and u13 to control the three states to track the square waves,
respectively. The control parameters are identically selected as N = 50, Nu = 2, λ =
0.001, α = 0.1, and ωo11 = ωo12 = ωo13 = 50. The sampling time interval is 10 ms.

The responses are shown in Figs. 2–4. It is shown that each state can track the refer-
ence signal exactly and the nonlinear dynamics can be captured rapidly by ESO.

4.2 Self-synchronization of a continuous chaotic system

The drive system is [17]

ẋ1 = a(y1 − x1) + y1z1,

ẏ1 = bx1 − y1 − x1z1,
ż1 = cy1 − dz1 + x1y1,

(40)

and the response system is

ẋ2 = a(y2 − x2) + y2z2 + u21,

ẏ2 = bx2 − y2 − x2z2,
ż2 = cy2 − dz2 + x2y2.

(41)

http://www.mii.lt/NA
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Figure 5. Time responses of the states. Figure 6. Synchronization errors.

Figure 7. Control variable. Figure 8. ESO estimation of f21.

The constants are the same as those in the previous example. However, only the first state
is controlled to achieve synchronization, which is different from the previous example. It
is the unique property of the chaotic system that the global stability can be achieved by
using less control variables due to the strong coupling among the states [1].

The initial conditions of the response system are x2(0) = 1, y2(0) = 1, z2(0) = 1
and u21(0) = 0 while the initial states of drive system are x1(0) = 3, y1(0) = 3 and
z1(0) = 3. We select N = 200, Nu = 2, λ = 0.000001, α = 0.1, and ωo21 = 8. The
sampling time interval is 0.2 ms. The responses are illustrated in Figs. 5–8. It is clear that
although only one channel is controlled, the three channels are synchronized effectively.

4.3 Control of a switching chaotic system

The passive bipedal walking model [10], which is a kind of switching system, can be
described as

θ̈ = sin(θ − γ),
φ̈ = sinφ

[
θ̇2 − cos(θ − γ)

]
+ sin(θ − γ),

(42)

Nonlinear Anal. Model. Control, 21(5):587–599
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and the switching manifold is

φ− 2θ = 0. (43)

When (43) is achieved at (θ−, φ−, θ̇−, φ̇−), the system switches to

θ+ = −θ−,
φ+ = −2θ−,
θ̇+ = cos(2θ−)θ̇−,

φ̇+ = cos(2θ−)
(
1− cos(2θ−)

)
θ̇−.

(44)

The system is chaotic when γ = 0.0129 [10].
At first, equation (42) with control can be represented as

ẋ31 = f31 + u31,

ẋ32 = f32 + u32,
(45)

where x31 = θ̇, x32 = φ̇; f31 = sin(θ−γ) and f32 = sinφ[x231−cos(θ−γ)]+sin(θ−γ)
are extended states; u31 and u32 are the control variables to make θ and φ track the
square wave (θr, φr). The set-points of x31 and x32 can be designed as k31(θr − θ)
and k32(φr − φ), correspondingly, where k31 and k32 are tuning parameters. This is the
conventional strategy to reformulate the position control to the speed control.

The initial conditions of the plant are θ(0) = 0.2003, φ(0) = 0.4046, θ̇(0) = −1.998,
φ̇(0) = −0.0158, u31(0) = 0 and u32(0) = 0. The selected control parameters are
N = 50, Nu = 2, λ = 0.0001, α = 0.8, k31 = k32 = 10, and ωo31 = ωo32 = 5. The
sampling time interval is 2ms. The simulation results are shown in Figs. 9–11. It can be
found that although the control law is linear, it is still effective for controlling a switching
chaotic system by regulating the control output in a fast manner at the switching instant.

Figure 9. Time responses of θ and φ. Figure 10. Control outputs.
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Figure 11. ESO estimations of f31 and f32.

5 Conclusion

For the chaotic system, a reduced-order linear extended state observer was utilized to
eliminate the nonlinear dynamics so that an integrator could be obtained. Then a unified
LTI MPC was proposed for this integrator. Using this method, the sensitivity to precise
modeling of chaotic system was reduced, and the future output prediction could be ex-
plicitly calculated by only using the current output sample. Thus, the calculation of the
Diophantine equation was not required, and the computational complexity was reduced
substantially. The effectiveness of the proposed method was verified by the numerical
simulations. Therefore, we confirm that a linear time-invariant model predictive controller
can be designed in a unified manner to control strong nonlinear chaotic systems.
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