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Abstract. We investigate the three-dimensional dynamical system occurring in the network
regulatory systems theory for specific choices of regulatory matrix {{0, 1, 1}{1, 0, 1}{1, 1, 0}} and
sigmoidal regulatory function f(z) = 1/(1 + e−µz), where z =

∑
Wijxj − θ. The description

of attracting sets is provided. The attracting sets consist of respectively one, two or three critical
points. This depends on whether the parameters (µ, θ) belong to a setΩ or to the complement ofΩ
or to the boundary of Ω, where Ω is fully defined set.
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1 Introduction

In the articles [5,6], the following problem is studied. To accommodate traffic on a wave-
length-routed optical network, one can construct an optimal virtual network topology
(VNT) by establishing a set of lightpaths between nodes. To treat changing in time (fluc-
tuating) traffic on a VNT, adaptive VNT control methods should be invented, which
reconfigure VNTs according to traffic conditions on VNTs. To develope such methods,
one way is to observe attractor selection in biological systems that adapt to unknown
changes in their surrounding environments and recover their conditions.

Mechanism and concept of Attractor Selection are described in [6]:
“1) Concept of Attractor Selection: The dynamic system that is driven by attractor

selection uses noise to adapt to environmental changes. In attractor selection, attractors
are a part of the equilibrium points in the solution space in which the system conditions
are preferable. The basic mechanism consists of two behaviors, i.e., deterministic and
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stochastic behaviors. When the current system conditions are suitable for the environment,
i.e., the system state is close to one of the attractors, deterministic behavior drives the
system to the attractor. Where the current system conditions are poor, stochastic behavior
dominates over deterministic behavior. While stochastic behavior is dominant in control-
ling the system, the system state fluctuates randomly due to noise and the system searches
for a new attractor. When the system conditions have recovered, deterministic behavior
again controls the system. These two behaviors are controlled by simple feedback of
the conditions of the system. In this way, attractor selection adapts to environmental
changes by selecting attractors using stochastic behavior, deterministic behavior, and
simple feedback.”

Therefore, the attractor selection represents mechanism of adaptation to unknown and
rapid changes in biological systems. The overview of results in this direction can be found
in [1, 3, 4, 7]. So the problem of describing the structure of attracting sets is actual and
useful for understanding the above mentioned biological (and related telecommunication)
networks.

We follow the above model in the following setting. We neglect the stochastic behavior
in our analysis. Besides we consider the simplified model consisting of three differential
equations. This system can be treated by the 3D phase plane analysis [2]. Our goal is
to study the structure of attracting sets in this simple model. The system involves two
parameters, therefore, changes in the structure of a phase space should be described under
the change of parameters. We provide full description of attracting sets depending on the
choice of parameters.

2 System

The dynamics of the expression level of the protein on the ith gene, xi, is described by
the differential system

dxi
dt

= f
(∑

Wijxj − θ
)
vg − xivg − η.

The first and second terms at the right-hand side represent the deterministic behavior
of gene i; and the third term η represents stochastic behavior. The deterministic behav-
ior controls the xi due to the effects of activation and inhibition from the other genes.
Those regulations of protein expression levels on gene i by other genes are indicated by
regulatory matrix Wij , the elements of which take values 1, 0, or −1, corresponding
respectively to activation, no regulatory interaction, and inhibition of the ith gene by the
jth gene.

The rate of increase in the expression level is given by the sigmoidal regulation
function

f(z) =
1

1 + e−µz
, where z =

∑
Wijxj − θ.

Parameter θ is a regulatory parameter, which can be adjusted, and µ indicates the gain
parameter of the sigmoidal function.
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2.1 Three-dimensional system

We consider the simplified system (vg = 1, η = 0)

x′1 =
1

1 + e−µ(W11x1+W12x2+W13x3−θ)
− x1,

x′2 =
1

1 + e−µ(W21x1+W22x2+W23x3−θ)
− x2,

x′3 =
1

1 + e−µ(W31x1+W32x2+W33x3−θ)
− x3.

(1)

The entries of Wij can take values 1, 0 or −1. We consider the specific case

W =

∣∣∣∣∣∣
0 1 1
1 0 1
1 1 0

∣∣∣∣∣∣ .
System (1) looks as

x′1 =
1

1 + e−µ(x2+x3−θ)
− x1,

x′2 =
1

1 + e−µ(x1+x3−θ)
− x2,

x′3 =
1

1 + e−µ(x1+x2−θ)
− x3,

(2)

where µ and θ are positive parameters. Our goal is to study phase portraits of this system
and describe the attracting sets.

2.2 Critical points

Critical points of system (2) are to be determined from

x1 =
1

1 + e−µ(x2+x3−θ)
,

x2 =
1

1 + e−µ(x1+x3−θ)
,

x3 =
1

1 + e−µ(x1+x2−θ)
.

(3)

Since the right sides in (3) are positive but less than a unity, all critical points locate in the
cube (0; 1)× (0; 1)× (0; 1).

Lemma 1. All critical points are on the bisectrix x1 = x2 = x3.

Proof. System (3) can be written as

1 = x1 + x1e
−µ(x2+x3−θ),

1 = x2 + x2e
−µ(x1+x3−θ),

1 = x3 + x3e
−µ(x1+x2−θ).

(4)

Nonlinear Anal. Model. Control, 21(5):687–701
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Figure 1. The relation between x, µ and θ.

It follows from (4) that
1

x1
= 1 + e−µ(x2+x3−θ),

1

x2
= 1 + e−µ(x1+x3−θ),

1

x3
= 1 + e−µ(x1+x2−θ).

(5)

We will prove that x1 = x2, in the same way, it follows that x1 = x3 and then x1 =
x2 = x3. Divide the first row in (5) by the second one and get

x2
x1

=
1 + e−µ(x2+x3−θ)

1 + e−µ(x1+x3−θ)
. (6)

Suppose that x1 and x2 in equation (6) are distinct. Consider the case x2 > x1. Then the
contradiction

1 <
x2
x1

=
1 + e−µ(x2+x3−θ)

1 + e−µ(x1+x3−θ)
< 1

follows. Similarly, the case x2 < x1 can be considered. It follows then that x1 = x2.
Similarly, x1 = x3, and it follows that any critical point is of the form (x;x;x), where

x =
1

1 + e−µ(2x−θ)
. (7)

The proof is complete.

Formula (7) is a key relation between x, θ and µ. This is visualized in Fig. 1.
We claim that there are only three possibilities for the number of critical points of

system (2).

Lemma 2. There are at most three critical points of system (2).

Proof. Rewrite (7) as

θ =
1

µ
ln

(
1

x
− 1

)
+ 2x. (8)
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(a) (b) (c)

Figure 2. Relation (8) for: (a) µ = 1; (b) µ = 2; (c) µ = 3.

It follows that (for any positive µ) θ(x)→ +∞ as x→ 0+ and θ(x)→ −∞ as x→ 1−.
Is θ(x) monotone? Consider the derivative

dθ

dx
=

1

µ

1
1
x − 1

(
− 1

x2

)
+ 2 =

2µ(x− x2)− 1

µ(x− x2)
= 0. (9)

The sign of θ′(x) is determined by the sign of polynomial (10) (recall that the denominator
in (9) is positive for x ∈ (0, 1)).

The roots of the equation

− x2 + x− 1

2µ
= 0 (10)

are

x1,2 =
1

2
±
√

1

4
− 1

2µ
. (11)

The function θ(x) is strictly decreasing for 0 < µ 6 2 (since then the discriminant
1/4− 1/(2µ) is negative) and for µ > 2 if 0 < x < x1 or x > x2.

If µ > 2, equation (10) has real roots (11). The function θ(x) is monotonically
increasing for µ > 2 if x1 < x < x2.

The behavior of θ(x) is visualized in Fig. 2. For θ = 1, there is a critical point
(0.5, 0.5, 0.5) for any positive µ. For any µ ∈ (0; 2], there is exactly one critical point
(x, x, x) for every θ, see Fig. 2a. For µ ∈ (2;+∞), if θ = θ(x1) or θ = θ(x2) (horizontal
dashed lines in Fig. 2b), then there are two critical points. If θ ∈ (θ(x1), θ(x2)) (θ is
between dashed lines), then there are exactly three critical points, see Fig. 2c. The case
(µ, θ) = (2, 1) is the special one. There is exactly one critical point, see Fig. 2b.

Put values x1(µ) and x2(µ) into (8) and get

θ1,2 =
1

µ
ln

(
1

1
2 ∓

√
1
4 −

1
2µ

− 1

)
+ 2

(
1

2
∓
√

1

4
− 1

2µ

)
.

The graphs of these functions θ1, θ2 are depicted in Fig. 3. The upper branch is for θ2,
and the lower one is for θ1.
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Figure 3. The dependence of θ (for a critical point (x;x;x)) of µ.

Now we introduce the following notation. Let Ω denote the open region between θ1
and θ2,Q is the positive (open) quadrant of (µ, θ)-plane, ∂Ω usually denotes the boundary
of Ω.

It follows from the proof of Lemma 2 and it is illustrated by Fig. 2 that there is exactly
one critical point if (µ, θ) ∈ Q \Ω.

There are exactly three critical points if (µ, θ) ∈ Ω.
Besides, there are two critical points (look at Fig. 2c) if (µ, θ) ∈ ∂Ω \ {2, 1}.
At last, the point (2, 1) corresponds to the critical point (0.5, 0.5, 0.5).

3 Linearized system

In this section, we would like to study the character of possible critical points. For this,
consider the linearized system

u′1 = −u1 +
µe−µ(x2+x3−θ)

[1 + e−µ(x2+x3−θ)]2
(u2 + u3),

u′2 = −u2 +
µe−µ(x1+x3−θ)

[1 + e−µ(x1+x3−θ)]2
(u1 + u3),

u′3 = −u3 +
µe−µ(x1+x2−θ)

[1 + e−µ(x1+x2−θ)]2
(u1 + u2).

By using (5) and x1 = x2 = x3 = x the linearized system can by written as

u′1 = −u1 + µx(1− x)u2 + µx(1− x)u3,
u′2 = µx(1− x)u1 − u2 + µx(1− x)u3,
u′3 = µx(1− x)u1 + µx(1− x)u2 − u3.

(12)

The matrix A of system (12) is

A =

∣∣∣∣∣∣
−1 µx(1− x) µx(1− x)

µx(1− x) −1 µx(1− x)
µx(1− x) µx(1− x) −1

∣∣∣∣∣∣ ,
http://www.mii.lt/NA
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A− λI =

∣∣∣∣∣∣
−1− λ µx(1− x) µx(1− x)
µx(1− x) −1− λ µx(1− x)
µx(1− x) µx(1− x) −1− λ

∣∣∣∣∣∣ ,
det |A− λI| = −(1 + λ)3 + 2

(
µx(1− x)

)3
+ 3(1 + λ)

(
µx(1− x)

)2
= 0. (13)

In the new variables L = (1+λ) andM = µx(1−x), equation (13) takes a simpler form

det |A− λI| = −L3 + 2M3 + 3LM2 = 0. (14)

The roots of (14) are L1 = −M , L2 = −M , L3 = 2M . Then λi are

λ1 = −µx(1− x)− 1,

λ2 = −µx(1− x)− 1,

λ3 = 2µx(1− x)− 1.

It is evident that λ1 and λ2 are negative, but λ3 can be positive, negative and even zero. It
follows from the key relation (7) that λi can be written also as

λ1 = −µ
(
1− 1

1 + e−µ(2x−θ)

)
− 1,

λ2 = −µ
(
1− 1

1 + e−µ(2x−θ)

)
− 1,

λ3 = 2µ

(
1− 1

1 + e−µ(2x−θ)

)
− 1.

The above form is convenient for further analysis of characters of critical points.
It appears that the following three types of critical points are possible for system (2).
The first type of a critical point after reduction to canonical variables (v1, v2, v3) is

a stable node in both subspaces (v1, v2) and v3:∣∣∣∣∣∣
negative 1 0

0 negative 0
0 0 negative

∣∣∣∣∣∣ . (15)

There is a degenerate stable node in the (v1, v2)-subspace attracting trajectories in v3-
direction due to negativity of λ3.

For the purposes of this article, we will denote this type as (−,−,−).
The second type of a critical point is a stable degenerate node in the (v1, v2)-subspace

with continua of copies in v3-direction due to zero value of λ3:∣∣∣∣∣∣
negative 1 0

0 negative 0
0 0 0

∣∣∣∣∣∣ . (16)

In this article, we denote this type as (−,−, 0).

Nonlinear Anal. Model. Control, 21(5):687–701
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Figure 4. Some trajectories of the linearized system in canonical coordinates (v1, v2, v3) for the critical point
(0.71848; 0.71848; 0.71848), θ = 0.5, µ = 1. All trajectories attract to the origin.

Figure 5. Projections of the phase portrait in Fig. 4 on three coordinate planes.

Figure 6 shows the phase portrait of a linearized system in canonical variables. The
respective λ3 is zero. It demonstrates that in (v1, v2) subspace, solutions near the critical
point tend to (0; 0) point (this can be seen in the left graph of Fig. 7). This two-dimensional
subspace is repeated by parallel transition along the v3-axis.

The third type of a critical point is a semi-stable node that is stable in the (v1, v2)-
subspace and unstable in v3-direction:

∣∣∣∣∣∣
negative 1 0

0 negative 0
0 0 positive

∣∣∣∣∣∣ . (17)

The respective notation will be (−,−,+).
The graph of Fig. 8 is in canonical form. It demonstrates that in [v1, v2] subspace,

solutions tend to (0; 0) (this can be seen in the left graph of Fig. 9). In the remaining
one-dimensional subspace v3, solutions are repelled by the critical point.
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Figure 6. θ = 1, µ = 2, the critical point is (0.5; 0.5; 0.5).

Figure 7. Projections of the phase portrait in Fig. 6 on three coordinate planes.

Figure 8. Phase portrait for linearized system in canonical form, θ = 1, µ = 3, the critical point is
(0.5; 0.5; 0.5).

Nonlinear Anal. Model. Control, 21(5):687–701
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Figure 9. For θ = 1, µ = 3, critical points is (0.5; 0.5; 0.5).

4 Critical points

In this section, we analyze types of critical points. For any critical point λ1 = λ2 < 0, it
is sufficient to know the sign of λ3. For brevity and only for purposes of this article, let us
denote the type of a critical point by symbols (−,+, 0), where−, 0 and + are respectively
for λ negative, zero or positive. It is known up to now that any critical point is of the type
(−,−, ∗), where “∗” may be −, 0 or +.

Look at the relation
λ3 = 2µx(1− x)− 1. (18)

The elementary analysis of the quadratic equation

x− x2 − 1

2µ
= 0 (19)

shows that λ3 is zero only for

x1,2 =
1

2
∓
√

1

4
− 1

2µ

if the discriminant

D =
1

4
− 1

2µ

is non-negative. The discriminant is zero at µ = 2, then x = 1/2 and θ = 1. So the
critical point (1/2, 1/2, 1/2) for (µ, θ) = (2, 1) (that corresponds to the vertex of region
Ω)) is of the type λ1 = λ2 < 0, λ3 = 0.

If µ > 2, then θ(x) has local maximum at x = x2 and local minimum at x = x1
as seen in Fig. 2c. It follows that for θ = x2 = 1/2 +

√
1/4− 1/(2µ), there are two

critical points, namely, one at x2 (then λ3 = 0) and another one corresponding to the
intersection of θ(x) with θ(x2) as seen in Fig. 2c. The respective coordinate x is less then
x1, and therefore, the respective λ3 is negative. Similarly, there are two critical points for
θ = x1 = 1/2 −

√
1/4− 1/(2µ). The first one is at x1, and another one is with the

coordinate x greater than x2. The respective λ3 are zero for the first point and negative
for the second one.

Proposition 1. For (µ, θ) ∈ (∂Ω \(2, 1)), there are exactly two critical points: one of the
type (−,−, 0) and the second one of the type (−,−,−). For (µ, θ) = (2, 1), there exists
one critical point (1/2, 1/2, 1/2) of the type (−,−, 0).
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The following is also true.

Proposition 2. For (µ, θ) ∈ Q \ Ω, there exists only one critical point of the type
(−,−,−).

Proof. The proof follows from the fact that, in the mentioned region, the quadratic poly-
nomial (19) and, therefore, the right-hand side in (18) are negative.

Proposition 3. For any (µ, θ) ∈ Ω, there exist exactly three critical points: the middle is
of the type (−,−,+), and two side points are of the type (−,−,−).

Proof. For any µ > 2, consider some θ∗ such that

θmin(µ) = θ
(
x1(µ)

)
< θ∗ < θ

(
x2(µ)

)
= θmax(µ).

The horizontal line θ = θ∗ in (x, θ)-plane (Fig.2c) has three points of intersection with
the curve θ(x). The middle point x is between x1 and x2. Therefore, polynomial (19) is
positive, and hence, the respective λ3 is positive. The two remaining critical points satisfy
either x < x1 or x > x2. In both cases, polynomial (19) is negative, and the respective
λ3 are negative also.

It follows from the above arguments that the following statement is true.

Theorem 1. The above system has attracting sets of the following structure.
All critical points are located on the bisectrix x1 = x2 = x3.
The open quadrant Q = {µ > 0, θ > 0} contains fully defined region Ω such that:

1) if (µ, θ) ∈ Q \ Ω, then the attracting set is only one critical point of the type
(−,−,−);

2) if (µ, θ) = (2, 1) (that corresponds to the vertex of regionΩ), then only one critical
point (1/2, 1/2, 1/2) is of the type (−,−, 0);

3) if (µ, θ) ∈ ∂Ω \ (2, 1), then the attracting set consists of two critical points: one
of them of the type (−,−,−) and another one of the type (−,−, 0);

4) if (µ, θ) ∈ Ω, then the attracting set consists of three critical points: a point in the
middle is of the type (−,−,+), two remaining points are of the type (−,−,−).

5 Phase portraits

Consider a number of examples illustrating (and confirming) our analysis.

5.1 Particular case I

In the first particular case, the parameter µ = 1 and θ = 0.5. System (2) has one critical
point (0.71848; 0.71848; 0.71848). System (2) with parameters µ = 1 and θ = 0.5 has
the following visual interpretation.

In Fig. 10, we can see attractor, where all solutions from the first quadrant tend to the
critical point (0.71848, 0.71848, 0.71848).

Nonlinear Anal. Model. Control, 21(5):687–701
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Figure 10. System (2) when µ = 1 and θ = 0.5 with the critical point (0.71848; 0.71848; 0.71848).

The λ matrix for the critical point (0.71848, 0.71848, 0.71848) is∣∣∣∣∣∣
−1.20227 1 0

0 −1.20227 0
0 0 −0.595467

∣∣∣∣∣∣ .
The type of this critical point is a stable node in both subspaces according to (15).

5.2 Particular case II

In the second particular case, the parameter µ = 3 and θ = 1. The system has three
critical points: (0.5, 0.5, 0.5), (0.07072, 0.07072, 0.07072), and the last one is (0.929279,
0.929279, 0.929279).

In Fig. 11, one can see the visual interpretation of the system.
The λ matrix for the critical point (0.5, 0.5, 0.5) is∣∣∣∣∣∣

−1.75 1 0
0 −1.75 0
0 0 0.5

∣∣∣∣∣∣ .
The type of this critical point is a semi-stable node that is stable in the one subspace

and unstable in the second subspace according to (17).
The λ matrices for the critical points (0.07072, 0.07072, 0.07072) and (0.929279,

0.929279, 0.929279) are equal and the matrix is∣∣∣∣∣∣
−1.19716 1 0

0 −1.19716 0
0 0 −0.605688

∣∣∣∣∣∣ .
The type of this critical point is a stable node in both subspaces according to (15).
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Figure 11. System (2) when µ = 3 and θ = 1 with critical points (0.5, 0.5, 0.5), (0.07072, 0.07072,
0.07072), (0.929279, 0.929279, 0.929279).

5.3 Particular case III

In the third particular case, the parameter µ = 3 and θ = (3 +
√
3 + log [2−

√
3])/3 =

1.13836. The system has two critical points: the first one is (0.788675, 0.788675,
0.788675), and the second is (0.079487, 0.079487, 0.079487).

The visual interpretation of the system is the following:

Figure 12. System (2) when µ = 3 and θ = 1.13836 with critical points (0.788675, 0.788675, 0.788675),
(0.079487, 0.079487, 0.079487).

Nonlinear Anal. Model. Control, 21(5):687–701
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The λ matrix for the critical point (0.788675, 0.788675, 0.788675) is∣∣∣∣∣∣
−1.5 1 0
0 −1.5 0
0 0 0

∣∣∣∣∣∣ .
The type of the critical point is a stable node in one subspace and a degenerate type in

the second subspace according to (16).
The λ matrix for the critical point (0.079487, 0.079487, 0.079487) is∣∣∣∣∣∣

−1.14634 1 0
0 −1.14634 0
0 0 −0.707325

∣∣∣∣∣∣ .
The type of this critical point is a stable node in both subspaces according to (15).

5.4 Particular case IV

In the fourth particular case, the parameter µ = 2 and θ = 1. System (2) has one critical
point. This point is (0.5, 0.5, 0.5). In Fig. 13, one can see the visual interpretation of
system (2) with parameters µ = 2 and θ = 1.

The λ matrix for the critical point (0.5, 0.5, 0.5) is∣∣∣∣∣∣
−1.5 1 0
0 −1.5 0
0 0 0

∣∣∣∣∣∣ .
The type of this critical point is a stable node in one subspace and a degenerate type

in the second subspace according to (16).

Figure 13. System (2) when µ = 2 and θ = 1 with critical point (0.5, 0.5, 0.5).
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6 Conclusions

We have found that structure of the attracting sets is relatively simple, namely, it may
consist of one to three critical points, and this depends of the choice of parameters µ and θ.
If a point (µ, θ) is located outside the region Ω, then there is exactly one attracting critical
point. If (µ, θ) is located inside the region Ω, then there are exactly three critical points,
one of them is attracting/repelling. Finally, if (µ, θ) is on the boundary of the region Ω,
then some intermediate cases are possible (including degenerate ones). The set Ω is fully
described.
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