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Abstract. The sufficient and necessary conditions for a weak convergence of distributions of a set
of strongly additive functions fx, x > 2, the arguments of which run through shifted primes, to the
discrete uniform law are obtained. The case when fx(p) ∈ {0, 1} for every prime p is considered.
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1 Introduction

Let fx, x > 2, be a set of strongly additive functions such that fx(p) ∈ {0, 1} for
all primes p and all x > 2. It follows from the strong additivity that for every positive
integer n

fx(n) =
∑
p|n

fx(p) =
∑
p|n

fx(p)=1

1.

The problem of a weak convergence of distributions

νx
(
n 6 x, fx(n) < u

)
:=

1

[x]

∑
n6x

fx(n)<u

1 as x→∞

is of key importance in probabilistic number theory. There are interesting general condi-
tions of convergence, classes of possible limit distributions, conditions of convergence to
particular distributions. A detailed account of particular and general results you can find
in the monographs [1, 2, 5].
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In the articles [7, 8, 9], the case of the Poisson distribution as a limit law was consid-
ered. It was shown there that the Poisson law can occur as a limit one for the distributions:

νx
(
p 6 x, fx(p+ 1) < u

)
,

νx
(
n 6 x, fx(n) + gx(n+ 1) < u

)
,

νx
(
p 6 x, fx(p+ 1) + gx(p+ 2) < u

)
.

The Bernoulli, geometrical, binomial, discrete uniform distributions as limit ones for νx
(fx(n) < u) were investigated in [10, 11, 12]. Several results (general enough) can be
found in [1, 4, 13, 14].

In this work, we consider the weak convergence of distribution functions

νx
(
fx(p+ 1) < u

)
= νx

(
p 6 x, fx(p+ 1) < u

)
:=

1

π(x)
#
{
p 6 x: fx(p+ 1) < u, p prime

}
(1)

to the discrete uniform law

U(u, L) :=
∑

k=0,1,...,L−1
k<u

1

L
, (2)

where the parameter L ∈ N, L > 2. Similarly as in [9], we use in the proofs the method
of factorial moments and we have to restrict the behaviour of additive functions on large
primes (see condition (H)). But the authors think that this condition is not necessary for
the weak convergence to the discrete uniform distribution. Maybe, the problem could be
solved applying the Kubilius model of probability spaces [1, 2, 5]. But the large primes
have to be overcome there as well.

Throughout the paper, we keep the following notation. The values of p, p1, p2, . . .
mean prime numbers; c is an absolute positive constant not always the same. By the
symbol ε(x) we denote values vanishing as x → ∞. The notation a � b is equivalent
to the inequality |a| 6 cb. If the constant c, the constant included in�, or the vanishing
function ε(x) depend on a parameter a, we write ca,�a, εa(x). The notation Fx(u) ⇒
F (u) means that the distribution functions Fx(u) converge weakly to the distribution
function F (u) as x → ∞. The superscript ∗ at the signs of sum or maximum,

∑∗,
max∗, means that the summation or maximum is expanded over the primes p for which
fx(p) = 1. The other notation is generally accepted or is later discussed in the text.

2 Main result and auxiliary lemmas

Theorem 1. Let fx, x > 2, be a set of strongly additive functions. Assume that fx(p) ∈
{0, 1} for all prime numbers p and

lim
x→∞

log x
∑∗

xγ<p6x

1

p
= 0 (H)
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for all γ ∈ (0, 1). The distributions νx(fx(p + 1) < u) converge weakly to the limit
discrete uniform law U(u, L) as x→∞ if and only if L = 2 and

fx(3) = 1, lim
x→∞

∑∗

3<p6x

1

p
= 0. (3)

The proof of this main theorem is based on the following three lemmas on the limit
behaviour of factorial moments of the distribution νx(fx(p+ 1) < u).

Lemma 1. Let fx, x > 2, be a set of strongly additive functions such that fx(p) ∈ {0, 1}
for all primes p. If distributions (1) converge weakly to some distribution function F (u)
with a jump at the point u = 0 as x→∞, then the quantities

β(l, x) :=
1

π(x)

∑
p6x

fx(p+ 1)
(
fx(p+ 1)− 1

)
· · ·
(
fx(p+ 1)− l + 1

)
,

l = 1, 2, . . . , have finite limits
lim
x→∞

β(l, x) = gl, (4)

where gl is the lth factorial moment of the limit law.

Lemma 2. (See [9, Lemma 2].) If a set of strongly additive functions fx satisfies the
conditions of Theorem 1 and ∑∗

p6x

1

p
� 1, (5)

then

β(l, x) =
∑∗

p1,p2,...,pl6x
pi 6=pj , i 6=j

1

(p1 − 1)(p2 − 1) · · · (pl − 1)
+ εl(x),

l = 1, 2, . . . .

According to this statement and equality (4) in the case of convergence of
νx(fx(p+ 1) < u), we have that

lim
x→∞

∑∗

p1,p2,...,pl6x
pi 6=pj , i 6=j

1

(p1 − 1)(p2 − 1) · · · (pl − 1)
= gl (6)

for each l ∈ {1, 2, . . . }.

Lemma 3. Let fx, x > 2, be a set of strongly additive functions such that fx(p) ∈
{0, 1} for all primes p and condition (H) hold. If distributions (1) converge weakly to the
distribution Fξ of the random variable ξ with a finite support {0, 1, . . . , L − 1}, L > 2,
then there exists some constant D > 2 such that

lim sup
x→∞

#
{
p 6 D: fx(p) = 1

}
6 L− 1, (7)
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lim
x→∞

∑∗

D<p6x1/L

1

p
= 0, (8)

lim
x→∞

∑∗

p1,p2,...,pl6D
pi 6=pj , i 6=j

1

(p1 − 1)(p2 − 1) · · · (pl − 1)
= gl, (9)

l = 1, 2, . . . , L− 1.
Moreover, the characteristic function of the limit distribution Fξ is equal to

1 +

L−1∑
l=1

gl
l!

(
eit − 1

)l
.

From Theorem 1 we get the following example.

Example 1. Let

fx(p) =


1 if p = 3,

1 if xα 6 p < xα+εx ,

0 otherwise,

where εx > 0 and εx log x→ 0 as x→∞. Then

νx
(
fx(p+ 1) < u

)
⇒ U(u, 2) as x→∞.

3 Proofs of lemmas

Proof of Lemma 1. Suppose that distribution functions (1) converge weakly to the limit
distribution F (u) with the jump at the point u = 0. From the weak convergence we have
that

lim
x→∞

νx
(
fx(p+ 1) = 0

)
= F (0+)− F (0) > c.

Using this estimate, it is proved in [9] (see inequality (10)) that

β(l, x)�l 1, l > 1. (10)

According to this,

1

π(x)

∑
p6x

fx(p+1)=k

1 =
1

π(x)

∑
p6x

fx(p+1)=k

k(k − 1) · · · (k − l − 1)

k(k − 1) · · · (k − l − 1)

6
1

k(k − 1) · · · (k − l − 1)
β(l + 2, x)

�l
1

k(k − 1) · · · (k − l − 1)
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for every k > l + 2. Therefore,

F (k+)− F (k) = lim
x→∞

νx
(
fx(p+ 1) = k

)
�l

1

k(k − 1) · · · (k − l − 1)

for every k > l + 2.
Let us fix l ∈ N and choose K > l + 2. Using estimate (10), analogously as in [9],

we get

β(l, x)

=
1

π(x)

∑
p6x

16fx(p+1)6K

fx(p+ 1)
(
fx(p+ 1)− 1

)
· · ·
(
fx(p+ 1)− l + 1

)

+
1

π(x)

∑
p6x

fx(p+1)>K

fx(p+ 1)
(
fx(p+ 1)− 1

)
· · ·
(
fx(p+ 1)− l + 1

) fx(p+ 1)− l
fx(p+ 1)− l

=

K∑
k=l

k(k − 1) · · · (k − l + 1)
1

π(x)

∑
p6x

fx(p+1)=k

1 +O

(
β(l + 1, x)

K − l

)

=

K∑
k=l

k(k − 1) · · · (k − l + 1)
(
F (k+)− F (k)

)
+ εK,l(x) +Ol

(
1

K − l

)

= gl −
∞∑

k=K+1

k(k − 1) · · · (k − l + 1)
(
F (k+)− F (k)

)
+ εK,l(x) +Ol

(
1

K − l

)

= gl + εK,l(x) +Ol

( ∞∑
k=K+1

1

(k − l)(k − l − 1)

)
+Ol

(
1

K

)
= gl + εK,l(x) +Ol

(
1

K

)
.

Taking the limit in the last equality as x tends to infinity and then as K tends to infinity,
we obtain relation (4). Lemma 1 is proved.

Proof of Lemma 3. The proof of the lemma almost coincides with the proof of the neces-
sity part of Corollary 4 from [6]. From the conditions of the lemma we have that there is
some k ∈ {0, 1, . . . , L− 1} such that

lim
x→∞

νx
(
fx(p+ 1) = k

)
= Fξ(k+)− Fξ(k) > c.

Thus, from the inequality (see [3])

νx
(
fx(p+ 1) = k

)
�
(
4 +

∑∗

p6x

1

p

)−1/2
(11)

it follows inequality (5).
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Now according to Lemma 2, equality (6) holds. Let d > 2 be a temporarily fixed
positive integer. If x/dL−1 > d, we have from equality (6) that

gL > lim sup
x→∞

∑∗

p1,p2,...,pL6d
pi 6=pj ,i6=j

1

(p1 − 1)(p2 − 1) · · · (pL − 1)
.

Assuming that
lim sup
x→∞

#
{
p 6 d: fx(p) 6= 0

}
> L,

we get a contradiction to the condition gL = 0. Thus,

lim sup
x→∞

#
{
p 6 d: fx(p) 6= 0

}
6 L− 1

for each fixed positive integer d.
Put

ad = lim sup
x→∞

#
{
p 6 d: fx(p) 6= 0

}
.

The sequence ad (d > 2) is integer-valued, non-decreasing, and bounded. Thus, there
exists a positive integer D > 2 such that

lim sup
x→∞

#
{
p 6 D: fx(p) 6= 0

}
= ad

for d > D. Since ad 6 L− 1 for all positive integers d, we obtain condition (7).
On the other hand, from the reasoning above it follows that

lim
x→∞

fx(p) = 0

for each fixed prime p > D. Consequently, we obtain that

lim
x→∞

max∗
D<p6x

1

p
= 0.

Since for every pair i, j, 1 6 i < j 6 L,∑∗

D<p1,...,pL6x
1/L

pi=pj

1

(p1 − 1) · · · (pL − 1)

6 max∗
D<p6x

1

p− 1

(∑∗

p6x

1

p− 1

)L−1
→ 0 (x→∞),

equality (6) shows that

gL > lim sup
x→∞

( ∑∗

D<p6x1/L

1

p− 1

)L
.

Thus, the condition gL = 0 implies (8). The last condition (9) of the lemma now follows
from (6), equality (8), and condition (H). Lemma 3 is proved.
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4 Proof of Theorem 1

Necessity. Suppose that

νx
(
fx(p+ 1) < u

)
⇒ U(u, L) as x→∞ (12)

with parameter L > 2. From Lemma 1 we obtain that

lim
x→∞

β(x, l) =
(L− 1)!

(L− 1− l)! (l + 1)

for l = 1, 2, . . . , L−1. The values of gl are the factorial moments of the limit distribution.
In the case of the uniform distribution, we get that

g1 =
L− 1

2
, g2 =

(L− 1)(L− 2)

3
,

gk =
(L− 1)(L− 2) · · · (L− k)

k + 1
, k = 3, 4, . . . , L− 1,

gk = 0, k = L,L+ 1, . . . .

From (12) we have that

lim
x→∞

νx
(
fx(p+ 1) = 0

)
= U(0+, L)− U(0, L) = 1

L
> 0.

Thus, inequality (5) follows from inequality (11) with k = 0. We apply now Lemma 2.
The values of gl are the factorial moments of the limit distribution. It is clear that

gl 6 gl−kgk

for all l = 2, 3, . . . and all k = 1, 2, . . . , l − 1. In the particular case,

g2 6 g21 .

Therefore,
(L− 1)(L− 2)

3
6

(
L− 1

2

)2

,

which implies L 6 5. Further, we examine separately the cases L = 2, 3, 4, 5.
Let L = 2. In this case,

g1 =
1

2
, g2 = g3 = · · · = 0.

Using Lemma 3, we have that, for some D > 2,

lim sup
x→∞

#
{
p 6 D: fx(p) = 1

}
= κ 6 1,

Nonlinear Anal. Model. Control, 21(4):437–447
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lim
x→∞

∑∗

D<p6x1/2

1

p
= 0,

lim
x→∞

∑∗

p6D

1

p− 1
=

1

2
. (13)

If κ = 1, then we obtain from relations above and condition (H) that there is only one
case

fx(3) = 1

for large x and

lim
x→∞

∑∗

3<p6x

1

p
= 0.

If κ = 0, then fx(p) = 0 for every fixed p and sufficiently large x. In this case,
equality (13) cannot be satisfied. It follows that the case κ = 0 cannot occur.

Let L = 3. Then

g1 = 1, g2 =
2

3
, g3 = g4 = · · · = 0.

According to Lemma 3, we have that, for some fixed D > 2, the following conditions
hold:

lim sup
x→∞

#
{
p 6 D: fx(p) = 1

}
= κ 6 2,

lim
x→∞

∑∗

D<p6x1/3

1

p
= 0,

lim
x→∞

∑∗

p6D

1

p− 1
= 1, (14)

lim
x→∞

∑∗

p1,p26D
p1 6=p2

1

(p1 − 1)(p2 − 1)
=

2

3
. (15)

First, we suppose that κ = 2. From (14) and condition (H) we have that

fx(p1) = fx(p2) = 1

for large x and
1

p1 − 1
+

1

p2 − 1
= 1

for some fixed primes p1 < p2. Since the last equality is impossible for any pair of
different primes p1, p2, then the case κ = 2 cannot occur.

From equality (15) it follows that the cases κ = 1, κ = 0 cannot occur as well.
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Let L = 4. Then

g1 =
3

2
, g2 = 2, g3 =

3

2
, g4 = g5 = · · · = 0.

According to Lemma 3, there exists some constant D > 2 for which

lim sup
x→∞

#
{
p 6 D: fx(p) = 1

}
= κ 6 3, (16)

lim
x→∞

∑∗

D<p6x1/4

1

p
= 0,

lim
x→∞

∑∗

p6D

1

p− 1
=

3

2
, (17)

lim
x→∞

∑∗

p1,p26D
p1 6=p2

1

(p1 − 1)(p2 − 1)
= 2,

lim
x→∞

∑∗

p1,p2,p36D
pi 6=pj , i 6=j

1

(p1 − 1)(p2 − 1)(p3 − 1)
=

3

2
. (18)

It follows from (18) that κ cannot be 0, 1, and 2.
Suppose κ = 3. Then equalities (16) and (17) imply that there exist fixed primes

p1 < p2 < p3 for which fx(p1) = fx(p2) = fx(p3) = 1 for large x and

1

p1 − 1
+

1

p2 − 1
+

1

p3 − 1
=

3

2
. (19)

But there are no primes satisfying equality (19). So, the case κ = 3 is impossible as well.
Let L = 5. Then

g1 = 2, g2 = 4, g3 = 6, g4 =
24

5
, g5 = g6 = · · · = 0.

According to Lemma 3, there exists some D > 2 for which

lim sup
x→∞

#
{
p 6 D: fx(p) = 1

}
= κ 6 4,

lim
x→∞

∑∗

D<p6x1/5

1

p
= 0,

lim
x→∞

∑∗

p6D

1

p− 1
= 2, (20)

lim
x→∞

∑∗

p1,p26D
p1 6=p2

1

(p1 − 1)(p2 − 1)
= 4,
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lim
x→∞

∑∗

p1,p2,p36D
pi 6=pj , i 6=j

1

(p1 − 1)(p2 − 1)(p3 − 1)
= 6,

lim
x→∞

∑∗

p1,p2,p3,p46D
pi 6=pj , i 6=j

1

(p1 − 1)(p2 − 1)(p3 − 1)(p4 − 1)
=

24

5
. (21)

It follows from equality (21) that κ cannot be equal to 0, 1, 2, and 3.
Suppose κ = 4. Then from (20) we deduce that there exist primes p1 < p2 < p3 < p4

such that fx(p1) = fx(p2) = fx(p3) = fx(p4) = 1 for large x and

1

p1 − 1
+

1

p2 − 1
+

1

p3 − 1
+

1

p4 − 1
= 2.

But
1

p1 − 1
+

1

p2 − 1
+

1

p3 − 1
+

1

p4 − 1
6 1 +

1

2
+

1

4
+

1

6
< 2.

So, the case κ = 4 is impossible as well.

Sufficiency. Assume that conditions (3) of the theorem together with additional condi-
tion (H) are satisfied. Estimate (5) follows from condition (3). Now using Lemma 2, we
obtain that

lim
x→∞

β(l, x) = lim
x→∞

∑∗

p1,p2,...,pl6x
pi 6=pj , i 6=j

1

(p1 − 1)(p2 − 1) · · · (pl − 1)
= 0

if l > 1 and
lim
x→∞

β(1, x) =
1

2
.

Put
ψx(t) =

1

π(x)

∑
p6x

eitfx(p+1)

for x > 2 and t ∈ R. Since∣∣eitr − 1− r
(
eit − 1

)∣∣ 6 r(r − 1)

2

∣∣eit − 1
∣∣2

for all r ∈ {0}∪N, we have

ψx(t) = 1 + β(1, x)
(
eit − 1

)
+O

(
β(2, x)

)
.

Taking the limit in the last equality, we conclude that

lim
x→∞

ψx(t) =
1

2

(
eit + 1

)
.

But this is the characteristic function of the uniform distribution U(u, 2).
So, the sufficiency of the theorem follows. Theorem 1 is now proved.
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