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Abstract. The backward shift and nabla derivative operators, defined by the control system on
homogeneous time scale, in vector spaces of one-forms and vector fields are introduced, and some
of their properties are proven. In particular, the formulas for components of the backward shift and
nabla derivative of an arbitrary vector field are presented.
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1 Introduction

In papers [2, 3], an algebraic formalism for nonlinear control systems, defined on ho-
mogeneous time scales, has been developed. It has already found applications in the
solution of several control problems like system reduction [17], realization of the ex-
ternal system description in the state space form [9]. Note that the properties of both the
continuous- and discrete-time control systems can be studied, characterized and checked
by the same mathematical techniques, theorems and algorithms. The formalism is based
on differential one-forms and vector fields. In our set-up,the vector fields may have infinite
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number of terms. Though in the classical control theory the vector fields are defined
in the finite-dimensional spaces, the infinite dimensional versions are not completely
new. For instance, in [12], the infinite vector fields are considered. They have been also
used in problems related to dynamic state feedback like in the studies of flatness [18].
An inversive σf -differential field K∗ of meromorphic functions in system variables is
constructed and equipped with two operators, delta derivative ∆f and forward shift σf ,
defined by system equations. Then two vector spaces overK∗, of one-forms and of vector
fields, respectively, were introduced, and the operators ∆f and σf were extended to these
vector spaces.

The goal of this paper is to introduce the nabla derivative operator in these vector
spaces and prove a number of its properties. Note that the literature on control systems
on time scales is, up to now, mostly limited by application of delta derivatives, see, for
example, [4,8,9]. However, some recent applications in economics, neural networks, con-
trol and other topics [1,11,14,16] have suggested that in some situations nabla derivative
is more natural. In particular, backward differences are preferable in numerical and com-
putational methods due to practical implementation (information availability) reasons.
Moreover, in control and neural networks, nabla derivative is a natural tool that allows to
handle delays in system [13, 16]. In differential geometric approach to control problems,
in majority of cases (though not always), nabla derivative of a vector field is much easier
to compute than the delta derivative. Though the computation of both derivatives requires
to apply the backward shift operator, defined by the inverse map of the extended system
equations, in the case of delta derivative, the shift is applied to a one-form whereas in
the case of nabla derivative, it is applied to a function. Since in the continuous-time case
both delta and nabla derivatives coincide, they yield the same concept and whenever one
assumes the finite-dimensional space, both result in classical Lie derivative along the
vector field, defined by system equations (see Corollary 1 below). Therefore, it is natural
to assume that several distributions, important for control theory, expressed in terms of
Lie derivatives of vector fields (such as accessibility distribution) can be extended into the
time-scale domain using either nabla or delta derivatives. Only further studies will reveal
which of those derivatives are better suited in addressing different problems.

Some extensions of the Lie derivative of the vector field into the discrete-time domain
were made in [19], but in this paper, the discrete-time system (i) was described in terms
of the shift operator and not via difference operator as in this paper, (ii) the vectors were
assumed to belong into the finite-dimensional spaces and (iii) though the extension was
in fact nabla derivative, it was not recognized as such. In [19], two possible definitions of
Lie derivative are recalled, both yielding in the same result in the continuous-time case,
but when extended to discrete-time case, one of them will yield nabla derivative and the
other delta derivative.

2 Time scale calculus

For a general introduction to the calculus on time scales, see [6, 7]. Here we give only
those notions and facts that we need in our paper and most of them was taken from [6,7].
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The main task is to introduce the concept of derivatives for real functions defined on a time
scale.

A time scale T is an arbitrary nonempty closed subset of the set R of real numbers.
The standard cases comprise T = R, T = Z and T = hZ for h > 0, but also T = qZ :=
{qk | k ∈ Z} ∪ {0} is a time scale. However, the set of rational numbers and the open
interval (a, b), a < b, are not the examples of time scales. For t ∈ T, the forward and
backward jump operators σ, ρ : T → T are defined by σ(t) = inf{s ∈ T | s > t} and
ρ(t) = sup{s ∈ T | s < t}, respectively. In addition, we set σ(maxT) = maxT if there
exists a finite maxT, and ρ(minT) = minT if there exists a finite minT. Since T is
a closed subset of R, both σ(t) and ρ(t) are in T when t ∈ T. Finally, the graininess
functions µ, ν : T → [0,∞) are defined by µ(t) = σ(t) − t and ν(t) = t − ρ(t) for all
t ∈ T, respectively. A time scale is called homogeneous if µ and ν are constant functions.

Let Tκ denote truncated set consisting of T except for a possible left-scattered max-
imal point. The reason to omit a maximal left-scattered point is to guarantee uniqueness
of f∆, defined below.

Definition 1. The delta derivative of a function f : T → R at t ∈ Tκ is the real number
f∆(t) (provided it exists) such that for each ε > 0, there exists a neighborhood U(ε) of t,
U(ε) ⊂ T, such that for all τ ∈ U(ε), |(f(σ(t))−f(τ))−f∆(t)(σ(t)−τ)| 6 ε|σ(t)−τ |.
Moreover, we say that f is delta differentiable on Tκ provided f∆(t) exists for all t ∈ Tκ.

Let Tκ denote truncated set consisting of T except for a possible right-scattered mini-
mal point. The reason to omit a maximal right-scattered point is to guarantee uniqueness
of f∇, defined below.

Definition 2. The nabla derivative of a function f : T→ R at t ∈ Tκ is the real number
f∇(t) (provided it exists) such that for each ε > 0, there exists a neighborhood U(ε) of t,
U(ε) ⊂ T such that for all τ ∈ U(ε), |(f(ρ(t))−f(τ))−f∇(t)(ρ(t)−τ)| 6 ε|ρ(t)−τ |.
Moreover, we say that f is nabla differentiable on Tκ provided f∇(t) exists for all t ∈ Tκ.

The delta and nabla derivatives of higher order are defined inductively. The kth-order
delta derivative of function f is denoted by f [k], and the kth-order nabla derivative of
function f is denoted by f{k}.

For f : T → R, we define fσ := f ◦ σ : T → R and fρ := f ◦ ρ : T → R and
call them respectively the forward and backward time shift of f . Denote f∆σ := (f∆)σ ,
fσ∆ := (fσ)∆, f∇ρ := (f∇)ρ, fρ∇ := (fρ)∇.

If f and f∆ are delta differentiable functions, then for a homogeneous time scale,
one has fσ∆ = f∆σ . Similarly, if f and f∇ are nabla differentiable functions, then for
a homogeneous time scale, one has fρ∇ = f∇ρ.

Theorem 1. (See [6].) Let f : T → R, g : T → R be two delta (nabla) differentiable
functions defined on T, and let t ∈ T. Then:

(i) f is continuous at t;
(ii) fσ = f + µf∆ and fρ = f − νf∇;

(iii) (αf + βg)∆ = αf∆ + βg∆ and (αf + βg)S∇ = αf∇+ βg∇ for constants α
and β;
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(iv) (fg)∆ = fσg∆ + f∆g = fg∆ + f∆gσ and (fg)∇ = fρg∇ + f∇g = fg∇ +
f∇gρ;

(v) if ggσ 6= 0, then (f/g)∆ = (f∆g− fg∆)/(ggσ), and if ggρ 6= 0, then (f/g)∇ =
(f∇g − fg∇)/(ggρ).

Proposition 1. (See [6, 7].)
(i) Assume that f : T → R is delta differentiable on Tκ. Then f is nabla differen-

tiable at t and
f∇(t) = f∆

(
ρ(t)

)
(1)

for t ∈ Tκ such that σ(ρ(t)) = t. If, in addition, f∆ is continuous on Tκ, then f
is nabla differentiable at t and (1) holds for any t ∈ Tκ.

(ii) Assume that f : T → R is nabla differentiable on Tκ. Then f is delta differen-
tiable at t and

f∆(t) = f∇
(
σ(t)

)
(2)

for t ∈ Tκ such that ρ(σ(t)) = t. If, in addition, f∇ is continuous on Tκ, then f
is delta differentiable at t and (2) holds for any t ∈ Tκ.

3 Differential fields

Let us recall the facts for a σf -differential field given in [2] and introduce the concept of
a ρf -differential field.

From now on we assume that T is homogeneous. Note that for homogeneous time
scales, ν = µ = const. Consider now the control system, defined on T,

x∆(t) = f
(
x(t), u(t)

)
, (3)

where (x(t), u(t)) ∈ U , U is an open subset of Rn × Rm, m 6 n, x is a state, u is
a control (input) of the system and function f : U → Rn is analytic. Let us define
f̃(x, u) := x + µf(x, u) and assume that there exists a map ϕ : U → Rm such that
Φ = (f̃ , ϕ)T is an analytic diffeomorphism5 from the set U onto U . This means that from
(x̄, z) = (f̃(x, u), ϕ(x, u)) = Φ(x, u) we can uniquely compute (x, u) as an analytic
function of (x̄, z). For µ = 0, this condition is always satisfied with ϕ(x, u) = u. In the
case µ > 0, system (3) can be rewritten in the following equivalent form:

xσ(t) = f̃
(
x(t), u(t)

)
. (4)

For notational convenience, (x1, . . . , xn) will simply be written as x, and for k > 0,
(u

[k]
1 , . . . , u

[k]
m ) will be written as u[k]. For i 6 k, let u[i...k] := (u[i], . . . , u[k]). We assume

that the control (input) applied to system (3) is infinitely many times delta differentiable,

5This assumption guarantees that the system xσ = f̃(x, u) is submersive, i.e. generically rank(∂f̃(x, u)/
∂(x, u)) = n.
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i.e. u[0...k] exists for all k > 0. Consider the infinite set of real (independent) indetermi-
nates

C =
{
xi, i = 1, . . . , n, u

[k]
j , j = 1, . . . ,m, k > 0

}
, (5)

and let K be the (commutative) field of meromorphic functions in a finite number of the
variables from the set C. Let σf : K → K be an operator defined by

σf (F )
(
x, u[0...k+1]

)
:= F

(
x+ µf(x, u), u[0...k] + µu[1...k+1]

)
, (6)

where F ∈ K depends on x and u[0...k]. For particular cases when F , Fk, k > 0, are
coordinate functions, i.e. F (x) = x, Fk(u[k]) = u[k], k > 0, we get σf (x) = x +
µf(x, u) = f̃(x, u), σf (u[k]) = uk] + µu[k+1], k > 0. We assume that (x, u) ∈ U
and the other variables are restricted in such a way that σf is well defined. Under the
assumption about the existence of ϕ such that Φ = (f̃ , ϕ) is an analytic diffeomorphism,
σf is injective endomorphism.

The field K can be equipped with a delta derivative operator ∆f : K → K defined by

∆f (F )
(
x, u[0...k+1]

)
=


1
µ [F (x+ µf(x, u), u[0...k] + µu[1...k+1])− F (x, u[0...k])] if µ 6= 0,

∂F
∂x (x, u[0...k])f(x, u) +

∑
k>0

∂F
∂u[0...k] (x, u

[0...k])u[1...k+1] if µ = 0,
(7)

where F ∈ K depends on x and u[0...k].
The more compact notations Fσf and F∆f will be sometimes used instead of σf (F )

and ∆f (F ). Note that when x is considered as the function defined on the homogeneous
time scale T, then the notations xσ and x∆ will be used to denote the functions xσ :
T→Rn and x∆ :T→Rn such that x∆(·)=f(x(·), u(·)) and xσ(·)=x(·)+µf(x(·), u(·)).
Whereas the notations xσf and x∆f are used for the image of coordinate function F (x)=x
with respect to operators σf and ∆f . Similarly, in the case u[k], k > 0.

The delta derivative ∆f satisfies, for all F,G ∈ K, the conditions:

(i) ∆f (F +G) = ∆f (F ) + ∆f (G),
(ii) ∆f (FG) = ∆f (F )G+ σf (F )∆f (G) (generalized Leibniz rule).

An operator satisfying the generalized Leibniz rule is called a “σf -derivation”, and
a commutative field endowed with a σf -derivation is called a σf -differential field [10].
Therefore, under the assumption about the existence of ϕ such that Φ = (f̃ , ϕ) is an
analytic diffeomorphism, K endowed with the delta derivative ∆f is a σf -differential
field. For µ = 0, σf = σ−1

f = id and K is inversive. Though K is not inversive in
general, it is always possible to embed K into an inversive σf -differential overfield K∗
called the inversive closure of K [10]. Since σf is an injective endomorphism, it can be
extended to K∗, so that σf : K∗ → K∗ is an automorphism.

Let ρf : K∗ → K∗ be an operator defined by

ρf := σ−1
f . (8)
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Hence one gets ρf (F ) = F ◦ ρf for F ∈ K∗. It was shown in [3] that, for µ 6= 0, the
inversive closure ofKmay be constructed as the field of meromorphic functions in a finite
number of the independent variables C∗ = C ∪ {z〈−`〉s , s = 1, . . . ,m, ` > 1}, where the
new variables are related by σf as follows: z〈−k〉i = σf (z

〈−k−1〉
i ) and zi = ϕi(x, u) =

σf (z
〈−1〉
i ).

Let z := (z1, . . . , zm). Then (ρf (x), ρf (u)) = Ψ(x, z〈−1〉), where Ψ is a certain vec-
tor valued function, determined by f in (3), and the extension z = ϕ(x, u). Although the
choice of variables z is not unique, all possible choices yield isomorphic field extensions.
We extend the operator ∆f to new variables by

∆f (z〈−`〉) :=
z〈−`+1〉 − z〈−`〉

µ
, l > 1.

The extension of operator ∆f to K∗ can be made in analogy to (7). Such operator ∆f is
now a σf -derivation of K∗. A practical procedure for construction of K∗ (for µ 6= 0) is
given in [3].

Additionally, the field K∗ can be equipped with a nabla derivative operator ∇f :
K∗ → K∗ defined by

∇f (F ) :=

{
1
µ [F − ρf (F )] if µ 6= 0,

∆f (F ) if µ = 0,
(9)

where F ∈ K∗.
Note that for µ > 0, we get

(ρf ◦∆f )(F ) = ρf

(
1

µ

[
σf (F )− F

])
=

1

µ

[
F − ρf (F )

]
= ∇f (F ),

(∆f ◦ ρf )(F ) = ∆f

(
ρf (F )

)
=

1

µ

[
σf
(
ρf (F )

)
− ρf (F )

]
=

1

µ

[
F − ρf (F )

]
= ∇f (F )

and for µ = 0, ρf = id, so on homogeneous time scales, we get the following relation
between the operators ∆f and ∇f :

∇f = ρf ◦∆f = ∆f ◦ ρf . (10)

Moreover, applying the operator σf to (10), one gets

σf ◦ ∇f = ∇f ◦ σf = ∆f . (11)

The nabla derivative∇f satisfies, for all F,G ∈ K, the conditions:

(i) ∇f (F +G) = ∇f (F ) +∇f (G),
(ii) ∇f (FG) = ∇f (F )G+ ρf (F )∇f (G) (generalized Leibniz rule).
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Therefore, the operator ∇f is a “ρf -derivation”, and the commutative field K∗ endowed
with a ρf -derivation is called a ρf -differential field [10].

Similarly as in the case of the operators σf and ∆f , the more compact notations F ρf
and F∇f will be sometimes used instead of ρf (F ) and ∇f (F ).

From now on

C∗ =

{
C if µ = 0,

C ∪ {z〈−`〉| ` > 1} if µ 6= 0.

Consider the infinite set of differentials of indeterminates dC∗ = {dζi, ζi ∈ C∗} and
define E := spanK∗ dC∗. Any element of E is a vector of the form

ω =
∑
`>1

m∑
s=1

Cs` dz〈−`〉s +

n∑
i=1

Ai dxi +
∑
k>0

m∑
j=1

Bjk du
[k]
j ,

where only a finite number of coefficients Bjk and Cs` are nonzero elements of K∗.
The elements of E are called differential one-forms. Let d : K∗ → E be defined in the

standard manner:

dF :=
∑
`>1

m∑
s=1

∂F

∂z
〈−`〉
s

dz〈−`〉s +

n∑
i=1

∂F

∂xi
dxi +

∑
k>0

m∑
j=1

∂F

∂u
[k]
j

du
[k]
j . (12)

One says that ω ∈ E is an exact one-form if ω = dF for some F ∈ K∗. We will refer
to dF as to the total differential (or simply the differential) of F .

If ω =
∑
iAidζi is a one-form, where Ai ∈ K∗ and ζi ∈ C∗, one can define the

operators ∆f : E → E and σf : E → E by

∆f (ω) :=
∑
i

{
∆f (Ai) dζi + σf (Ai) d

[
∆f (ζi)

]}
(13)

and
σf (ω) :=

∑
i

σf (Ai) d
[
σf (ζi)

]
. (14)

By (13) and (14) we get

σf (ω) = ω + µ∆f (ω).

Additionally, if

ω =
∑
`>1

m∑
s=1

ω
z
〈−`〉
s

dz〈−`〉s +

n∑
i=1

ωxi
dxi +

∑
k>0

m∑
j=1

ω
u
[k]
j

du
[k]
j ,

then we have (
ω∆f

)
z
〈−`〉
s

= (ω
z
〈−`〉
s

)∆f , (15a)

(
ω∆f

)
xi

=
1

µ

m∑
s=1

(ω
z
〈−1〉
s

)σf
∂ϕs
∂xi

+ (ωxi)
∆f +

n∑
k=1

(ωxk
)σf

∂fk
∂xi

, (15b)
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(
ω∆f

)
uj

=
1

µ

m∑
s=1

(ω
z
〈−1〉
s

)σf
∂ϕs
∂uj

+ (ωuj
)∆f +

n∑
k=1

(ωxk
)σf

∂fk
∂uj

, (15c)

(
ω∆f

)
u
[k]
j

= (ω
u
[k]
j

)∆f + (ω
u
[k−1]
j

)σf , k > 1, (15d)

where ∆f (ω) =
∑
i(ω

∆f )ζi dζi, ζi ∈ C∗, (ϕ1, . . . , ϕm)T = ϕ and (f1, . . . , fn)T = f ,
and (

ωσf
)
z
〈−`〉
s

= (ω
z
〈−`〉
s

)σf , (16a)

(
ωσf

)
xi

=

m∑
s=1

(ω
z
〈−1〉
s

)σf
∂ϕs
∂xi

+ (ωxi)
σf + µ

n∑
k=1

(ωxk
)σf

∂fk
∂xi

, (16b)

(
ωσf

)
uj

=

m∑
s=1

(ω
z
〈−1〉
s

)σf
∂ϕs
∂uj

+ (ωuj
)σf + µ

n∑
k=1

(ωxk
)σf

∂fk
∂uj

, (16c)

(
ωσf

)
u
[k]
j

= (ω
u
[k]
j

)σf + µ(ω
u
[k−1]
j

)σf , k > 1, (16d)

where σf (ω) =
∑
i(ω

σf )ζi dζi, ζi ∈ C∗.
The operator σf : E → E is invertible, and the inverse operator ρf := σ−1

f : E → E
is defined by

ρf

(∑
i

Ai dζi

)
:=
∑
i

ρf (Ai) d
[
ρf (ζi)

]
(17)

for Ai ∈ K∗ and ζi ∈ C∗. Moreover, one can define∇f : E → E by

∇f (ω) :=
∑
i

{
∇f (Ai) dζi + ρf (Ai) d

[
∇f (ζi)

]}
. (18)

By (17) and (18) we get
ρf (ω) = ω − µ∇f (ω). (19)

Since (19) holds, then

∇f (ω) =
∑
i

{
∇f (Ai) dζi +

(
Ai − µ∇f (Ai)

)
d
[
∇f (ζi)

]}
,

=
∑
i

{
∇f (Ai) d

[
ζi − µ∇f (ζi)

]
+Ai d

[
∇f (ζi)

]}
,

=
∑
i

{
∇f (Ai) d

[
ρf (ζi)

]
+Ai d

[
∇f (ζi)

]}
.

Note that, in order to find the components of ωρf and ω∇f , we have to know the
formula for inverse of the map Φ. Then (ρf (x), ρf (u)) = Φ−1(x, z〈−1〉) and for k > 2,
we have ρf (u[k]) = (u[k−1] − ρf (u[k−1]))/µ = ∇f (u[k−1]), so, in the general case, one
cannot give the explicit formulas for components as it was given for components of ω∆f

and ωσf in (15) and (16).
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Proposition 2. Let T be the homogeneous time scale and F ∈ K∗. Then

∆f (dF ) = d
[
∆f (F )

]
, (20a)

σf (dF ) = d
[
σf (F )

]
, (20b)

∇f (dF ) = d
[
∇f (F )

]
, (20c)

ρf (dF ) = d
[
ρf (F )

]
. (20d)

Proof. Formulas (20a) and (20b) have been shown in [3]. Then by (10) and (20b) we get

d
[
ρf (F )

]
= (ρf ◦ σf ) d

[
ρf (F )

]
= ρf

(
d
[
(σf ◦ ρf )(F )

])
= ρf (dF ),

so (20d) holds. Next, by (10) and (20a) we have

∇f (dF ) = (ρf ◦∆f )(dF ) = ρf
(
d
[
∆f (F )

])
= d

[
(ρf ◦∆f )(F )

]
= d

[
∇f (F )

]
,

so (20c) also holds.

For one-forms, similarly as for functions, the more compact notations ω∆f and ωσf ,
ω∇f and ωρf will be used instead of ∆f (ω) and σf (ω), ∇f (ω) and ρf (ω), respectively.
The relations between ∆f and∇f operators given for functions from K∗ in (11) and (10)
hold also for one-forms.

Proposition 3. Let T be the homogeneous time scale and ω ∈ E . Then(
ω∇f

)σf = ω∆f , (21a)(
ωσf

)∇f = ω∆f , (21b)(
ω∆f

)ρf = ω∇f , (21c)(
ωρf
)∆f = ω∇f . (21d)

Proof. Note that if ω =
∑
iAi dζi, Ai ∈ K∗ and ζi ∈ C∗, then by the previous properties

we have(
ω∇f

)σf = σf

(∑
i

{
∇f (Ai) dζi + ρf (Ai) d

[
∇f (ζi)

]})
=

(∑
i

{
(σf ◦ ∇f )(Ai) d

[
σf (ζi)

]
+ (σf ◦ ρf )(Ai) d

[
(σf ◦ ∇f )(ζi)

]})
=

(∑
i

{∆f (Ai) d
(
ζi + µ∆f (ζi)

)
+Ai d

[
∆f (ζi)

]})
=

(∑
i

{
∆f (Ai) dζi + σf (Ai) d

[
∆f (ζi)

]})
= ω∆f . (22)

Additionally, similarly as in (22), one can prove that (21b), (21c) and (21d) hold.

Nonlinear Anal. Model. Control, 21(4):547–563



556 Z. Bartosiewicz et al.

4 The space of vector fields

Let E ′ be the dual vector space of E , i.e. the space of linear mappings from E to K∗. The
elements of E ′ are called the vector fields, and they are of the form

X =
∑
`>1

m∑
s=1

X
z
〈−`〉
s

∂

∂z
〈−`〉
s

+

n∑
i=1

Xxi

∂

∂xi
+
∑
k>0

m∑
j=1

X
u
[k]
j

∂

∂u
[k]
j

, (23)

where X
z
〈−`〉
s

, Xxi , Xu
[k]
j
∈ K∗. Taking ω =

∑q
`=1

∑m
s=1 Cs` dz

〈−`〉
s +

∑n
i=1Ai dxi +∑p

k=0

∑m
j=1Bjk du

[k]
j ∈ E and the vector field X ∈ E ′ of the form (23), we get

〈ω,X〉 :=

q∑
`=1

m∑
s=1

X
z
〈−`〉
s

Cs` +

n∑
i=1

Xxi
Ai +

p∑
k=0

m∑
j=1

X
u
[k]
j
Bjk. (24)

Note that though the (formal) sum (23) is infinite, 〈ω,X〉 is always a sum with only
finitely many nonzero terms in (24).

The delta-derivative X∆f and forward-shift Xσf of X ∈ E ′ may be defined uniquely
by the equations 〈

ω,X∆f
〉

=
〈
ρf (ω), X

〉∆f −
〈[
ρf (ω)

]∆f , X
〉

(25)

and 〈
ω,Xσf

〉
=
〈
ρf (ω), X

〉σf , (26)

respectively, where ω is an arbitrary one-form. Note that 〈ρf (ω), X〉 ∈ K∗, so 〈ρf (ω),
X〉σf and 〈ρf (ω), X〉∆f are well defined.

Remark 1. Note that for µ = 0, we have σf = ρf = id and

X =

n∑
i=1

Xxi

∂

∂xi
+
∑
k>0

m∑
j=1

X
u
[k]
j

∂

∂u
[k]
j

,

where Xxi , Xu
[k]
j
∈ K∗, so in (23), X

z
〈−`〉
s

= 0 for s = 1, . . . ,m and ` > 1.

In [2], we show that evaluating (25) and (26) with the elements of canonical basis (i.e.
with the elements from the set dC∗), we obtain two sets of explicit formulas that define
the coefficients of X∆f and Xσf , respectively. Note that, in order to find the components
of the vector field X∆f and Xσf , we have to know the formula for Φ−1.

Proposition 4. (See [2].) Let X ∈ E ′. Then for arbitrary ω ∈ E ,

Xσf = X + µX∆f , (27)

〈ω,X〉∆f =
〈
ω,X∆f

〉
+
〈
ω∆f , Xσf

〉
. (28)
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Note that for µ = 0, formula (27) gives Xσf = X , so σf = id.
Now let us define the backward-shift and nabla-derivative of the vector field X . The

backward-shiftXρf and nabla-derivativeX∇f ofX ∈ E ′ may be defined uniquely by the
equations 〈

ω,Xρf
〉

=
〈
ωσf , X

〉ρf (29)

and 〈
ω,X∇f

〉
=
〈
ωσf , X

〉∇f −
〈
ω∆f , X

〉
, (30)

respectively, where ω is an arbitrary one-form.

Proposition 5. Let X ∈ E ′. Then Xρf , X∇f ∈ E ′ and

Xρf = X − µX∇f , (31)

〈ω,X〉∇f =
〈
ωρf , X∇f

〉
+
〈
ω∇f , X

〉
, (32)

〈ω,X〉∇f =
〈
ω,X∇f

〉
+
〈
ω∇f , Xρf

〉
. (33)

Proof. Let X ∈ E ′. Note that 〈ω,X〉 ∈ K∗ for arbitrary ω ∈ E and

〈ω,X〉ρf = 〈ω,X〉 − µ〈ω,X〉∇f .

Then by (29) and (30), for arbitrary ω ∈ E , we get〈
ω,Xρf

〉
=
〈
ωσf , X

〉ρf =
〈
ωσf , X

〉
− µ

[〈
ω,X∇f

〉
+
〈
ω∆f , X

〉]
=
〈
ωσf − µω∆f , X

〉
− µ

〈
ω,X∇f

〉
= 〈ω,X〉 − µ

〈
ω,X∇f

〉
=
〈
ω,X − µX∇f

〉
. (34)

Hence by (34) the relation (31) holds.
Moreover, from (30) we get

〈ω,X〉∇f =
〈
ωρf , X∇f

〉
+
〈(
ωρf
)∆f , X

〉
=
〈
ωρf , X∇f

〉
+
〈
ω∇f , X

〉
for arbitrary ω ∈ E . Therefore, (32) holds. By (19) we get

〈ω,X〉∇f =
〈
ω,X∇f

〉
+
〈
ω∇f , X

〉
− µ

〈
ω∇f , X∇f

〉
and, consequently, 〈ω,X〉∇f = 〈ω,X∇f 〉+〈ω∇f , X−µX∇f 〉, so from (31) formula (33)
holds.

Proposition 6. Let X ∈ E ′. Then(
Xσf

)ρf =
(
Xρf

)σf = X, (35)(
X∇f

)σf =
(
Xσf

)∇f = X∆f , (36)(
X∆f

)ρf =
(
Xρf

)∆f = X∇f . (37)
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Proof. Let X ∈ E ′. Then for arbitrary ω ∈ E , we get〈
ω,
(
Xσf

)ρf 〉 =
〈
ωσf , Xσf

〉ρf = (ρf ◦ σf )〈ω,X〉 = 〈ω,X〉

and 〈
ω,
(
Xρf

)σf
〉

=
〈
ωρf , Xρf

〉σf = (σf ◦ ρf )〈ω,X〉 = 〈ω,X〉.

Therefore, (35) holds.
Additionally, by (26), (28), (30) and (11) we have〈

ω,
(
X∇f

)σf
〉

=
〈
ωρf , X∇f

〉σf =
[
〈ω,X〉∇f −

〈(
ωρf
)∆f , X〉

]σf

= 〈ω,X〉∆f −
〈
ω∇f , X

〉σf = 〈ω,X〉∆f −
〈
ω∆f , Xσf

〉
=
〈
ω,X∆f

〉
and 〈

ω,
(
Xσf

)∇f
〉

=
〈
ωσf , Xσf

〉∇f −
〈
ω∆f , Xσf

〉
= 〈ω,X〉∆f −

〈
ω∆f , Xσf

〉
=
〈
ω,X∆f

〉
for arbitrary ω ∈ E , so (36) holds. Similarly, by (25), (29), (33) and (10) we have〈

ω,
(
X∆f

)ρf 〉 =
〈
ωσf , X∆f

〉ρf =
[
〈ω,X〉∆f −

〈
ω∆f , X

〉
]ρf

= 〈ω,X〉∇f −
〈
ω∆f , X

〉ρf = 〈ω,X〉∇f − 〈ω∇f , Xρf 〉
=
〈
ω,X∇f

〉
and 〈

ω,
(
Xρf

)∆f
〉

=
〈
ωρf , Xρf

〉∆f −
〈
ω∇f , Xρf

〉
= 〈ω,X〉∇f −

〈
ω∇f , Xρf

〉
=
〈
ω,X∇f

〉
for arbitrary ω ∈ E . Therefore, (37) holds.

Now let us present the formulas for components of the backward shift Xρf and nabla
derivative X∇f of an arbitrary vector field X .

Proposition 7. For µ > 0, we have

X =
∑
`>1

m∑
s=1

X
z
〈−`〉
s

∂

∂z
〈−`〉
s

+

n∑
i=1

Xxi

∂

∂xi
+
∑
k>0

m∑
j=1

X
u
[k]
j

∂

∂u
[k]
j

,

Xρf =
∑
`>1

m∑
s=1

(
Xρf

)
z
〈−`〉
s

∂

∂z
〈−`〉
s

+

n∑
i=1

(
Xρf

)
xi

∂

∂xi
+
∑
k>0

m∑
j=1

(
Xρf

)
u
[k]
j

∂

∂u
[k]
j

,

X∇f =
∑
`>1

m∑
s=1

(
X∇f

)
z
〈−`〉
s

∂

∂z
〈−`〉
s

+

n∑
i=1

(
X∇f

)
xi

∂

∂xi
+
∑
k>0

m∑
j=1

(
X∇f

)
u
[k]
j

∂

∂u
[k]
j

,
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where(
Xρf

)
z
〈−`〉
s

= ρf (X
z
〈−`+1〉
s

) for ` > 2, (38a)(
Xρf

)
z
〈−1〉
s

=

n∑
i=1

ρf

(
∂ϕs
∂xi

Xxi

)
+

m∑
k=1

ρf

(
∂ϕs
∂uk

Xuk

)
, (38b)

(
Xρf

)
xi

= ρf (Xxi
) + µ

n∑
j=1

ρf

(
∂fi
∂xj

Xxj

)
+ µ

m∑
k=1

ρf

(
∂fi
∂uk

Xuk

)
, (38c)(

Xρf
)
u
[k]
j

= ρf (X
u
[k]
j

) + µρf (X
u
[k+1]
j

) for k > 0 (38d)

and (
X∇f

)
z
〈−`〉
s

=
1

µ

(
X
z
〈−`〉
s
− ρf (X

z
〈−`+1〉
s

)
)

for ` > 2, (39a)

(
X∇f

)
z
〈−1〉
s

=
1

µ

(
X
z
〈−1〉
s
−

n∑
i=1

ρf

(
∂ϕs
∂xi

Xxi

)
−

m∑
k=1

ρf

(
∂ϕs
∂uk

Xuk

))
, (39b)

(
X∇f

)
xi

= ∇f (Xxi
)−

n∑
j=1

ρf

(
∂fi
∂xj

Xxj

)
−

m∑
k=1

ρf

(
∂fi
∂uk

Xuk

)
, (39c)

(
X∇f

)
u
[k]
j

= ∇f (X
u
[k]
j

)− ρf (X
u
[k+1]
j

) for k > 0. (39d)

For µ = 0, one gets

X =

n∑
i=1

Xxi

∂

∂xi
+
∑
k>0

m∑
j=1

X
u
[k]
j

∂

∂u
[k]
j

, Xρf = X,

X∇f =

n∑
i=1

(
X∇f

)
xi

∂

∂xi
+
∑
k>0

m∑
j=1

(
X∇f

)
u
[k]
j

∂

∂u
[k]
j

,

where

(
X∇f

)
xi

= ∇f (Xxi
)−

n∑
j=1

∂fi
∂xj

Xxj
−

m∑
k=1

∂fi
∂uk

Xuk
, (40a)

(
X∇f

)
u
[k]
j

= ∇f (X
u
[k]
j

)−X
u
[k+1]
j

for k > 0. (40b)

Proof. Let µ > 0 and s = 1, . . . ,m. Taking ω = dz
〈−`〉
s , ` > 2, from (29) one gets(

Xρf
)
z
〈−`〉
s

=
〈

dz〈−`〉s , Xρf
〉

=
〈

dz〈−`+1〉
s , X

〉ρf
= (X

z
〈−`+1〉
s

)ρf = ρf (X
z
〈−`+1〉
s

),
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and for ω = dz
〈−1〉
s , we have(
Xρf

)
z
〈−1〉
s

= 〈dzs, X〉ρf = 〈dϕs, X〉ρf

= ρf

(
n∑
i=1

∂ϕs
∂xi

Xxi +

m∑
k=1

∂ϕs
∂uk

Xuk

)

=

n∑
i=1

ρf

(
∂ϕs
∂xi

Xxi

)
+

m∑
k=1

ρf

(
∂ϕs
∂uk

Xuk

)
.

Similarly, for ω = dxi, i = 1, . . . , n, from (29) one gets(
Xρf

)
xi

=
〈
dσf (xi), X

〉ρf =
〈
d
(
xi + µfi(x, u)

)
, X
〉ρf

= ρf (Xxi) + µ

n∑
j=1

ρf

(
∂fi
∂xj

Xxj

)
+ µ

m∑
k=1

ρf

(
∂fi
∂uk

Xuk

)
,

and for ω = du
[k]
j , j = 1, . . . ,m, k > 0, we have(
Xρf

)
u
[k]
j

=
〈
dσf

(
u

[k]
j

)
, X
〉ρf =

〈
d
(
u

[k]
j + µu

[k+1]
j

)
, X
〉ρf

= ρf (X
u
[k]
j

) + µρf (X
u
[k+1]
j

).

Hence the components of Xρf satisfy (38). Using (31) given in Proposition 5, we get
X∇f = (X−Xρf )/µ for µ > 0. Hence we obtain the formulas for components ofX∇f ,
i.e. (39).

Let now µ = 0. For ω = dxi, i = 1, . . . , n, from (30) one gets(
X∇f

)
xi

= 〈dxi, X〉∇f −
〈
dx∆

i , X
〉

= ∇f (Xxi
)−

n∑
j=1

∂fi
∂xj

Xxj −
m∑
k=1

∂fi
∂uk

Xuk
,

and for ω = du
[k]
j , j = 1, . . . ,m, k > 0, we have(

X∇f
)
u
[k]
j

=
〈
du

[k]
j , X

〉∇f −
〈
du

[k+1]
j , X

〉
= ∇f (X

u
[k]
j

)−X
u
[k+1]
j

.

Hence, for µ = 0, the components of X∇f satisfy (40).

Corollary 1. Let µ = 0. Then the nabla derivative of the vector field X equals the delta
derivative of X , i.e. X∇f = X∆f . Moreover, if x∆ = f(x) and f = (f1, . . . , fn)T, then
X∇f = X∆f = LfX , where

LfX = [f,X] =

n∑
i=1

(
n∑
j=1

∂Xxi

∂xj
fj −

n∑
j=1

∂fi
∂xj

Xj

)
∂

∂xi
.
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Proof. Note that for µ = 0, σf = ρf = id. Let X ∈ E ′. From (36) or (37) it follows that
in this case, X∇f = X∆f . Moreover, when additionally x∆ = f(x), by (40a) we get

(
X∇f

)
xi

= ∇f (Xxi
)−

n∑
j=1

∂fi
∂xj

Xxj
.

Then by (7) and (9) we get∇f (Xxi
) =

∑n
j=1(∂Xxi

/∂xj)fj and, consequently, X∇f =∑n
i=1(

∑n
j=1(∂Xxi

/∂xj)fj −
∑n
j=1(∂fi/∂xj)Xj)(∂/∂xi) = LfX .

We show below on the simple example how to compute Xρf , X∇f and X∇
2
f .

Example. Consider the system described by

x∆
1 = x2

2, x∆
2 = u.

For µ > 0, the system can be rewritten in the form (4), i.e.

xσ1 = x1 + µx2
2,

xσ2 = x2 + µu.
(41)

We shall need x2 and xσ2 are different than 0, so we define the subset U of R3 that
satisfies the following inequalities:

x2 6= 0, x2 + µu 6= 0.

Then the inversive closure ofK can be chosen as the field of meromorphic functions in
a finite number of variables x1, x2, u[k], z〈−`〉, k > 0, ` > 1, where z〈−1〉 = σ−1

f (z) and
z〈−`〉 = σ−1

f (z〈−`+1〉). We construct the field extension in two different ways (choosing
z as u or x1) and compute Xρf , X∇f , X∇

2
f using the formulas given in Proposition 7.

Let X = ∂/∂u be an element of E ′. Then Xz〈−`〉 = Xx1
= Xx2

= Xu[k] = 0, ` > 1,
k > 1, and Xu = 1.

Case 1: z = u. By (38) one gets

Xρf =

{
∂

∂z〈−1〉 + µ ∂
∂x2

+ ∂
∂u for µ > 0,

∂
∂u for µ = 0

and by (39)

X∇f =

{
− 1
µ

∂
∂z〈−1〉 − ∂

∂x2
for µ > 0,

− ∂
∂x2

forµ = 0.

Moreover, by (39) we have

X∇
2
f = (X∇f )∇f =

{
1
µ2

∂
∂z〈−2〉 − 1

µ2
∂

∂z〈−1〉 + 2(x2 − µz〈−1〉) ∂
∂x1

for µ > 0,

2x2
∂
∂x1

for µ = 0.

Nonlinear Anal. Model. Control, 21(4):547–563



562 Z. Bartosiewicz et al.

Case 2: z = x1. By (38) one gets

Xρf = µ
∂

∂x2
+

∂

∂u

and by (39)

X∇f = − ∂

∂x2
.

Moreover, by (39) we have

X∇
2
f =

(
X∇f

)∇f =

{
2ρf (x2) ∂

∂x1
for µ > 0,

2x2
∂
∂x1

for µ = 0,

where ρf (x2) satisfies the following relation: µ(ρf (x2))2 = x1 − z〈−1〉, and the in-
equality µ(ρf (x2))2 = x1 − z〈−1〉 > 0 follows from the first equation of the considered
system.

5 Conclusions

The paper may be understood as continuation of papers [2, 3, 4], focused on the devel-
opment of algebraic tools that allow to study the properties of nonlinear control systems,
defined on time scales. In this paper, we have extended the backward shift and nabla
derivative operators, defined by the control system on homogeneous time scale, for one-
forms and vector fields, and proved a number of their properties. The operator of nabla
derivative (applied to the vector fields) is useful tool. In future studies, the nabla derivative
operator can be applied, for instance, in computation of the accessibility distribution
and checking accessibility property of the system, defined on time scales, extending the
results for nonlinear continuous-time systems from [15]. In the continuous-time case, the
nabla derivative is equal to the delta derivative, whereas in the discrete-time case the two
derivatives are different. The unification aspect of time scale approach entails considerable
simplification in the software development on NLControl website [5].
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