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Abstract. Constructing chaotic systems tailored for each particular real-world application has been
a long-term research desideratum. We report a solution for this problem based on the concept of
relative motion. We investigate the periodic motion on a closed contour of a coordinate frame in
which a chaotic system evolves. By combining these two motions (periodic on a close contour
and chaotic) new customized shape trajectories are acquired. We demonstrate that these trajectories
obtained in the stationary frame are also chaotic and, moreover, conserve the Lyapunov exponents
of the initial chaotic system. Based on this finding, we developed an innovative method to construct
new chaotic systems with customized shapes, thus fulfilling the requirements of any particular
application of chaos.
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1 Introduction

Chaos as a fascinating nonlinear phenomenon has been intensively investigated in the
last decades within diverse and multidisciplinary scientific communities. Starting with
the initial effort to identify chaos in physical, mathematical, or even social systems, the
research focus is moving more and more towards real-life chaos applications in a wide
variety of domains including cryptology and communications [1], flow dynamics and
liquid mixing [12], biomedical analysis [7], complex system optimization and prediction
[8,17], etc. Solving practical tasks requires, in many circumstances, the need to construct
new chaotic systems tailored specifically for every single application.

In order to highlight the need of a methodology for developing customized chaotic
systems, we present a relevant example: generating 2D or 3D chaotic trajectories, unpre-
dictable for external observers (e.g. enemies), for autonomous mobile robots [3, 16] or
unmanned aerial vehicles [20,21] accomplishing perimeter patrolling tasks. To solve this
problem, two strategies may be employed. The first method is to find an almost similar
perimeter shape within the vast collection of already proven chaotic systems and adjust
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it using simple affine transformations. The second method requires the construction of
a new chaotic system suitable for the considered application. While the first strategy
can be efficiently used only for a small amount of perimeter shapes, a generic method
belonging to the second strategy type to generate tailored chaotic trajectories appears to
be the most appropriate line of attack.

This paper aims to generalize to the n-dimensional context and for an arbitrary chosen
chaotic system, the method we developed for a particular case of a Henon system evolving
in a mobile frame that pursues a 2D closed contour in a fixed referential frame [2]. For
this endeavor, we started with the analysis of a general n-dimensional mobile coordinate
frame in which a known chaotic system evolves. If this frame is moving with a finite
velocity along a closed contour marked in a stationary n-dimensional frame, we observed
that a brand-new chaotic system was constructed. As a remarkable fact, we find that
the Lyapunov exponents are conserved during this transformation even the new-type
trajectories have other shapes. Practically speaking, an arbitrarily-elected n-dimensional
closed contour is chaotified with the means of kinematic relative motion using a given
chaotic system. After offering the novel generic methodology, we exemplify and analyze
it for two relevant 2D and 3D cases.

The rest of the paper is organized as follows. Section 2 provides the theoretical sup-
port for our methodology, demonstrating that the newly obtained trajectories are indeed
chaotic. In Section 3, we present the overall methodology for obtaining customized chaotic
shapes, accompanied by two illustrative examples, covering both continuous and discrete
time systems, described in Section 4. Last section outlines the conclusions and final
remarks.

2 Theoretical background

There has been much controversy regarding the proper definition of chaotic systems.
Numerous definitions had been proposed, none of them receiving unanimous support.
However, the definitions proposed by Kellert [9], Devaney [4], Smith [14] or Strogatz [15]
are widely considered to be the most influential in the field. In what follows, due to
its practicability [5], we will rely on Strogatz’s definition, which states that a dynamic
deterministic system is chaotic if it displays aperiodic long-term behavior exhibiting
sensitive dependence on initial conditions. In other words, the trajectory of a chaotic
system must not converge to fixed points, periodic or quasi-periodic orbits, and two nearby
trajectories diverge exponentially fast.

The concept that quantitatively and qualitatively reflects the ‘sensitivity on initial con-
ditions’ feature of chaotic systems is without doubts the Lyapunov spectrum [18]. Accord-
ingly, the chaotic system definition can be rewritten based on three conditions, as follows:

Definition 1. A dynamical system is chaotic if it exhibits the following characteristics:
(a) the system is deterministic, any random component being forbidden;
(b) the trajectories are confined to a bounded region to avoid the trivial case of orbits

escaping to infinity; and
(c) at least one of the system’s Lyapunov exponents is positive.
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Figure 1. The context in a 3D space.

Considering these three characteristics of any chaotic system, we will center our
theoretical framework on a lemma representing the basis of our method. But, first of all,
let us depict the context. We assume an n-dimensional Euclidean space Rn, where two
Cartesian coordinate systems coexist. The first coordinate frame is considered to be fixed
and is denoted by F . The other one (F ′) is mobile, its motion inside F being characterized
by two specifications: a) the originO′ of the mobile frame describes a periodic motion by
sliding on an arbitrary closed contour C established inside F ; and b) during this motion,
the axes corresponding to F ′ frame remain parallel and with the same orientation as the
corresponding F axes (the motion of the frame F ′ inside F is a pure translation). An
explanatory sketch for the 3D case is presented in Fig. 1.

In what follows, for notational simplicity, the variables related to the mobile frame will
be denoted with prime symbols, while the variables in the fixed frame will be symbolized
without prime.

In [2], we proved that, in the particular case of the Henon chaotic system evolving
in a mobile frame moving on an arbitrary 2D closed contour, the obtained compound
trajectory is also chaotic and, moreover, that the Lyapunov exponents are preserved. In
order to demonstrate the general case, we will pursue the same line of reasoning. The
demonstration proceeds in two steps. First, we will prove that the Lyapunov exponents of
a generic chaotic system will be conserved through the coordinate system change. Then
we show, based on the results obtained in the first step, that the new system is indeed
chaotic.

The time evolution of two infinitesimally close trajectories of a dynamical system
can be described on each dimension x of the state space using the exponential orbital
divergence depicted by the following equation:∣∣∆x(t)

∣∣ ≈ eλxt
∣∣∆x(0)

∣∣, (1)
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where λx is a parameter known as Lyapunov exponent or Lyapunov characteristic expo-
nent and, based on (1), can be defined as

λx = lim
t→∞

lim
∆x(0)→0

1

t
ln

∣∣∣∣∆x(t)

∆x(0)

∣∣∣∣. (2)

It is worth mentioning that (2) is valid in both continuous and discrete time domains. In
an n-dimensional space, there will be n Lyapunov exponents, one for each space dimen-
sion, forming the Lyapunov spectrum {λ1, λ2, . . . , λn} of the dynamical system under
investigation, probably the most useful mean for dynamically diagnosing the chaotic
systems.

Lemma. Let E ⊆ Rn be an n-dimensional Euclidean space with its fixed Cartesian
coordinate frame F , and let C be a chosen closed contour inside this referential. Now
we construct F ′ to be a mobile coordinate frame with its origin O′ sliding on C in
a translational periodic motion (axes of F ′ remain parallel and with the same orien-
tation as corresponding axes of F ). If S′ is an n-dimensional chaotic system evolving
in F ′ with its set of Lyapunov exponents Λ′ = {λ′1, λ′2, . . . , λ′n}, then the combined
evolution inside fixed frame F preserves all Lyapunov exponents of the chaotic system
Λ = {λ1, λ2, . . . , λn} = Λ′.

Proof. We start the proof from the compound vector equation of motion

~r(t) = ~r ′(t) + ~rO′(t), (3)

where ~r(t) and ~r ′(t) are the position vectors corresponding to the tmoment in time in the
fixed and the mobile frames, respectively, and ~rO′(t) is the position vector of the origin of
F ′ inside F . Equation (3) can be decomposed for an arbitrary axis x of the n-dimensional
space as

x(t) = x′(t) + xO′(t). (4)

Now, let us calculate the displacement of two trajectories on x axis at a given moment
in time t:

∆x(t) = x2(t)− x1(t)

=
(
x′2(t) + xO′(t)

)
−
(
x′1(t) + xO′(t)

)
= ∆x′(t). (5)

With this result in mind, we can write the formula of the Lyapunov exponent corre-
sponding to the arbitrarily chosen axis x:

λx = lim
t→∞

lim
∆x(0)→0

1

t
ln

∣∣∣∣∆x(t)

∆x(0)

∣∣∣∣
= lim
t→∞

lim
∆x(0)→0

1

t
ln

∣∣∣∣∆x′(t)∆x′(0)

∣∣∣∣ = λ′x. (6)

Result (6) is valid for all the n dimensions of the considered state space and, as
a consequence, the Lyapunov spectrumΛ = {λ1, λ2, . . . , λn} is preserved (Λ = Λ′).

Let us observe that this lemma is applicable for either continuous or discrete systems.
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Theorem. Let E ⊆ Rn be an n-dimensional Euclidean space with its fixed Cartesian
coordinate frame F , and let C be a chosen closed contour inside this referential. Now
we construct F ′ to be a mobile coordinate frame with its origin O′ sliding on C in
a translational periodic motion (axes of F ′ remain parallel and with the same orientation
as corresponding axes of F ). If S′ is an n-dimensional chaotic system evolving in F ′, then
the trajectories observed in the fixed frame F will correspond to a new chaotic system (S)
having the same Lyapunov spectrum as the original chaotic system S′.

Proof. We will start the demonstration by formalizing the system S in both continuous
and discrete time domains. In continuous time domain, the newly obtained chaotic sys-
tem S will be described as follows:

dX ′(t)

dt
= G

(
X ′(t), t

)
,

X(t) = X ′(t) +H(t),

(7)

where the first equation describes an autonomous chaotic system evolving in F ′, the
second equation describes the periodic motion of F ′ inside F , X ′(t) ∈ V ′ ⊂ Rn
represents the coordinates of the trajectory point inside frame F ′, V ′ is a bounded volume
in F ′ andH(t) = H(t+T ) is a periodic function that describes the motion ofO′ inside F
along the closed contour C.

Similarly, in the discrete time domain, the differential equations (7) will be changed
into recurrent equations as follows:

X ′
k+1 = G(X ′

k, k),

Xk = X ′
k +H(k),

(8)

where X ′
k ∈ V ′ ⊂ Rn represents the coordinates of the trajectory point inside frame F ′

and H(k) = H(k + τ) is a periodic discrete function that describes the motion of O′

inside F along the closed contour C.
In order to demonstrate that the new system obtained in the fixed frame F is chaotic,

we will prove one-by-one the three chaotic system characteristics described by the
definition:

(a) The system is deterministic. In both continuous- (7) and discrete-time system (8)
variants the newly obtained chaotic system does not contain any sort of random variables,
the state of the system at any given moment in time t being computed based only on the
initial state of the system using deterministic functions. Thus, the new trajectories have
only a deterministic nature.

(b) The trajectories are confined in a bounded region of the space. Let us have
a look at the second equation from (7) and (8), respectively. We know that each of the
n-coordinates included in the vector X ′ are bounded (S′ is chaotic so its orbits are
bounded) and the function H , which represents the motion on a closed contour is also
bounded, so the result (vector X) can only be bounded. If the original chaotic system
evolves in the bounded region V ′ of the n-dimensional space, we can obtain a bounded
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region in which the new system (S) evolves by considering the limits of each coordinates.
For an arbitrary coordinate x, we will have x ∈ [x′min + xC,min, x

′
max + xC,max], where

x′min and x′max are the inferior and superior limit of the coordinate x′ for the original
chaotic system S′ inside F ′ and xC,min and xC,max are the limits of coordinate x for the
closed contour C inside F .

(c) At least one Lyapunov exponent is positive. Considering the results of the lemma
proved before, the entire spectrum of Lyapunov exponents is conserved in the case of
a translational motion on a close contour of the frame F ′ inside a fixed frame F . Because
S′ is a chaotic system at least one its Lyaponov exponents is positive. Coupling these
two facts, we may conclude that at least one Lyapunov exponent of the newly obtained
system S is positive.

By proving all the three conditions for a system to be chaotic, we can conclude that
the newly obtained system S is indeed chaotic.

Observation 1. The converse theorem is also true, that is: If the orbit of a proved chaotic
system S can be decomposed in two components: a) a periodic motion on a closed
contour C described in the fixed coordinate system F ; and b) an orbit of a system S′

in a mobile frame F ′, with F ′ traveling along C in a translational motion; then the S′

system is also chaotic and preserves the Lyapunov exponents corresponding to S.

The proof of the converse theorem is immediate, from the definition adopted for the
chaotic systems and the already proved lemma, by following the same line of thinking as
in the case of the mentioned theorem.

It is worthwhile to remark that the converse theorem may represent a particularly
useful tool in proving the chaotic behavior of new systems using the mentioned decom-
position of trajectories.

Other three useful observations about the theorem presented above are only listed,
their demonstration being immediate:

Observation 2. The theorem is applicable for both continuous- and discrete-time sys-
tems.

Observation 3. The n-dimensional closed contour C may have any shape, from simple
polygons to complex, self-intersecting curves.

Observation 4. Any periodic or asymptotically periodic orbit of S′ is converted into
periodic or asymptotically periodic orbits of S, respectively.

3 Proposed method

In order to obtain customized chaotic shapes using the relative motion concept, in our
view, a series of seven steps must be followed:

Step 1. Select the dimension of the space. By knowing the dimensionality of the state
space, where the trajectory that must be chaotified exists, we will select this parameter as
the dimension n of the space.
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Step 2. Choose the shape of the closed curve C. Analyzing the trajectory in the state
space that needs to be chaotified, we will approximate it using a closed curve. The simplest
way to perform this step is to use either a polygonal shape or a closed curve obtained by
interpolating a set of points.

Step 3. Choose an already proven chaotic system. The initial chaotic system selection
is governed by the shape of the attractor, its attracting basin and its intrinsic parameters
(e.g. Lyapunov exponents). Basically, any known chaotic system evolving in the chosen
n-dimensional space can be a potential candidate.

Step 4. Adjust the orbit of the chaotic shape if necessary using affine transformations.
In order to control the region around the closed curve C, where the chaotic trajectory will
evolve, we can fine-tune the initial chaotic system by applying tailored affine transforma-
tions. This step can be accomplished by choosing the n-dimensional vicinity around an
arbitrary point of the closed curve, where the chaotic system may take values.

Step 5. Select an initial point of the trajectory in the mobile frame F ′ for which the
orbit of S′ will be chaotic. Equilibrium points and points on periodic orbits must be strictly
avoided.

Step 6. Select the period T . Essentially, this parameter characterizes the speed with
which the closed curve C is covered. Its selection is affected by the speed of initial
chaotic system evolution inside the mobile frame and can be selected based on expertise
or simulations, in conjunction with step 7.

Step 7. Construct the compound trajectories. Having all the necessary settings com-
pleted in previous steps, we can construct the new chaotic system and implicitly its
trajectories using the relative motion concept using either (7) or (8).

4 Illustrative case studies

We illustrate the proposed methodology by two case studies: i) one in discrete-time inside
the two-dimensional space based on the 2D logistic map [19]; and ii) one in continuous-
time inside the three-dimensional space using the classical Lorenz chaotic system [11].

4.1 Case study using 2D logistic map

We adopt a variant of the 2D logistic map [10, 19] to be the primary source of chaotic
behavior. This chaotic system is generated using the following set of equations:

x̃′n+1 = r(3ỹ′n + 1)x̃′n(1− x̃′n),

ỹ′n+1 = r(3x̃′n+1 + 1)ỹ′n(1− ỹ′n),
(9)

where x̃′i and ỹ′i are the Cartesian coordinates of the ith point of the trajectory in the
mobile frame F ′, while the parameter r must take values in the interval [1.11, 1.19]
to obtain the much-needed chaotic behavior [19]. Choosing r = 1.19 and the initial
point (0.8909; 0.3342), we obtained the attractor presented in Fig. 2, while its bifurcation
diagram (Fig. 3) confirms the chaotic dynamics for r ∈ [1.11, 1.19].
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Figure 2. 2D Logistic map. Figure 3. Bifurcation diagram.
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Figure 5. The new chaotic attractor (5 laps for
T=196).

We also assume a closed contour C inside the fixed frame F with a pentagonal shape
(Fig. 4) having the following vertices in Cartesian coordinates: (−2,−4), (4, 0), (2, 2),
(4, 4), and (−4, 4). This contour will be covered with a periodicity of T time samples.
In order to obtain the chaotic system S′ mentioned in our methodology, we adapted the
system described by (9) using the following affine transformation:

x′n = 1.8 x̃′n − 0.9,

y′n = 1.8 ỹ′n − 0.9,
(10)

that will force x′n and y′n to vary in the interval [−0.9, 0.9]. By this, the chaotic system S′

given by (9) coupled with (10) will provide a point inside the square vicinity presented
in Fig. 4 for each considered point of the closed contour. Having the chaotic system S′

and the closed contour C, by using our method we will obtain the trajectory described in
Fig. 5.

The obtained trajectory that chaotifies the closed contourC depends on the period T as
presented in Fig. 6. As a supplementary proof of the chaotic nature of the newly obtained
system S, we present the bifurcation diagram for T = 16 (Fig. 7), that shows the chaotic
behavior for the same values of parameter r (r ∈ [1.11, 1.19]).
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Figure 7. The bifurcation diagram of the new
chaotic system (T = 16).
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Figure 8. Closed 3D contour obtained by
interpolating the set of seven points.
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Figure 9. The new chaotic attractor and its
guiding contour.

4.2 Case study using Lorenz system

In order to exemplify how our methodology works in the 3D case, we established a set
of seven points having the following Cartesian coordinates: (0, 0,−1), (−3.72,−6.45,
−0.66), (−4.71, 8.16,−0.33), (10, 0, 0), (−4.71,−8.16, 0.33), (−3.72, 6.45, 0.66) and
(0, 0, 1). We used natural cubic spline interpolation method [13] to obtain the guiding
closed contour C (Fig. 8). The original chaotic system used in this example was the well
known Lorenz system [11], which was adjusted by a combined affine transform [6] having
the following transformation matrix in homogeneous coordinates:

T =


0.05 0 0 −0.51

0 0.025 0 −0.52
0 0 0.016 −24.42
0 0 0 1

 (11)

The resulted attractor is presented in Fig. 9.

Nonlinear Anal. Model. Control, 21(3):413–423



422 D.-I. Curiac, C. Volosencu

−100
−50

0
50

100

−60
−40

−20
0

20
40

60
−2

−1

0

1

2

xy

z

Figure 10. The chaotic attractor obtained by translating the attractor from Fig. 9 along a circle (one lap).

A chaotic system obtained through our methodology can be further used as an initial
chaotic system for the same methodology. In Fig. 10, we present the chaotic attractor
obtained by translating the attractor from Fig. 9 along a circle of radius 50 situated in the
xOy-plane, with the center in the origin of the fixed frame.

5 Conclusions

We have demonstrated that new chaotic shapes can be obtained using the relative motion
concept in a simple and efficient manner. We started with the periodic motion on a closed
contour of a reference frame in which an already-known chaotic system evolves. We
proved that the compound trajectories obtained in the fixed frame are also chaotic and,
furthermore, preserve the chaotic properties of the original chaotic system. Based on this
result, we developed an original method to create new chaotic systems with customized
shapes. Practically speaking, a seed of chaos (the original system) can bloom into an
infinite variety of new chaotic systems based on applications’ needs.
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