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Abstract. In this paper, for the BCF model describing crystal surface growth, the optimal control
problem is considered, the existence of optimal solution is proved and the optimality system is
established.
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1 Introduction

In past decades, the optimal control of distributed parameter system had been received
much more attention in academic field. A wide spectrum of problems in applications
can be solved by methods of optimal control, such as chemical engineering and vehicle
dynamics. Modern optimal control theories and applied models are not only represented
by ODE, but also by PDE, especially nonlinear parabolic equation. Many papers have
already been published to study the control problems of nonlinear parabolic equations,
for example, [1, 3, 8, 11, 13, 14, 16] and so on.

In this paper, we consider the optimal control problem for the BCF model

∂u

∂t
+ auxxxx + µ

(
ux

1 + |ux|2

)
x

= 0, (x, t) ∈ Ω × (0, T ), (1)

where a and µ are positive constants, Ω = (0, 1). On the basis of physical considerations,
equation (1) is supplemented with the boundary value conditions

ux(0, t) = ux(1, t) = uxxx(0, t) = uxxx(1, t) = 0 (2)
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and the initial value condition

u(x, 0) = u0(x) ∀x ∈ Ω. (3)

Equation (1) was presented by Johnson et al. [7] for describing the process of growing
of a crystal surface on the basic of the BCF theory due to Burton et al. [2]. Here u(x, t)
denotes a displacement of height of surface from the standard level (u = 0) at a position
x ∈ Ω. The term auxxxx in equation (1) denotes a surface diffusion of adatoms, which is
caused by the difference of the chemical potential. In the mean time, µux/(1 + |ux|2g)x
denotes the effect of surface roughening.

During the past years, many authors have paid much attention to equation (1). It was
Johnson et al. [7] who presented this equation for describing the process of growing of
a crystal surface on the basis of the BCF theory. Rost and Krug [10] studied the unstable
epitaxy on singular surfaces using equation (1) with a prescribed slopedependent surface
current. In their papers, they derived scaling relations for the late stage of growth, where
power law coarsening of the mound morphology is observed. In [9], in the limit of weak
desorption, Pierre-Louis et al. derived equation (1) for a vicinal surface growing in the
step flow mode. This limit turned out to be singular, and nonlinearities of arbitrary order
need to be taken into account.

Recently, Fujimura and Yagi [4, 5] also considered equation (1). In their papers,
the uniqueness of local solutions and the global solutions were obtained, a dynamical
system determined from the initial-boundary value problem of the model equation was
constructed, and the asymptotic behavior of trajectories of the dynamical system was also
considered. In [6], Grasselli, Mola and Yagi showed that equation (1) endowed with no-
flux boundary conditions generates a dissipative dynamical system under very general
assumptions on ∂Ω on a phase-space of L2-type. They proved that the system possesses
a global as well as an exponential attractor. In addition, if ∂Ω is smooth enough, they
showed that every trajectory converges to a single equilibrium by means of a suitable
Lojasiewicz–Simon inequality. In [15], based on the iteration technique for regularity
estimates and the classical existence theorem of global attractors, Zhao and Liu proved the
existence of global attractor for equation (1) on some affine space of Hk (0 6 k < +∞).

In this article, we are concerned with the distributed optimal control problem

min J(u,w) =
1

2
‖Cu− zd‖2S +

δ

2
‖w‖2L2(Q0)

subject to

∂u

∂t
+ auxxxx + µ

(
ux

1 + |ux|2

)
x

= Bw, (x, t) ∈ Ω × (0, T ),

ux(0, t) = ux(1, t) = uxxx(0, t) = uxxx(1, t) = 0,

u(0) = u0,

(4)

where the operator C is called the observer, S is a real Hilbert space of observations. The
control target is to match the given desired state zd in L2-sense by adjusting the body
force w in a control volume Q0 ⊆ Q = Ω × (0, T ) in the L2-sense.
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Now, we introduce some notations that will be used throughout the paper. For fixed
T > 0, let V = H2

E(0, 1) = {y: y ∈ H2(0, 1), yx|x=0,1 = 0}, U = H1(0, 1) and
H = L2(0, 1), let V ∗, U∗ and H∗ are dual spaces of V , U and H . Then we obtain

V ↪→ U ↪→ H = H∗ ↪→ U∗ ↪→ V ∗.

Clearly, each embedding being dense.
The extension operator B ∈ L(L2(Q0), L2(0, T ;H)), which is called the controller

introduced as

Bq =

{
q, q ∈ Q0,

0, q ∈ Q \Q0.

We supply H with the inner product (·, ·) and the norm ‖·‖, and we define a space
W (0, T ;V ) as

W (0, T ;V ) =
{
y: y ∈ L2(0, T ;V ), yt ∈ L2(0, T ;V ∗)

}
,

which is a Hillbert space endowed with common inner product.
This paper is organized as follows. In Section 2, we prove the existence and unique-

ness of the weak solution to problem (1)–(3) in a special space and discuss the relation
among the norms of weak solution, initial value and control item. In Section 3, we
consider the optimal control problem of BCF model and prove the existence of opti-
mal solution. In Section 4, the optimality conditions for BCF model is showed and the
optimality system is derived.

In the following, the letters c, ci (i = 1, 2, . . . ) will always denote positive constants
different in various occurrences.

2 Existence and uniqueness of weak solutions

In this section, we prove the existence and uniqueness of weak solution for problem (4),
where Bw ∈ L2(0, T ;H) and a control w ∈ L2(Q0).

In the following Definition 1, we give the definition of the weak solution for prob-
lem (4) in the space W (0, T ;V ).

Definition 1. For all η ∈ V , t ∈ (0, T ), a function u ∈ W (0, T ;V ) is called a weak
solution to problem (4) if(

d

dt
u, η

)
V ∗,V

+ a(uxx, ηxx)− µ
(

ux
1 + |ux|2

, ηx

)
= (Bw, η)(

u(0), η
)

= (u0, η).

Here we supply V and V ∗ with the inner product

(v, w)V ∗,V =

∫
Ω

vw dx ∀v ∈ V ∗, w ∈ V.
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We shall give Theorem 1 on the existence and uniqueness of weak solution to prob-
lem (4) and prove it.

Theorem 1. Assume that u0 ∈ V , Bw ∈ L2(0, T ;H), then problem (4) admits a unique
weak solution u ∈W (0, T ;V ).

Proof. The Galerkin method is applied to the proof.
Denote A = (−∂2x)2 as a differential operator, let {ψi}∞i=1 denote the eigenfunctions

of the operator A. For n ∈ N , define the discrete ansatz space by

Vn = span{ψ1, ψ2, . . . , ψn} ⊂ V.

Performing the Galerkin procedure for equation (4). We find the approximation solu-
tions un(t) = un(x, t) =

∑n
i=1 u

n
i (t)ψi(x) satisfies

∂un
∂t

+ aun,xxxx + µ

(
un,x

1 + |un,x|2

)
x

= Bw, (x, t) ∈ Ω × (0, T ),

un,x(0, t) = un,x(1, t) = un,xxx(0, t) = un,xxx(1, t) = 0,

un(x, 0) = un,0(x).

(5)

It is easy to see that the equation of (5) is an ordinary differential equation and,
according to ODE theory, there exists a unique solution to the equation of (5) in the
interval [0, tn). What we should do is to show that the solution is uniformly bounded when
tn → T . We need also to show that the times tn there are not decaying to 0 as n→∞.

Therefore, we shall prove the existence of solution in the following steps.

Step 1. Multiplying the equation of (5) by un and integrating with respect to x over (0, 1),
we deduce that

1

2

d

dt
‖un‖2 + a‖un,xx‖2 = µ

1∫
0

u2n,x
1 + |un,x|2

dx+

1∫
0

unBw dx.

Note that

µ

1∫
0

u2n,x
1 + |un,x|2

dx 6 µ

1∫
0

1 dx 6 µ,

and
1∫

0

unBw dx 6 ‖un‖‖Bw‖ 6
1

2
‖un‖2 +

1

2
‖Bw‖2.

Summing up, we immediately get

d

dt
‖un‖2 + 2a‖un,xx‖2 6 ‖un‖2 + ‖Bw‖2 + 2µ.
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Optimal control problem for the BCF model 227

Since Bw ∈ L2(0, T ;H) is the control item, we can assume that ‖Bw‖ 6 M , where M
is a positive constant. Then we have

d

dt
‖un‖2 + 2a‖un,xx‖2 6 ‖un‖2 +M2 + 2µ.

Using Gronwall’s inequality, for all t ∈ [0, T ], we obtain

‖un‖2 6 et
(
‖un,0‖2 +M2 + 2µ

)
6 eT

(
‖un,0‖2 +M2 + 2µ

)
= c21 (6)

Step 2. Multiplying the equation of (5) by un,xx and integrating with respect to x over
(0, 1), we deduce that

1

2

d

dt
‖un,x‖2 + a‖un,xxx‖2 + µ

1∫
0

un,x
1 + |un,x|2

un,xxx dx = −(Bw, un,xx). (7)

Note that

‖un,xx‖2 = −
1∫

0

un,xun,xxx dx 6
1

a
‖un,x‖2 +

a

4
‖un,xxx‖2,

and
1∫

0

(
un,x

1 + |un,x|2

)2

dx 6

1∫
0

u2n,x dx = ‖un,x‖2.

Then it follows from (7) that

1

2

d

dt
‖un,x‖2 + a‖un,xxx‖2

6
a

4
‖un,xxx‖2 +

µ2

a

1∫
0

(
un,x

1 + |un,x|2

)2

dx+ ‖un,xx‖2 +
1

4
‖Bw‖2

6
a

4
‖un,xxx‖2 +

µ2

a
‖un,x‖2 +

a

4
‖un,xxx‖2 +

1

a
‖un,x‖2 +

1

4
‖Bw‖2,

that is,
d

dt
‖un,x‖2 + a‖un,xxx‖2 6

2(µ2 + 1)

a
‖un,x‖2 +

1

2
‖Bw‖2.

Since ‖Bw‖ 6M , using Gronwall’s inequality, we obtain

‖un,x‖2 6 e(2(µ
2+1)/a)t

(∥∥un,x(0)
∥∥2 +

aM2

4µ2 + 4

)
6 e(2(µ

2+1)/a)T

(∥∥un,x(0)
∥∥2 +

aM2

4µ2 + 4

)
= c22 ∀t ∈ [0, T ]. (8)
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Step 3. Multiplying the equation of (5) by un,xxxx and integrating with respect to x over
(0, 1), we deduce that

1

2

d

dt
‖un,xx‖2 + a‖un,xxxx‖2 + µ

1∫
0

(
un,x

(1 + |un,x|2)2

)
x

un,xxxx dx

=

1∫
0

un,xxxxBw dx.

Note that
1∫

0

(
un,x

1 + |un,x|2

)
x

un,xxxx dx =

1∫
0

un,xxun,xxxx
1 + |un,xx|2

dx−
1∫

0

2|un,x|2un,xxun,xxxx
(1 + |un,x|2)2

dx.

Hence,

1

2

d

dt
‖un,xx‖2 + a‖un,xxxx‖2

= µ

1∫
0

2|un,x|2un,xxun,xxxx
(1 + |un,x|2)2

dx− µ
1∫

0

un,xxun,xxxx
1 + |un,xx|2

dx+

1∫
0

un,xxxxBw dx

6 µ sup
x∈[0,1]

2|un,x|2

(1 + |un,x|2)2
‖un,xx‖‖un,xxxx‖

+ µ sup
x∈[0,1]

1

1 + |un,x|2
‖un,xx‖‖un,xxxx‖+ ‖Bw‖‖un,xxxx‖

6 3µ‖un,xx‖‖un,xxxx‖+ ‖Bw‖‖un,xxxx‖

6
a

2
‖un,xxxx‖2 +

9µ2

a
‖un,xx‖2 +

1

a
‖Bw‖2.

Therefore, we have

d

dt
‖un,xx‖2 + a‖un,xxxx‖2 6

18µ2

a
‖un,xx‖2 +

2

a
‖Bw‖2.

Since ‖Bw‖ 6M , using Gronwall’s inequality, we obtain

‖un,xx‖2 6 e(18µ
2/a)t

(∥∥un,xx(0)
∥∥2 +

1

9µ2
M2

)
6 e(9µ

2/(2a))T

(∥∥un,xx(0)
∥∥2 +

1

9µ2
M2

)
= c23 ∀t ∈ [0, T ]. (9)

Adding (6), (8) and (9) together gives ‖un‖H2 6 c, then we have

‖un‖2L2(0,T ;V ) =

T∫
0

‖un‖2H2 dt 6 c4.
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Then the uniform L2(0, T ;V ) bound on a sequence {un} is proved.

Step 4. We prove a uniform L2(0, T ;V ∗) bound on a sequence {un,t}. Note that for all
η ∈ V , we have∣∣(un,xxxx, η)V ∗,V

∣∣ 6 ∣∣(un,xx, ηxx)
∣∣ 6 ‖un,xx‖‖ηxx‖ 6 ‖un,xx‖‖η‖V ,∣∣∣∣([ un,x

1 + |un,x|2

]
x

, η

)
V ∗,V

∣∣∣∣ 6 ∣∣∣∣( un,x
1 + |un,x|2

, ηx

)∣∣∣∣ 6 ‖un,x‖‖ηx‖ 6 ‖un,x‖‖η‖V ,∣∣(Bw, η)V ∗,V
∣∣ 6 ‖Bw‖‖η‖ 6 ‖Bw‖‖η‖V .

Therefore, by (8), we have

‖un,t‖V ∗

6 a‖un,xxxx‖V ∗ + µ

∥∥∥∥( un,x
1 + |un,x|2

)
x

∥∥∥∥
V ∗

+ ‖Bw‖V ∗

6 c

(
sup
|(un,xxxx, η)V ∗,V |

‖η‖V
+ sup

|([ un,x

1+|un,x|2 ]x, η)V ∗,V |
‖η‖V

+ sup
|(Bw, η)V ∗,V |
‖η‖V

)
6 c
(
‖un,xx‖+ ‖un,x‖+ ‖Bw‖

)
6 c(c2 + c3 +M).

Hence, we get
‖un,t‖L2(0,T ;V ∗) 6 c(c2 + c3 +M)T = c5.

Collecting the previous, we get:

(i) For every t ∈ [0, T ], the sequence {un}n∈N is bounded in L2(0, T ;V ), which is
independent of the dimension of ansatz space n.

(ii) For every t ∈ [0, T ], the sequence {un,t}n∈N is bounded in L2(0, T ;V ∗), which
is independent of the dimension of ansatz space n.

By the above discussion, we obtain u ∈ W (0, T ;V ). It is easy to check that
W (0, T ;V ) is continuously embedded into C([0, T ];H), which denote the space of con-
tinuous functions. We concludes convergence of a subsequences, again denoted by {un}
weak into W (0, T ;V ), weak-star in L∞(0, T ;H) and strong in L2(0, T ;H) to functions
u ∈W (0, T ;V ).

Since the proof of uniqueness is easy, we omit it.
Then Theorem 1 is proved.

Now, we shall discuss the relation among the norm of weak solution and initial value
and control item.

Theorem 2. Assume that Bw ∈ L2(0, T ;H), u0 ∈ V , then there exist positive constants
C ′ and C ′′ such that

‖u‖2W (0,T ;V ) 6 C ′
(
‖u0‖2V + ‖w‖2L2(Q0)

)
+ C ′′. (10)
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Proof. Clearly, (10) means

‖u‖2L2(0,T ;V ) + ‖ut‖2L2(0,T ;V ∗) 6 C ′
(
‖u0‖2V + ‖Bw‖2L2(0,T ;H)

)
+ C ′′. (11)

Multiplying the equation of (4) by u, integrating the resulting on (0, 1) and using the same
argument as in the proof of Theorem 1, we obtain

d

dt
‖u‖2 + 2a‖uxx‖2 6 ‖Bw‖2 + ‖u‖2 + 2µ. (12)

Using Gronwall’s inequality, we have

‖u‖2 6 et
(
‖u0‖2 + 2µ+ ‖Bw‖2

)
.

Then
T∫

0

‖u‖2 dt 6 T eT
(
‖u0‖2 + 2µ

)
+ eT ‖Bw‖2L2(0,T ;H). (13)

Integrating (12) with respect to t on [0, T ], we thus derive that

∥∥u(t)
∥∥2 − ∥∥u(0)

∥∥2 + 2a

T∫
0

‖uxx‖2 dt 6

T∫
0

‖Bw‖2 dt+

T∫
0

‖u‖2 dt+ 2µT.

Therefore, by (13) and above inequality, we deduce that

T∫
0

‖uxx‖2 dt 6
1

2a

( T∫
0

‖Bw‖2 dt+

T∫
0

‖u‖2 dt+ 2µT +
∥∥u(0)

∥∥2)

6
1

2a

((
1 + eT

)
‖Bw‖2L2(0,T ;H) +

(
1 + T eT

)∥∥u(0)
∥∥2 + 4µT

)
. (14)

We also have

T∫
0

‖ux‖2 dt = −
T∫

0

(u, uxx) dt 6
1

2

T∫
0

‖u‖2 dt+
1

2

T∫
0

‖uxx‖2 dt. (15)

On the other hand, for all η ∈ V , we have∣∣(uxxxx, η)V ∗,V
∣∣ 6 ∣∣(uxx, ηxx)

∣∣ 6 ‖uxx‖‖ηxx‖ 6 ‖uxx‖‖η‖V ,∣∣∣∣([ ux
1 + |ux|2

]
x

, η

)
V ∗,V

∣∣∣∣ 6 ∣∣∣∣( ux
1 + |ux|2

, ηx

)∣∣∣∣ 6 ‖ux‖‖ηx‖ 6 ‖ux‖‖η‖V ,∣∣(Bw, η)V ∗,V
∣∣ 6 ‖Bw‖‖η‖ 6 ‖Bw‖‖η‖V .
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Therefore,

‖ut‖V ∗ 6 a‖uxxxx‖V ∗ + µ

∥∥∥∥( ux
1 + |ux|2

)
x

∥∥∥∥
V ∗

+ ‖Bw‖V ∗

6 c

(
sup
|(uxxxx, η)V ∗,V |

‖η‖V
+ sup

|([ ux

1+|ux|2 ]x, η)V ∗,V |
‖η‖V

+ sup
|(Bw, η)V ∗,V |
‖η‖V

)
6 c
(
‖uxx‖+ ‖ux‖+ ‖Bw‖

)
.

Hence, we get

T∫
0

‖ut‖2V ∗ dt 6 C

T∫
0

(
‖uxx‖2 + ‖ux‖2 + ‖Bw‖2

)
dt

6 C

(
‖Bw‖2L2(0,T ;H) +

T∫
0

‖uxx‖2 dt+

T∫
0

‖ux‖2 dt

)
. (16)

By (13)–(16) and the definition of extension operator B, we obtain (11). Hence, Theo-
rem 2 is proved.

3 Optimal control problem

In this section, we consider the optimal control problem associated with problem (4) and
prove the existence of optimal solution.

In the following, we suppose L2(Q0) is a Hilbert space of control variables, we also
suppose B ∈ L(L2(Q0), L2(0, T ;H)) is the controller and a control w ∈ L2(Q0).
Consider the following control system:

∂u

∂t
+ auxxxx + µ

(
ux

1 + |ux|2

)
x

= Bw, (x, t) ∈ Ω × (0, T ),

ux(0, t) = ux(1, t) = uxxx(0, t) = uxxx(1, t) = 0,

u(0) = u0.

(17)

Here in (17), it is assumed that u0 ∈ V . By virtue of Theorem 1, we can define the
solution map w → u(w) of L2(Q0) into W (0, T ;V ). The solution u is called the state of
the control system (17). The observation of the state is assumed to be given by Cu. Here
C ∈ L(W (0, T ;V ), S) is an operator, which is called the observer, S is a real Hilbert
space of observations. The cost function associated with the control system (17) is given
by

J(u,w) =
1

2
‖Cu− zd‖2S +

δ

2
‖w‖2L2(Q0)

, (18)

where zd ∈ S is a desired state and δ > 0 is fixed.
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An optimal control problem about problem (17) is

min J(u,w), (19)

where (u,w) satisfies (17).
Let X = W (0, T ;V ) × L2(Q0) and Y = L2(0, T ;V ) × H . We define an operator

e = e(e1, e2): X → Y , where

e1 = G =
(
∆2
)−1[∂u

∂t
+ auxxxx + µ

(
ux

1 + |ux|2

)
x

−Bw
]
,

and
e2 = u(x, 0)− u0.

Here ∆2 is an operator from V to V ∗. Then we write (19) in the following form:

min J(u,w) subject to e(u,w) = 0.

Theorem 3. Assume that Bw ∈ L2(0, T ;H), u0 ∈ V , then there exists an optimal
control solution (u∗, w∗) to problem (17).

Proof. Suppose (u,w) satisfy the equation e(u,w) = 0. In view of (18), we deduce that

J(u,w) >
δ

2
‖w‖2L2(Q0)

.

By Theorem 2, we obtain

‖u‖W (0,T ;V ) →∞ yields ‖w‖L2(Q0) →∞.

Therefore,
J(u,w)→∞ when

∥∥(u,w)
∥∥
X
→∞. (20)

As the norm is weakly lower semi-continuous, we achieve that J is weakly lower
semi-continuous. Since for all (u,w) ∈ X , J(u,w) > 0, there exists λ > 0 defined by

λ = inf
{
J(u,w): (u,w) ∈ X, e(u,w) = 0

}
,

which means the existence of a minimizing sequence {(un, wn)}n∈N in X such that

λ = lim
n→∞

J(un, wn) and e(un, wn) = 0 ∀n ∈ N.

From (20), there exists an element (u∗, w∗) ∈ X such that when n→∞,

un → u∗ weakly in W (0, T ;V ), (21)

wn → w∗ weakly in L2(Q0).
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Using (21), we get

lim
n→∞

T∫
0

(
unt (x, t)− u∗t , ψ(t)

)
V ∗,V

dt = 0 ∀ψ ∈ L2(0, T ;V ),

where (·, ·)V ∗,V denotes the scalar product between V ∗ and V .
Since W (0, T ;V ) is compactly embedded into L2(0, T ;L∞), we have un → u∗

strongly in L2(0, T ;L∞). On the other hand, we know that un ∈ L∞(0, T ;V ) and un,t ∈
L2(0, T ;V ∗). Hence, by [12, Lemma 4] we have un → u∗ strongly in C([0, T ];L∞),
unx → u∗x strongly in C([0, T ];H) as n→∞.

As the sequence {un}n∈N converges weakly, then ‖un‖W (0,T ;V ) is bounded. And
‖un‖L2(0,T ;L∞) is also bounded based on the embedding theorem.

Because unx → u∗x in L2(0, T ;L∞) as n → ∞, we know that ‖u∗x‖L2(0,T ;L∞) is
bounded too.

Using (21), we deduce that∣∣∣∣∣
T∫

0

1∫
0

[(
unx

1 + |unx |2

)
x

−
(

u∗x
1 + |u∗x|2

)
x

]
η dxdt

∣∣∣∣∣
=

∣∣∣∣∣
T∫

0

1∫
0

(
unx

1 + |unx |2
− u∗x

1 + |u∗x|2

)
ηx dxdt

∣∣∣∣∣
=

∣∣∣∣∣
T∫

0

1∫
0

(1− unxu∗x)(unx − u∗x)

(1 + |unx |2)(1 + |u∗x|2)
ηx dxdt

∣∣∣∣∣
6

∣∣∣∣∣
T∫

0

1∫
0

(1− unxu∗x)(unx − u∗x)ηx dxdt

∣∣∣∣∣
6

T∫
0

∥∥1− u∗xunx
∥∥
L∞

∥∥unx − u∗x∥∥H‖ηx‖H dt

6
∥∥1− u∗xunx

∥∥
L2(0,T ;L∞)

∥∥unx − u∗x∥∥C([0,T ];H)
‖ηx‖L2(0,T ;H)

→ 0, n→∞, ∀η ∈ L2(0, T ;V ).

In view of the above discussion, we get

e1(u∗, w∗) = 0.

From u∗ ∈ W (0, T ;V ), we derive that u∗(0) ∈ H . Since un → u∗ weakly in
L2(0, T ;H), we can infer that un(0)→ u∗(0) weakly when n→∞. Thus, we obtain(

un(0)− u∗(0), η
)
→ 0, n→∞, ∀η ∈ H,
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that is,
e2(u∗, w∗) = 0.

Therefore, we obtain
e(u∗, w∗) = 0 in Y.

So, there exists an optimal solution (u∗, w∗) to problem (17), Theorem 3 is proved.

4 Optimality conditions

It is well known that the optimality conditions for w is given by the variational inequality

J ′(u,w)(v − w) > 0 ∀v ∈ L2(Q0), (22)

where J ′(u,w) denotes the Gateaux derivative of J(u, v) at v = w.
The following lemma is essential in deriving necessary optimality conditions.

Lemma 1. The map v → u(v) of L2(Q0) into W (0, T ;V ) is weakly Gateaux differ-
entiable at v = w and such the Gateaux derivative of u(v) at v = w in the direction
v − w ∈ L2(Q0), say z = Du(w)(v − w), is a unique weak solution of the following
problem:

(zt, η)V ∗,V + a(zxx, ηxx)− µ
(

(1− |ux|2)zx
(1 + |ux|2)2

, ηx

)
=
(
B(v − w), η

)
∀η ∈ V, 0 < t 6 T,

z(0) = 0, x ∈ (0, 1).

(23)

Proof. Let 0 6 h 6 1, uh and u be the solutions of (17) corresponding to w + h(v − w)
and w, respectively. We prove the lemma in the following two steps.

Step 1. We prove uh → u strongly in C([0, T ];H) as h→ 0. Let q = uh − u, then(
dq

dt
, η

)
V ∗,V

+ a(qxx, ηxx)− µ
(

uhx
1 + |uhx|2

− ux
1 + |ux|2

, ηx

)
=
(
hB(v − w), η

)
∀η ∈ V, 0 < t 6 T,

q(0) = 0, x ∈ (0, 1).

(24)

Note that
‖qx‖2 6 ε‖qxx‖2 +

1

4ε
‖q‖2,

where ε is a positive constant. By Theorem 2, we get

‖u‖W 1,∞ = sup
x∈[0,1]

(
|u|+ |ux|

)
6 c,∥∥uh(x, t)

∥∥
W 1,∞ = sup

x∈[0,1]

(
|uh|+ |uhx|

)
6 c.
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Then, setting η = q in (24), we have

1

2

d

dt
‖q‖2 + a‖qxx‖2

= µ

(
uhx

1 + |uhx|2
− ux

1 + |ux|2
, qx

)
+
(
hB(v − w), q

)
= µ

(
1− uxuhx

(1 + |uhx|2)(1 + |ux|2)
qx, qx

)
+
(
hB(v − w), q

)
6

∥∥∥∥ 1− uxuhx
(1 + |uhx|2)(1 + |ux|2)

∥∥∥∥
L∞
‖qx‖2 + h

∥∥B(v − w)
∥∥‖q‖

6 c0‖qx‖2 + h
∥∥B(v − w)

∥∥‖q‖
6
a

2
‖qxx‖2 +

(
c20
2a

+
1

4

)
‖q‖2 + h2

∥∥B(v − w)
∥∥2.

Hence,
d

dt
‖q‖2 + a‖qxx‖2 6

(
c20
a

+
1

2

)
‖q‖2 + 2h2

∥∥B(v − w)
∥∥2.

Using Gronwall’s inequality, it is easy to see that ‖q‖2 → 0 as h → 0. Then uh → u
strongly in C([0, T ];H) as h→ 0.

Step 2. We prove that (uh − u)/h → z strongly in W (0, T ;V ). Rewrite (24) in the
following form: (

d

dt

uh − u
h

, η

)
V ∗,V

+ a

([
uh − u
h

]
xx

, ηxx

)
−
(
µ

h

[
uhx

1 + |uhx|2
− ux

1 + |ux|2

]
, ηx

)
=
(
B(v − w), η

)
∀η ∈ V, 0 < t 6 T,

uh − u
h

(0) = 0, x ∈ (0, 1).

We can easily verify that the above problem possesses a unique weak solution in
W (0, T ;V ). On the other hand, it is easy to check that the linear problem (23) possesses
a unique weak solution z ∈W (0, T ;V ). Let r = (uh − u)/h− z, thus r satisfies(

d

dt
r, η

)
V ∗,V

+ a(rxx, ηxx)− µ
(

1

h

[
uhx

1 + |uhx|2
− ux

1 + |ux|2

]
−
[

(1− |ux|2)zx
(1 + |ux|2)2

]
, ηx

)
= 0 ∀η ∈ V, 0 < t 6 T,

r(0) = 0, x ∈ (0, 1).

(25)
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Setting η = r in (25), κ = ux + θ(uhx − ux), θ ∈ (0, 1), using differential mean value
theorem, we get

1

2

d

dt
‖r‖2 + a‖rxx‖2

= µ

(
1

h

(
uhx

1 + |uhx|2
− ux

1 + |ux|2

)
− (1− |ux|2)zx

(1 + |ux|2)2
, rx

)
= µ

(
1− κ2

(1 + κ2)2
uhx − ux

h
− (1− |ux|2)zx

(1 + |ux|2)2
, rx

)
= µ

(
1− κ2

(1 + κ2)2

(
uhx − ux

h
− zx

)
, rx

)
+ µ

(
zx

(
1− κ2

(1 + κ2)2
− (1− |ux|2)

(1 + |ux|2)2

)
, rx

)
=: I1 + I2,

Note that κ = ux + θ(uhx − ux) satisfies ‖κ‖H1 6 c and ‖κ‖∞ 6 c. Hence, for I1, we
have

I1 = µ

(
1− κ2

(1 + κ2)2

(
uhx − ux

h
− zx

)
, rx

)
= µ

(
uh − u
h

− z, 1− κ2

(1 + κ2)2
rxx −

2κκx(3− κ2)

(1 + κ2)3
rx

)
6 c
(
‖r‖‖rxx‖

∥∥1− κ2
∥∥
∞ + ‖r‖‖rx‖∞‖κx‖

∥∥κ(3− κ2)∥∥∞)
6 c0‖r‖‖rxx‖ 6

a

2
‖rxx‖2 +

c20
2a
‖r‖2.

On the other hand, for I2, we have

I2 = µ

(
zx

(
1− κ2

(1 + κ2)2
− (1− |ux|2)

(1 + |ux|2)2

)
, rx

)
6 c‖rx‖∞‖zx‖

∥∥∥∥ 1− κ2

(1 + κ2)2
− (1− |ux|2)

(1 + |ux|2)2

∥∥∥∥
6 c‖rxx‖‖zx‖

∥∥∥∥ 1− κ2

(1 + κ2)2
− (1− |ux|2)

(1 + |ux|2)2

∥∥∥∥
6
a

2
‖rxx‖2 + c‖zx‖2

∥∥∥∥ 1− κ2

(1 + κ2)2
− (1− |ux|2)

(1 + |ux|2)2

∥∥∥∥2
→ a

2
‖rxx‖2 as h→ 0.

Summing up, we get

d

dt
‖r‖2 +

a

2
‖rxx‖2

6
c20
a
‖r‖2 + c‖zx‖2

∥∥∥∥ 1− κ2

(1 + κ2)2
− (1− |ux|2)

(1 + |ux|2)2

∥∥∥∥2 as h→ 0.
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Using Gronwall’s inequality, it is easy to check that (uh − u)/h is strongly convergent
to z in C(0, T ;H). Integrating above inequality over (0, T ), we can obtain (uh − u)/h
strongly convergent to z in L2(0, T ;V ).

On the other hand, for all η ∈ V , we have

a(rxx, ηxx) 6 a‖rxx‖‖η‖xx 6 a‖rxx‖‖η‖V ,

µ

(
1

h

[
uhx

1 + |uhx|2
− ux

1 + |ux|2

]
−
[

(1− |ux|2)zx
(1 + |ux|2)2

]
, ηx

)
= µ

(
1− κ2

(1 + κ2)2
uhx − ux

h
− (1− |ux|2)

(1 + |ux|2)2
zx, ηx

)
= µ

(
1− κ2

(1 + κ2)2

(
uhx − ux

h
− zx

)
, ηx

)
+ µ

(
zx

(
1− κ2

(1 + κ2)2
− (1− |ux|2)zx

(1 + |ux|2)2

)
, ηx

)
6 c‖r‖‖ηxx‖ 6 C‖r‖‖η‖V .

Hence, using (25), we can obtain

T∫
0

‖r‖2V ∗ dt 6 a

T∫
0

‖r‖2xx dt+ c

T∫
0

‖r‖2 dt→ 0 as h→ 0.

Then (uh − u)/h→ z strongly in W (0, T ;V ), Lemma 1 is proved.

As in [8], we denote Λ = canonical isomorphism of S onto S∗, where S∗ is the dual
spaces of S. By calculating the Gateaux derivative of (20) via Lemma 1, we see that
the cost J(v) is weakly Gateaux differentiable at w in the direction v − w. Then, for all
L2(Q0), (22) can be rewritten as(

C∗Λ
(
Cu(w)− zd

)
, z
)
W (0,T ;V )∗,W (0,T ;V )

+
δ

2
(w, v − w)L2(Q0) > 0, (26)

where z is the solution of (23), (·, ·)W (0,T ;V )∗,W (0,T ;V ) denotes the scalar product be-
tween W (0, T ;V )∗ and W (0, T ;V ).

Now, we study the necessary conditions of optimality. To avoid the complexity of ob-
servation states, we consider the two types of distributive and terminal value observations.

Case 1: C ∈ L(L2(0, T ;V );S). In this case, C∗ ∈ L(S∗;L2(0, T ;V ∗)) and (26) may
be written as

T∫
0

(
C∗Λ(Cu(w)− zd), z

)
V ∗,V

dt+
δ

2
(w, v − w)L2(Q0) > 0 (27)

for all v ∈ L2(Q0). Here we give the definition of a solution to the adjoint equation.
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Definition 2. Given an optimal control Bw ∈ L2(0, T ;H) and u0 ∈ V , there exists
a solution p(v) ∈W (0, T ;V ) to the adjoint problem(

− d

dt
p(v), η

)
V ∗,V

+ a(pxx(v), ηxx)− µ
(

(1− |ux|2)px
(1 + |ux|2)2

, ηx

)
=
(
C∗Λ

(
Cu(v)− zd

)
, η
)
V ∗,V

in (0, T ) ∀η ∈ V,

p(x, T ; v) = 0.

(28)

According to Theorem 1, the above problem admits a unique solution (after changing
t into T − t).

Setting η = z in (28) (with v = w) and using Lemma 1, we get

T∫
0

(
− d

dt
p(w), z

)
V ∗,V

dt =

T∫
0

〈
p(w),

d

dt
z

〉
V,V ∗

dt,

and
T∫

0

(
(1− |ux|2)px(w)

(1 + |ux|2)2
, zx

)
dt =

T∫
0

(
px(w),

(1− |ux|2)zx
(1 + |ux|2)2

)
dt.

Then we obtain

T∫
0

(
C∗Λ

(
Cu(w)− zd

)
, z
)
V ∗,V

dt

=

T∫
0

(
p(w), zt

)
V,V ∗

dt+ a

T∫
0

(
pxx(w), zxx

)
dt− µ

T∫
0

(
px(w),

(1− |ux|2)zx
(1 + |ux|2)2

)
dt

=

T∫
0

(
p(w), Bv −Bw

)
dt =

(
B∗p(w), v − w

)
.

Hence, (27) may be written as

T∫
0

1∫
0

B∗p(w)(v − w) dx dt+
δ

2
(w, v − w)L2(Q0) > 0 ∀v ∈ L2(Q0). (29)

Therefore, we have proved the following theorem.

Theorem 4. We assume that all conditions of Theorem 3 hold. Let us suppose that C ∈
L(L2(0, T ;V );S). The optimal control w is characterized by the system of two PDEs
and an inequality: (17), (28) and (29).
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Case 2: C ∈ L(H;S). In this case, we observe Cu(v) = Du(T ; v), D ∈ L(H;H). The
associsted cost function is expressed as

J(u, v) =
∥∥Du(T ; v)− z

∥∥2
S

+
δ

2
‖v‖2L2(Q0)

∀v ∈ L2(Q0). (30)

Then, for all v ∈ L2(Q0), the optimal control w for (30) is characterized by

(
Du(T ;w)− z,Du(T ; v)−Du(T ;w)

)
V ∗,V

+
δ

2
(w, v − w)L2(Q0) > 0. (31)

Definition 3. Given an optimal control Bw ∈ L2(0, T ;H) and u0 ∈ V , there exists
a solution p(v) ∈W (0, T ;V ) to the adjoint problem(

− d

dt
p(v), η

)
V ∗,V

+ a
(
pxx(v), ηxx

)
− µ

(
(1− |ux|2)px
(1 + |ux|2)2

, ηx

)
= 0

in (0, T ) ∀η ∈ V,

p(T ; v) = D∗
(
Du(T ; v)− z

)
.

(32)

According to Theorem 1, the above problem admits a unique solution (after changing
t into T − t).

Let us set v = w in the above equations and set η = u(v)−u(w) in (32) and integrate
from 0 to T . This gives us,

(
Du(T ;w)− z,Du(T ; v)−Du(T ;w)

)
V ∗,V

=

T∫
0

(
p(w), B(v − w)

)
dt,

since

T∫
0

(
− d

dt
p(w), z

)
V ∗,V

dt =

T∫
0

(
p(w),

d

dt
z

)
V,V ∗

dt

−
〈
D∗
(
Du(T ; v)− z

)
, u(T ; v)− u(T ;w)

〉
V ∗,V

.

Hence, (31) is equivalent to

T∫
0

1∫
0

B∗p(w)(v − w) dxdt+
δ

2
(w, v − w)L2(Q0) > 0 ∀v ∈ L2(Q0). (33)

Then we have the following theorem.

Theorem 5. We assume that all conditions of Theorem 3 hold. Let us suppose that D ∈
L(H;H). The optimal control w is characterized by the system of two PDEs and an
inequality: (17), (32) and (33).
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