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Abstract. In this paper, we define the cyclic-Prešić–Ćirić operators in metric-like spaces and prove
some fixed point results for such operators. Our results generalize that of S.B. Prešić [Sur une
classe d’inéquations aux différences finite et sur la convergence de certaines suites, Publications de
l’Institut Mathématique (N.S.), 5(19):75–78, 1965] and several later results. An example is given
which shows that the results proved herein are the proper generalizations of existing ones.
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1 Introduction

The celebrated Banach contraction principle is a fundamental piece in several branches of
functional analysis as well as in many applications. Due to its relevance, generalizations
of Banach’s fixed point theorem have been studied by many authors.

Let (X, d) be a metric space, A and B are two nonempty closed subsets of X .
A mapping T : X → X is called a Banach contraction if the following condition is
satisfied:

d(Tx, Ty) 6 λd(x, y) (1)

for all pairs (x, y) ∈ X ×X , where λ ∈ [0, 1). Banach contraction principle states that
every Banach contraction on a complete metric space has a unique fixed point x∗ ∈ X ,
that is, Tx∗ = x∗. An interesting generalization of Banach contraction principle was
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obtained by Kirk et al. [8]. They introduced the class of mappings T : A ∪ B → A ∪ B
satisfying the following conditions:

1. T (A) ⊆ B and T (B) ⊆ A;
2. d(Tx, Ty) 6 λd(x, y) for all x ∈ A and y ∈ B, where λ ∈ [0, 1).

They named such contractive conditions, cyclical contractive conditions. They also ob-
tained a unique fixed point of mappings satisfying cyclical contractive conditions. The
mappings satisfying the above conditions are called cyclic contractions. Indeed, the cyclic
contractions may not be a contraction on the whole space, that is, may not satisfy the
contractive condition (1) for all pairs (x, y) ∈ X ×X and need not be continuous.

The cyclic representation of a set was defined as follows:

Definition 1. (See [23].) Let X be a nonempty set, m a positive integer and f : X → X
be a mapping. Then X =

⋃m
i=1Ai is a cyclic representation of X with respect to f if:

1. Ai, i = 1, . . . ,m, are non-empty subsets of X;
2. f(A1) ⊂ A2, f(A2) ⊂ A3, . . . , f(Am−1) ⊂ Am, f(Am) ⊂ A1.

Theorem 1. (See [8].) Let (X, d) be a complete metric space and let A1, A2, . . . , Am
be nonempty closed subsets of X (also assume that Am+1 = A1). Suppose that f :⋃m
i=1Ai →

⋃m
i=1Ai is an operator such that:

1. f(Ai) ⊆ Ai+1 for all i ∈ {1, 2, . . . ,m};
2. There exists k ∈ [0, 1) such that

d(fx, fy) 6 kd(x, y)

for all x ∈ Ai, y ∈ Ai+1, i ∈ {1, 2, . . . ,m}. Then f has exactly one fixed point.

Following [23] and [8], a number of fixed point theorems on cyclic contractions have
appeared (see, e.g., [1, 5, 6, 11, 13, 17, 18, 19]). In the recent paper of Nashine et al. [12],
various types of cyclic contractions in the setting of partial metric spaces can be seen.

Remark 1. (See [23].) If X =
⋃m
i=1Ai is a cyclic representation of X with respect to f ,

then F(f) ⊂
⋂m
i=1Ai, where F(f) is the set of all fixed points of f .

Let f : Xk → X , where k is a positive integer. A point x ∈ X is called a fixed point
of f if x = f(x, . . . , x). Consider the kth order nonlinear difference equation

xn+k = f(xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . , (2)

with the initial values x1, . . . , xk ∈ X .
Equation (2) can be studied by means of fixed point theory in view of the fact that

x ∈ X is a solution of (2) if and only if x is a fixed point of the self-mapping F : X → X
given by

F (x) = f(x, . . . , x) for all x ∈ X.
One of the most important result in this direction is obtained by Prešić [20, 21]. Prešić
proved the following theorem for the mappings defined on the product spaces.
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Theorem 2. Let (X, d) be a complete metric space, k a positive integer and f : Xk → X
be a mapping satisfying

d
(
f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)

)
6

k∑
i=1

αid(xi, xi+1) (3)

for every x1, x2, . . . , xk+1 ∈ X , where α1, α2, . . . , αk are nonnegative constants such
that

∑k
i=1 αi < 1. Then there exists a unique point x ∈ X such that f(x, x, . . . , x) = x.

Moreover, if x1, x2, . . . , xk are arbitrary points in X , then the sequence {xn} generated
by

xn+k = f(xn, xn+1, . . . , xn+k−1), (4)

is convergent and limxn = f(limxn, limxn, . . . , limxn).

An operator satisfying (3) is called a Prešić type operator. Prešić type operators have
applications in solving the nonlinear difference equations and in the convergence of se-
quences, for example, see [3, 7, 20, 21].

Inspired with the results in Theorem 2, Ćirić and Prešić [4] proved the following
theorem:

Theorem 3. Let (X, d) be a complete metric space, k a positive integer and f : Xk → X
be a mapping satisfying the following contractive type condition:

d
(
f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)

)
6 λmax

{
d(xi, xi+1): 1 6 i 6 k

}
, (5)

where λ ∈ [0, 1) is constant and x1, x2, . . . , xk+1 are arbitrary points in X . Then there
exists a point x in X such that f(x, x, . . . , x) = x. Moreover, if x1, x2, . . . , xk are
arbitrary points in X and, for n ∈ N, xn+k = f(xn, xn+1, . . . , xn+k−1), then the
sequence {xn} is convergent and limxn = f(limxn, limxn, . . . , limxn). If, in addition,
we suppose that on diagonal ∆ ⊂ Xk, d(f(u, u, . . . , u), f(v, v, . . . , v)) < d(u, v) holds
for u, v ∈ X with u 6= v, then x is unique fixed point satisfying x = f(x, x, . . . , x).

An operator satisfying (5) is called a Prešić–Ćirić operator.
In the recent years, many authors generalize and extend the result of Prešić in different

directions, see, e.g., [4,14,15,16,24,25,26,27,29,30,31]. Very recently, Shukla and Abbas
[26] introduced the notion of cyclic-Prešić operators which turns into a generalization of
the concept of the cyclic contractions.

In [26], the notion of cyclic representation with respect to an operator f : Xk → X
and cyclic-Prešić operator are defined as follows:

Definition 2. (See [26].) Let X be any nonempty set, k a positive integer, f : Xk → X
an operator and A1, A2, . . . , Am be subsets of X . Then X =

⋃m
i=1Ai is a cyclic repre-

sentation of X with respect to f if:

1. Ai, i = 1, 2, . . . ,m, are nonempty sets;
2. f(A1 × A2 × · · · × Ak) ⊆ Ak+1, f(A2 × A3 × · · · × Ak+1) ⊆ Ak+2, . . . ,
f(Ai ×Ai+1 × · · · ×Ai+k−1) ⊆ Ai+k, . . . , where Am+j = Aj for all j ∈ N.
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If we take k = 1, then the above definition reduces to well known cyclic representation
of set X with respect to an operator f : X → X .

Definition 3. (See [26].) Let A1, A2, . . . , Am be subsets of a metric space (X, d),
k a positive integer, and Y =

⋃m
i=1Ai. An operator f : Y k → Y is called a cyclic-

Prešić operator if the following conditions are met:

1. Y =
⋃m
i=1Ai is a cyclic representation of Y with respect to f ;

2. There exist nonnegative real numbers α1, α2, . . . , αk such that
∑k
i=1 αi < 1 and

d
(
f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)

)
6

k∑
i=1

αid(xi, xi+1) (6)

for all x1 ∈ Ai, x2 ∈ Ai+1, . . . , xk+1 ∈ Ai+k, i = 1, 2, . . . ,m, where Am+j =
Aj for all j ∈ N.

If we take k = 1, then the above definition reduces to well known cyclic contraction,
therefore, the concept of cyclic-Prešić operator is more general than the cyclic contrac-
tions.

On the other hands, Matthews [9] introduced the notion of partial metric spaces with
an interesting property that the points in such spaces may have a nonzero self distance.
This notion is further generalized by Harandi [2] by introducing the notion of metric-
like spaces. In metric-like spaces, the assumption of smallest self distance of partial
metric spaces was removed and the triangular inequality of partial metric was replaced by
a weaker one. Further, Shukla et al. [28] introduced the notion of 0-σ-complete metric-
like spaces and generalized the results of Harandi [2].

In this paper, we introduce the cyclic-Prešić–Ćirić operators in metric-like spaces as
a generalization of earlier cyclic contraction condition on product spaces. We develop
some new fixed point results for such cyclic contraction mappings in 0-σ-complete metric-
like spaces. Our results are the extensions or refinements of fixed point theorems of Kirk
et al. [8], Prešić [21], Ćirić and Prešić [4], Shukla and Fisher [27], Shukla and Abbas
[26] and several other known results of the literature. Examples are given to support the
usability of the results and to show that these extensions are proper.

2 Preliminaries

First, we recall some definitions and properties about the partial metric and metric-like
spaces.

Definition 4. (See [9].) A partial metric on a nonempty set X is a function p : X ×X →
R+ (R+ stands for nonnegative reals) such that, for all x, y, z ∈ X:

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(P2) p(x, x) 6 p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z).
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A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial
metric on X .

It is clear that if p(x, y) = 0, then from (P1) and (P2) x = y. But if x = y, p(x, y)
may not be 0. Also every metric space is a partial metric space with zero self distance.
Each partial metric on X generates a T0 topology τp on X which has a base the family
of open p-balls {Bp(x, ε): x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X: p(x, y) <
p(x, x) + ε} for all x ∈ X and ε > 0.

Let (X, p) be a partial metric space.

(i) A sequence {xn} in (X, p) converges to a point x ∈ X if and only if p(x, x) =
limn→∞ p(xn, x).

(ii) A sequence {xn} in (X, p) is called Cauchy sequence if there exists (and is finite)
limn,m→∞ p(xn, xm).

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} inX converges with
respect to τp to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

(iv) A sequence {xn} in (X, p) is called 0-Cauchy sequence if limn,m→∞ p(xn,
xm) = 0. The space (X, p) is said to be 0-complete if every 0-Cauchy sequence
in X is converges with respect to τp to a point x ∈ X such that p(x, x) = 0.

For more details on partial metric spaces, see [9, 22].

Definition 5. (See [2].) A metric-like on a nonempty setX is a function σ : X×X → R+

such that, for all x, y, z ∈ X:

1. σ(x, y) = 0 implies x = y;
2. σ(x, y) = σ(y, x);
3. σ(x, y) 6 σ(x, z) + σ(z, y).

A metric-like space is a pair (X,σ) such that X is a nonempty set and σ is a metric-
like on X . Note that a metric-like satisfies all the conditions of metric except that σ(x, x)
may be positive for x ∈ X . Each metric-like σ onX generates a topology τσ onX whose
base is the family of open σ-balls

Bσ(x, ε) =
{
y ∈ X:

∣∣σ(x, y)− σ(x, x)
∣∣ < ε

}
for all x ∈ X and ε > 0.

A sequence {xn} in X converges to a point x ∈ X if and only if limn→∞ σ(xn, x) =
σ(x, x). Sequence {xn} is said to be σ-Cauchy if limn,m→∞ σ(xn, xm) exists and is
finite. The metric-like space (X,σ) is called complete if, for each σ-Cauchy sequence
{xn}, there exists x ∈ X such that

lim
n→∞

σ(xn, x) = σ(x, x) = lim
m,n→∞

σ(xn, xm).

It is obvious that every metric space is partial metric space (for definition and properties
of partial metric spaces, see [9]) and every partial metric space is a metric-like space, but
the converse may not be true.
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Example 1. (See [2].) Let X = {0, 1} and σ : X ×X → R+ be defined by

σ(x, y) =

{
2 if x = y = 0;

1 otherwise.

Then (X,σ) is metric-like space, but it is neither a metric space nor a partial metric space.

Example 2. Let X = R+, a > 0, b > 0 and σ : X ×X → R+ be defined by

σ(x, y) = a(x+ y) + b for all x, y ∈ X.

Then (X,σ) is metric-like space, but it is neither a metric space nor a partial metric space,
because, for x > 0, σ(x, x) = 2ax+ b > 0 and σ(1, 1) = 2a+ b > σ(1, 0) = a+ b.

Definition 6. (See [28].) Let (X,σ) be a metric-like space. A sequence {xn} in X is
called 0-σ-Cauchy sequence if limn,m→∞ σ(xn, xm) = 0. The space (X,σ) is said to be
0-σ-complete if every 0-σ-Cauchy sequence in X converges with respect to τσ to a point
x ∈ X such that σ(x, x) = 0.

Note that the limit of a convergent sequence in a metric like space (X,σ) may not be
unique. A subset A ⊆ X is said to be closed if every limit of a convergent sequence in
A is in A. It is obvious that every 0-σ-Cauchy sequence is σ-Cauchy sequence in (X,σ)
and every σ-complete metric-like space is 0-σ-complete. Also, every 0-complete partial
metric space (for details, see [28] and the references therein) is 0-σ-complete metric-like
space. The following example shows that the converse assertions of these facts do not
hold.

Example 3. Let X = [0,∞) ∩Q and σ : X ×X → R+ be defined by

σ(x, y) =

{
2x if x = y;

max{x, y} otherwise

for all x, y ∈ X . Then (X,σ) is a metric-like space. Note that (X,σ) is not a partial
metric space as σ(1, 1) = 2 � σ(1, 0) = 1 (for details, see [21]). Now, it is easy to see
that (X,σ) is a 0-σ-complete metric-like space, while it is not a σ-complete metric-like
space.

The following definition will be needed in the sequel and can be found in [26].

Definition 7. (See [21].) Let X be a nonempty set and A1, A2, . . . , Am be nonempty
subsets of X . A sequence {xn} in X is called m-cyclic sequence if:

1. There exists i ∈ {1, 2, . . . ,m} such that x1 ∈ Ai;
2. xn ∈ Ai for some n ∈ N, i ∈ {1, 2, . . . ,m}, implies that xn+1 ∈ Ai+1, where
Am+j = Aj for all j ∈ N.

Now we can state our main results.
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3 Cyclic-Prešić–Ćirić operators in metric-like spaces

In this section, we will prove some fixed point theorems for self-mappings defined on
a 0-σ-complete metric-like space and satisfying certain cyclic-Prešić–Ćirić operator con-
dition. To achieve our goal, we introduce a new class of cyclic operators.

Definition 8. Let A1, A2, . . . , Am be nonempty subsets of a metric-like space (X,σ),
k a positive integer and Y =

⋃m
i=1Ai. An operator f : Y k → Y is called a cyclic-

Prešić–Ćirić operator if:

1. Y =
⋃m
i=1Ai is a cyclic representation of Y with respect to f ;

2. There exists λ ∈ [0, 1) such that

σ
(
f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)

)
6 λmax

{
σ(xi, xi+1): 1 6 i 6 k

}
(7)

for all x1 ∈ Ai, x2 ∈ Ai+1, . . . , xk+1 ∈ Ai+k, i = 1, 2, . . . ,m, where Am+j =
Aj for all j ∈ N.

To prove our main result, we need the following form of proposition of [26] in metric-
like spaces. The proof is similar to the metric case, therefore, we omit the proof.

Proposition 1. LetA1, A2, . . . , Am be closed subsets of a 0-σ-complete metric-like space
(X,σ). Suppose that {xn} is an m-cyclic sequence in Y =

⋃m
i=1Ai. If {xn} converges

to some u ∈ X , then u ∈
⋂m
i=1Ai.

Our main result is the following:

Theorem 4. Let A1, A2, . . . , Am be closed subsets of a 0-σ-complete metric-like space
(X,σ), k a positive integer, and Y =

⋃m
i=1Ai. Let f : Y k → Y be a cyclic-Prešić–Ćirić

operator. Then
⋂m
i=1Ai 6= ∅ and f has a fixed point u ∈

⋂m
i=1Ai such that σ(u, u) = 0.

Moreover, if i ∈ {1, 2, . . . ,m} and x1 ∈ Ai, x2 ∈ Ai+1, . . . , xk ∈ Ai+k−1 be arbitrary
points, then the sequence {xn} defined by

xn+k = f(xn, xn+1, . . . , xn+k−1) for all n ∈ N

is an m-cyclic sequence and converges to a fixed point of f .

Proof. Let i ∈ {1, 2, . . . ,m} and x1 ∈ Ai, x2 ∈ Ai+1, . . . , xk ∈ Ai+k−1, where
Am+j = Aj for all j ∈ N. We define a sequence {xn} in Y by

xn+k = f(xn, xn+1, . . . , xn+k−1) for all n ∈ N.

As Y =
⋃m
i=1Ai is a cyclic representation of Y with respect to f , so we have xn ∈

Ai+n−1 for all n ∈ N and so the sequence {xn} is an m-cyclic sequence. Now we shall
show that the sequence {xn} is a 0-σ-Cauchy sequence.

For notational convenience, let σn = σ(xn, xn+1). We shall prove by induction that

σn 6 µθn, (8)

Nonlinear Anal. Model. Control, 21(2):261–273
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is true for each n ∈ N, where θ = λ1/k and µ = max{σ1/θ, σ2/θ2, . . . , σk/θk}.
By definition of µ, (8) is obviously true for n ∈ {1, 2, . . . , k}. Suppose the following
k inequalities

σn 6 µθn, σn+1 6 µθn+1, . . . , σn+k−1 6 µθn+k−1

hold. Since xn ∈ Ai+n−1 for all n ∈ N, therefore, we obtain from (7) that

σn+k = σ(xn+k, xn+k+1)

= σ
(
f(xn, xn+1, . . . , xn+k−1), f(xn+1, xn+2, . . . , xn+k)

)
6 λmax

{
σ(xn, xn+1), σ(xn+1, xn+2), . . . , σ(xn+k−1, xn+k)

}
= λmax{σn, σn+1, . . . , σn+k−1}
6 λmax

{
µθn, µθn+1, . . . , µθn+k−1

}
= λµθn

(
as θ = λ1/k < 1

)
= µθn+k.

Hence, by induction, (8) is true for each n ∈ N.
Now for n,m ∈ N with m > n, we obtain from (8) that

σ(xn, xm) 6 σ(xn, xn+1) + σ(xn+1, xn+2) + · · ·+ σ(xm−1, xm)

= σn + σn+1 + · · ·+ σm−1

6 µθn + µθn+1 + µθn+2 + · · ·+ µθm−1

6 µθn
[
1 + θ + θ2 + · · ·

]
=

µ

1− θ
θn.

As θ < 1, we have limm,n→∞ σ(xn, xm) = 0. Hence, {xn} is a 0-σ-Cauchy sequence.
By 0-σ-completeness of (X,σ), there exists u ∈ X such that

lim
n→∞

σ(xn, u) = lim
n,m→∞

σ(xn, xm) = σ(u, u) = 0. (9)

Thus, {xn} is an m-cyclic sequence in Y =
⋃m
i=1Ai which converges to u ∈ X .

Therefore, by Proposition 1, we have u ∈
⋂k
i=1Ai and so

⋂k
i=1Ai 6= ∅. Now we shall

show that u is a fixed point of f .
For any n ∈ N, we have

σ
(
f(u, u, . . . , u), u

)
6 σ

(
f(u, u, . . . , u), xn+k

)
+ σ(xn+k, u)

= σ
(
f(u, u, . . . , u), f(xn, xn+1, . . . , xn+k−1)

)
+ σ(xn+k, u)

6 σ
(
f(u, u, . . . , u), f(u, . . . , u, xn)

)
+ σ

(
f(u, . . . , u, xn), f(u, . . . , u, xn, xn+1)

)
+ · · ·+ σ

(
f(u, xn, . . . , xn+k−2), f(xn, xn+1, . . . , xn+k−1)

)
+ σ(xn+k, u).
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Since u ∈
⋂m
i=1Ai and for every n ∈ N, there exists i ∈ {1, 2, . . . ,m} such that xn ∈ Ai,

xn+1 ∈ Ai+1, . . . , xn+k−1 ∈ An+k−1, where Am+j = Aj for all j ∈ N. Therefore, we
obtain from (7) and previous inequality that

σ
(
f(u, u, . . . , u), u

)
6 λmax

{
σ(u, u), . . . , σ(u, u), σ(u, xn)

}
+ λmax

{
σ(u, u), . . . , σ(u, u), σ(xn, xn+1), σ(u, xn)

}
+ · · ·+ λmax

{
σ(u, xn), σ(xn, xn+1), . . . , σ(xn+k−2, xn+k−1)

}
+ σ(xn+k, u), (10)

that is,

σ
(
f(u, u, . . . , u), u

)
6 λσ(u, xn) + λmax

{
σn, σ(u, xn)

}
+ · · ·+ λmax

{
σ(u, xn), σn, . . . , σn+k−2

}
+ σ(xn+k, u). (11)

Using (9) and passing to the limit as n→∞ in (11), we obtain that σ(f(u, u, . . . , u), u) =
0, that is, f(u, u, . . . , u) = u. Hence, u is a fixed point of f .

Next, we give a simple example which illustrate the above theorem and shows that the
above theorem is a proper generalization of the main results of Shukla and Fisher [27],
Ćirić and Prešić [4] and Shukla and Abbas [26].

Example 4. Let X = {0, 1, 2} and define a metric-like σ on X by:

σ(x, y) = σ(y, x) for all x, y ∈ X,

σ(0, 0) = 0, σ(0, 1) = 2, σ(0, 2) = 4,

σ(1, 1) = 1, σ(1, 2) = 3, σ(2, 2) = 2.

Then (X,σ) is a 0-σ-complete metric-like space. For k = m = 2, let A1 = {0, 1}, A2 =
{0, 1, 2} and Y = A1 ∪ A2. Then A1, A2 are nonempty, closed subsets of X . Define
f : X2 → X by:

f(x, y) = min{x, y} when x 6= y,

f(0, 0) = 0, f(1, 1) = 0, f(2, 2) = 2.

Then f is not a Prešić–Ćirić operator, neither in the usual metric space (X, |·|) nor in
the metric-like space (X,σ). Indeed, at the points x1 = x2 = 1, x3 = 2, we have
|f(x1, x2)− f(x2, x3)| = 1 and max{|x1 − x2|, |x2 − x3|} = 1. Therefore, there exists
no λ ∈ [0, 1) such that∣∣f(x1, x2)− f(x2, x3)

∣∣ 6 λmax
{
|x1 − x2|, |x2 − x3|

}
.

So, f fails to be a Prešić–Ćirić operator in usual metric space (X, |·|) and the result of
Ćirić and Prešić [4] is not applicable.
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At the points x1 = x2 = x3 = 2, we have σ(f(x1, x2), f(x2, x3)) = 2 and
max{σ(x1, x2), σ(x2, x3)} = 2. Therefore, there exists no λ ∈ [0, 1) such that

σ
(
f(x1, x2), f(x2, x3)

)
6 λmax

{
σ(x1, x2), σ(x2, x3)

}
.

So, f fails to be a Prešić–Ćirić type operator (therefore, fails to be a Prešić type operator)
in the metric-like space (X,σ) and the result of Shukla and Fisher [26] is not applicable.

Also, f is not a cyclic-Prešić operator in the usual metric space (X, |·|). Indeed, at the
points x1 = x2 = 1, x3 = 0, we have |f(x1, x2) − f(x2, x3)| = 1 and |x1 − x2| = 0,
|x2 − x3| = 1. Therefore, there exist no nonnegative constants α1, α2 such that α1 +
α2 < 1 and ∣∣f(x1, x2)− f(x2, x3)

∣∣ 6 α1|x1 − x2|+ α2|x2 − x3|.

So, f fails to be a cyclic-Prešić operator in the usual metric space (X, |·|) and the result
of Shukla and Abbas [26] is not applicable.

On the other hand, f(A1 × A2) = {0, 1} ⊆ A1 and f(A2 × A1) = {0, 1} ⊆ A2,
therefore, Y =

⋃m
i=1Ai is a cyclic representation of Y with respect to f . Now it is easy

to see that condition (7) is satisfied with λ ∈ [2/3, 1), therefore, f is a cyclic-Prešić–
Ćirić operator. Thus all the conditions of Theorem 4 are satisfied and f has a fixed point
0 ∈ A1 ∩A2 with σ(0, 0) = 0.

Remark 2. In the above example, the fixed point of f is not unique. Indeed, F(f) =
{0, 2} 6⊂ A1 ∩ A2 and 2 /∈ A1 ∩ A2. Therefore, this example shows that the fixed point
of a cyclic-Prešić–Ćirić operators in a metric-like space may not be unique and the fixed
point may not be in

⋂m
i=1Ai. Also, σ(2, 2) = 2 6= 0, therefore, if v ∈ F(f), then we

may have σ(v, v) 6= 0. While, the self distance of the fixed point of a Prešić operator in
a metric-like space is always zero (see Lemma 9 of [27]).

In Theorem 4, the self distance of fixed point u is zero, because u is the limits of a 0-σ-
Cauchy sequence in a 0-σ-complete metric-like space. The following remark is useful in
proving the uniqueness of fixed point of a cyclic-Prešić–Ćirić operator and it shows that
if F(f) ⊂

⋂m
i=1Ai, then the self distance of any fixed point of a cyclic-Prešić–Ćirić

operator on a metric-like spaces must be zero.

Remark 3. Let A1, A2, . . . , Am be subsets of a metric-like space (X,σ), k a positive
integer, and Y =

⋃m
i=1Ai. Let f : Y k → Y be a cyclic-Prešić–Ćirić operator such that

F(f) ⊂
⋂m
i=1Ai. Then, for every v ∈ F(f), we have σ(v, v) = 0.

Proof. Let v ∈ F(f) and σ(v, v) > 0. As F(f) ⊂
⋂m
i=1Ai, we obtain from (7) that

σ(v, v) = σ
(
f(v, v, . . . , v), f(v, v, . . . , v)

)
6 λmax

{
σ(v, v), σ(v, v), . . . , σ(v, v)

}
= λσ(v, v) < σ(v, v).

This contradiction shows that σ(v, v) = 0.
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Next theorem provides some sufficient conditions for the uniqueness of fixed point of
cyclic-Prešić–Ćirić operators.

Theorem 5. Let A1, A2, . . . , Am be closed subsets of a 0-σ-complete metric-like space
(X,σ), k a positive integer, and Y =

⋃m
i=1Ai. Let f : Y k → Y be a cyclic-Prešić–Ćirić

operator. Then
⋂m
i=1Ai 6= ∅ and f has a fixed point u ∈

⋂m
i=1Ai such that σ(u, u) = 0.

If, in addition, the following conditions are satisfied:

(A) F(f) ⊂
⋂m
i=1Ai;

(B) one of the following conditions is satisfied:

(B1) on the diagonal ∆ ⊂ (
⋂m
i=1Ai)

k,

σ
(
f(x, . . . , x), f(y, . . . , y)

)
< σ(x, y)

holds for all x, y ∈
⋂m
i=1Ai with x 6= y, or

(B2) in condition (7), the constant λ ∈ (0, 1/k).

Then the fixed point of f is unique.

Proof. The existence of a fixed point u ∈
⋂m
i=1Ai with σ(u, u) = 0 follows from

Theorem 4. Suppose F(f) ⊂
⋂m
i=1Ai and the condition (B1) is satisfied. Suppose

v ∈ F(f) with u 6= v. As u, v ∈
⋂m
i=1Ai, we have

σ(u, v) = σ
(
f(u, . . . , u), f(v, . . . , v)

)
< σ(u, v).

This contradiction shows that the fixed point of f is unique.
Now suppose F(f) ⊂

⋂m
i=1Ai and condition (B2) is satisfied. Suppose v ∈ F(f)

with u 6= v, then by Remark 3 we have σ(v, v) = 0. Therefore, it follows from (7) that

σ(u, v) = σ
(
f(u, u, . . . , u), f(v, v, . . . , v)

)
6 σ

(
f(u, u, . . . , u), f(u, . . . , u, v)

)
+ σ

(
f(u, . . . , u, v), f(u, . . . , u, v, v)

)
+ · · ·+ σ

(
f(u, v, . . . , v), f(v, v, . . . , v)

)
6 λmax

{
σ(u, u), . . . , σ(u, u), σ(u, v)

}
+ λmax

{
σ(u, u), . . . , σ(u, u), σ(u, v), σ(v, v)

}
+ · · ·+ λmax

{
σ(u, v), σ(v, v), . . . , σ(v, v)

}
6 λmax

{
0, . . . , 0, σ(u, v)

}
+ λmax

{
0, . . . , 0, σ(u, v), 0

}
+ · · ·+ λmax

{
σ(u, v), 0, . . . , 0

}
= kλσ(u, v)

< σ(u, v)

(
as λ ∈

(
0,

1

k

))
.

This contradiction shows that σ(u, v) = 0, that is, u = v. Thus, the fixed point of f is
unique.
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