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Abstract. In this work, by virtue of the Krasnoselskii–Zabreiko fixed point theorem, we investigate
the existence of positive solutions for a class of fractional boundary value problems under some
appropriate conditions concerning the first eigenvalue of the relevant linear operator. Moreover, we
utilize the method of lower and upper solutions to discuss the unique positive solution when the
nonlinear term grows sublinearly.
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1 Introduction

In this paper we consider the existence of positive solutions for the boundary value
problem of fractional order involving Riemann–Liouville’s derivative

Dα
0+D

α
0+u = f

(
t, u, u′,−Dα

0+u
)
, t ∈ [0, 1],

u(0) = u′(0) = u′(1) = Dα
0+u(0) = Dα+1

0+ u(0) = Dα+1
0+ u(1) = 0,

(1)

where α ∈ (2, 3] is a real number, Dα
0+ is the standard Riemann–Liouville fractional

derivative of order α and f ∈ C([0, 1]× R3
+,R+) (R+ := [0,+∞)).

Recently, the fractional differential calculus and fractional differential equation have
drawn more and more attention due to the applications of such constructions in various
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sciences such as physics, mechanics, chemistry, engineering, etc. Many books on frac-
tional calculus, fractional differential equations have appeared, for instance, see [7,10,11].
This may explain the reason that the last two decades have witnessed an overgrowing
interest in the research of such problems, with many papers in this direction published.
We refer the interested reader to [1, 2, 4, 5, 6, 12, 13, 14, 15] and the references therein.

In [4,6], by using the fixed point index theory and Krein–Rutman theorem, Jiang et al.
obtained the existence of positive solutions for the multi-point boundary value problems
of fractional differential equations

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1, 1 < α 6 2,

u(0) = 0, Dβ
0+u(1) =

m−2∑
i=1

aiD
β
0+u(ξi),

(2)

and
Dαu−Mu = λf

(
t, u(t)

)
, t ∈ [0, 1], 0 < α < 1,

u(0) =

n∑
i=1

βiu(ξi).
(3)

In this paper, we first construct an integral operator for the corresponding linear
boundary value problem and find out its first eigenvalue and eigenfunction. Then we
establish a special cone associated with the Green’s function of (1). Finally, by employing
the Krasnoselskii–Zabreiko fixed point theorem, combined with a priori estimates of
positive solutions, we obtain the existence of positive solutions for (1). Note that our
nonlinear term f involves the fractional derivatives of the dependent variable–this is
seldom studied in the literature and most research articles on boundary value problems
consider nonlinear terms that involve the unknown function u only, for example, [1, 2, 4,
5,6,12,13,15]. Moreover, we adopt the method of lower and upper solutions to discuss the
uniqueness of positive solutions for (1), and prove that the unique positive solution can
be uniformly approximated by an iterative sequence beginning with any function which
is continuous, nonnegative and not identically vanishing on [0, 1] This, together with the
fact that our nonlinearity may be of distinct growth, means that our methodology and
main results here are entirely different from those in the above papers.

2 Preliminaries

For convenience, we give some background materials from fractional calculus theory to
facilitate analysis of problem (1). These materials can be found in the recent books, see
[7, 10, 11].

Definition 1. (See [7,10], [11, pp. 36–37].) The Riemann–Liouville fractional derivative
of order α > 0 of a continuous function f : (0,+∞)→ (−∞,+∞) is given by

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)n t∫
0

(t− s)n−α−1f(s) ds,
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where n = [α] + 1, [α] denotes the integer part of number α, provided that the right side
is pointwise defined on (0,+∞).

Definition 2. (See [11, Def. 2.1].) The Riemann–Liouville fractional integral of order
α > 0 of a function f : (0,+∞)→ (−∞,+∞) is given by

Iα0+f(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s) ds,

provided that the right side is pointwise defined on (0,+∞).

From the definition of the Riemann–Liouville derivative, we can obtain the following
statement.

Lemma 1. (See [1].) Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional
differential equation Dα

0+u(t) = 0 has a unique solution

u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cN t
α−N , ci ∈ R, i = 1, 2, . . . , N,

where N is the smallest integer greater than or equal to α.

Lemma 2. (See [1].) Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of
order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cN t

α−N , ci ∈ R, i = 1, 2, . . . , N,

where N is the smallest integer greater than or equal to α.

In what follows, we shall discuss some properties of the Green’s function for fractional
boundary value problem (1). Let

G1(t, s) :=
1

Γ(α)

{
tα−1(1− s)α−2 − (t− s)α−1, 0 6 s 6 t 6 1,

tα−1(1− s)α−2, 0 6 t 6 s 6 1.
(4)

Then we can easily obtain that

G2(t, s) :=
∂

∂t
G1(t, s)

=
α− 1

Γ(α)

{
tα−2(1− s)α−2 − (t− s)α−2, 0 6 s 6 t 6 1,

tα−2(1− s)α−2, 0 6 t 6 s 6 1.
(5)

Lemma 3. (See [2, Lemma 2.7].) Let f be as in (1) and −Dα
0+u := v. Then (1) is

equivalent to

v(t) =

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)v(τ) dτ,

1∫
0

G2(s, τ)v(τ) dτ, v(s)

)
ds. (6)

Nonlinear Anal. Model. Control, 21(1):1–17
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Lemma 4. (See [2, Lemma 2.8] and [5, Thms. 1.1, 1.2].) The functions Gi(t, s) ∈
C([0, 1]× [0, 1],R+) (i = 1, 2), moreover, the following two inequalities hold:

tα−1s(1− s)α−2

6 Γ(α)G1(t, s) 6 s(1− s)α−2 ∀t, s ∈ [0, 1]. (7)

(α− 1)(α− 2)tα−2(1− t)s(1− s)α−2

6 Γ(α)G2(t, s) 6 (α− 1)tα−3s(1− s)α−2 ∀t, s ∈ [0, 1]. (8)

In what follows, we shall define two extra functions by G1, G2. Let

G3(t, s) :=

1∫
0

G1(t, τ)G1(τ, s) dτ ∀t, s ∈ [0, 1],

G4(t, s) :=

1∫
0

G1(t, τ)G2(τ, s) dτ ∀t, s ∈ [0, 1].

(9)

Then Gi(t, s) ∈ C([0, 1]× [0, 1],R+) (i = 3, 4). Moreover, by Lemma 4, we easily have

α

(α− 1)Γ(2α)
tα−1s(1− s)α−2

=

1∫
0

tα−1τ(1− τ)α−2

Γ(α)
· τ

α−1s(1− s)α−2

Γ(α)
dτ 6 G3(t, s)

6

1∫
0

s(1− s)α−2τ(1− τ)α−2

Γ2(α)
dτ =

s(1− s)α−2

α(α− 1)Γ2(α)
. (10)

Similarly,

(α− 1)(α− 2)

Γ(2α)
tα−1s(1− s)α−2

=

1∫
0

tα−1τ(1− τ)α−2

Γ(α)
· (α− 1)(α− 2)τα−2(1− τ)s(1− s)α−2

Γ(α)
dτ

6 G4(t, s) 6

1∫
0

(α− 1)τα−3s(1− s)α−2τ(1− τ)α−2

Γ2(α)
dτ

=
s(1− s)α−2

(α− 1)Γ(2α− 2)
. (11)

Let

E := C[0, 1], ‖v‖ := max
t∈[0,1]

∣∣v(t)
∣∣, P :=

{
v ∈ E: v(t) > 0 ∀t ∈ [0, 1]

}
.
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Then (E, ‖·‖) becomes a real Banach space and P is a cone onE. DefineBρ := {v ∈ E:
‖v‖ < ρ} for ρ > 0 in the sequel.

Let

(Av)(t) :=

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)v(τ) dτ,

1∫
0

G2(s, τ)v(τ) dτ, v(s)

)
ds (12)

for all v ∈ E. The continuity of G1, G2 and f implies that A : E → E is a completely
continuous nonlinear operator. As mentioned in Lemma 3, −Dα

0+u = v, together with
the boundary conditions u(0) = u′(0) = u′(1) = 0, we have

u(t) =

1∫
0

G1(t, s)v(s) ds, (13)

where G1 is determined by (4). Therefore, we find the existence of solutions of (1) is
equivalent to that of fixed points of A.

For a, b, c > 0 with a2 + b2 + c2 6= 0, let

Ga,b,c(t, s) := aG3(t, s) + bG4(t, s) + cG1(t, s) ∀t, s ∈ [0, 1],

and define a linear operator La,b,c as follows:

(La,b,cv)(t) =

1∫
0

Ga,b,c(t, s)v(s) ds ∀v ∈ E. (14)

Obviously, La,b,c is positive, i.e., La,b,c(P ) ⊂ P . The continuity of G1, G3, G4 implies
that La,b,c is a completely continuous operator. From now on, we utilize r(La,b,c) to
denote the spectral radius of La,b,c. Furthermore, Gelfand’s theorem enables us to obtain
the following result.

Lemma 5. Let

ξa,b,c :=
aα

(α− 1)Γ(2α)
+
b(α− 1)(α− 2)

Γ(2α)
+

c

Γ(α)
,

ηa,b,c :=
a

α(α− 1)Γ2(α)
+

b

(α− 1)Γ(2α− 2)
+

c

Γ(α)
.

Then
ξa,b,cΓ(α+ 1)Γ(α− 1)

Γ(2α)
6 r(La,b,c) 6

ηa,b,c
α(α− 1)

.

Proof. By (7), (10), and (11), we obtain

‖La,b,c‖ = max
t∈[0,1]

1∫
0

Ga,b,c(t, s) ds 6 ηa,b,c

1∫
0

s(1− s)α−2 ds =
ηa,b,c

α(α− 1)
.

Nonlinear Anal. Model. Control, 21(1):1–17
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Similarly, we find, for all n ∈ N+,

∥∥Lna,b,c∥∥ = max
t∈[0,1]

1∫
0

· · ·
1∫

0︸ ︷︷ ︸
n

Ga,b,c(t, sn−2) · · ·Ga,b,c(s2, s1)Ga,b,c(s1, s)

×Ga,b,c(s, τ) dsn−2 · · · ds1 dsdτ

6

[
ηa,b,c

α(α− 1)

]n
.

Gelfand’s theorem implies that

r(La,b,c) = lim
n→∞

n

√
‖Lna,b,c‖ 6

ηa,b,c
α(α− 1)

.

On the other hand,

‖La,b,c‖ = max
t∈[0,1]

1∫
0

Ga,b,c(t, s) ds > max
t∈[0,1]

1∫
0

ξa,b,ct
α−1s(1− s)α−2 ds

=
ξa,b,c

α(α− 1)
.

Similarly, we also obtain

∥∥L2
a,b,c

∥∥ = max
t∈[0,1]

1∫
0

1∫
0

Ga,b,c(t, s)Ga,b,c(s, τ) dτ ds

> max
t∈[0,1]

1∫
0

1∫
0

ξ2a,b,ct
α−1s(1− s)α−2sα−1τ(1− τ)α−2 dτ ds

= ξ2a,b,c

1∫
0

sα(1− s)α−2 ds

1∫
0

τ(1− τ)α−2 dτ

and ∥∥L3
a,b,c

∥∥ > ξ3a,b,c

( 1∫
0

sα(1− s)α−2 ds

)2 1∫
0

τ(1− τ)α−2 dτ.

Therefore, for all n ∈ N+,

∥∥Lna,b,c∥∥ > ξna,b,c

( 1∫
0

sα(1− s)α−2 ds

)n−1 1∫
0

τ(1− τ)α−2 dτ.
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By Gelfand’s theorem, we see

r(La,b,c) = lim
n→∞

n

√
‖Lna,b,c‖ > ξa,b,c

1∫
0

sα(1− s)α−2 ds

=
ξa,b,cΓ(α+ 1)Γ(α− 1)

Γ(2α)
.

This completes the proof.

By Lemma 5, we see r(La,b,c) > 0, and thus the Krein–Rutman theorem [9] asserts
that there are ϕa,b,c ∈ P \ {0} and ψa,b,c ∈ P \ {0} such that

1∫
0

Ga,b,c(t, s)ϕa,b,c(s) ds = r(La,b,c)ϕa,b,c(t),

1∫
0

Ga,b,c(t, s)ψa,b,c(t) dt = r(La,b,c)ψa,b,c(s).

(15)

Note that we can normalize ψa,b,c such that

1∫
0

ψa,b,c(t) dt = 1. (16)

Let ωa,b,c = ξa,b,cη
−1
a,b,c

∫ 1

0
tα−1ψa,b,c(t) dt and define

P0 :=

{
v ∈ P :

1∫
0

v(t)ψa,b,c(t) dt > ωa,b,c‖v‖

}
.

Clearly, P0 is also a cone of E.

Lemma 6. La,b,c(P ) ⊂ P0.

Proof. We easily have the following inequality:

Ga,b,c(t, s) > ξa,b,cη
−1
a,b,ct

α−1Ga,b,c(τ, s) ∀t, s, τ ∈ [0, 1].

For v(t) > 0, t ∈ [0, 1], we have

1∫
0

(La,b,cv)(t)ψa,b,c(t) dt =

1∫
0

1∫
0

Ga,b,c(t, s)v(s)ψa,b,c(t) dsdt

Nonlinear Anal. Model. Control, 21(1):1–17



8 J. Xu, Z. Wei

>

1∫
0

1∫
0

ξa,b,cη
−1
a,b,ct

α−1Ga,b,c(τ, s)v(s)ψa,b,c(t) dsdt

= ξa,b,cη
−1
a,b,c

1∫
0

tα−1ψa,b,c(t) dt

1∫
0

Ga,b,c(τ, s)v(s) ds ∀τ ∈ [0, 1].

Consequently, we see

1∫
0

(La,b,cv)(t)ψa,b,c(t) dt > ωa,b,c‖La,b,cv‖.

This completes the proof.

Lemma 7. (See [8].) Let E be a real Banach space and W a cone of E. Suppose that
A : (BR \Br)∩W →W is a completely continuous operator with 0 < r < R. If either

(i) Au 
 u for each ∂Br ∩W and Au � u for each ∂BR ∩W or
(ii) Au � u for each ∂Br ∩W and Au 
 u for each ∂BR ∩W ,

then A has at least one fixed point on (BR \Br) ∩W .

Lemma 8. (See [3].) Let E be a partial order Banach space, and x0, y0 ∈ E with
x0 6 y0, D = [x0, y0]. Suppose that A : D → E satisfies the following conditions:

(i) A is an increasing operator;
(ii) x0 6 Ax0, y0 > Ay0, i.e., x0 and y0 is a subsolution and a supersolution of A;

(iii) A is a completely continuous operator.

Then A has the smallest fixed point x∗ and the largest fixed point y∗ in [x0, y0], respec-
tively. Moreover, x∗ = limn→∞Anx0 and y∗ = limn→∞Any0.

3 Main results

We first offer twelve fixed numbers αi, βi, γi > 0 which are not all zero and let
r−1(Lαi,βi,γi) = λαi,βi,γi for i = 1, 2, 3, 4. Now, we list our assumptions on f :

(H1) f ∈ C([0, 1]× R3
+,R+); (H1)′ f ∈ C([0, 1]× R3

+, (0,+∞)).

(H2) lim inf
α1x1+β1x2+γ1x3→+∞

f(t, x1, x2, x3)

α1x1 + β1x2 + γ1x3
> λα1,β1,γ1 (17)

uniformly for t ∈ [0, 1].

http://www.mii.lt/NA
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(H3) lim sup
α2x1+β2x2+γ2x3→0+

f(t, x1, x2, x3)

α2x1 + β2x2 + γ2x3
< λα2,β2,γ2 (18)

uniformly for t ∈ [0, 1].

(H4) lim inf
α3x1+β3x2+γ3x3→0+

f(t, x1, x2, x3)

α3x1 + β3x2 + γ3x3
> λα3,β3,γ3 (19)

uniformly for t ∈ [0, 1].

(H5) lim sup
α4x1+β4x2+γ4x3→+∞

f(t, x1, x2, x3)

α4x1 + β4x2 + γ4x3
< λα4,β4,γ4 (20)

uniformly for t ∈ [0, 1].
(H6) There exists a positive constant µ < 1 such that

κµf(t, x1, x2, x3) 6 f(t, κx1, κx2, κx3) ∀κ ∈ (0, 1).

(H7) f(t, x1, x2, x3) is increasing in x1, x2, x3, that is, the inequality

f(t, x1, x2, x3) 6 f(t, x′1, x
′
2, x
′
3)

holds for x1 6 x′1, x2 6 x′2, x3 6 x′3.

3.1 Existence of positive solutions

Theorem 1. Assume that (H1)–(H3) hold. Then (1) has at least one positive solution.

Proof. (H2) implies that there are ε > 0 and c1 > 0 such that

f(t, x1, x2, x3) > (λα1,β1,γ1+ε)(α1x1+β1x2+γ1x3)−c1 ∀xi ∈ R+, t ∈ [0, 1]. (21)

Let M1 := {v ∈ P : v > Av}. We claim that M1 is bounded in P . Indeed, if v ∈M1,
by (12) and (21), we can obtain

v(t) >

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)v(τ) dτ,

1∫
0

G2(s, τ)v(τ) dτ, v(s)

)
ds

> (λα1,β1,γ1 + ε)

[ 1∫
0

α1G3(t, τ)v(τ) dτ +

1∫
0

β1G4(t, τ)v(τ) dτ

+

1∫
0

γ1G1(t, s)v(s) ds

]
− c1
α(α− 1)Γ(α)

= (λα1,β1,γ1 + ε)

1∫
0

Gα1,β1,γ1(t, s)v(s) ds− c1
α(α− 1)Γ(α)

. (22)

Nonlinear Anal. Model. Control, 21(1):1–17
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Multiply (22) by ψα1,β1,γ1(t) on both sides and integrate over [0, 1] and use (15), (16) to
obtain

1∫
0

v(t)ψα1,β1,γ1(t) dt >
λα1,β1,γ1 + ε

λα1,β1,γ1

1∫
0

v(t)ψα1,β1,γ1(t) dt− c1
α(α− 1)Γ(α)

. (23)

Therefore, we have

1∫
0

v(t)ψα1,β1,γ1(t) dt 6
ε−1λα1,β1,γ1c1
α(α− 1)Γ(α)

. (24)

Consequently, Lemma 6 implies that

ωα1,β1,γ1‖v‖ 6
ε−1λα1,β1,γ1c1
α(α− 1)Γ(α)

, (25)

and hence,

‖v‖ 6
ε−1ω−1α1,β1,γ1

λα1,β1,γ1c1

α(α− 1)Γ(α)
(26)

for all v ∈M1. Taking R > sup{‖v‖: v ∈M1}, we obtain

v � Av ∀v ∈ ∂BR ∩ P. (27)

On the other hand, by (H3), there exist r ∈ (0, R) and ε ∈ (0, λα2,β2,γ2) such that

f(t, x1, x2, x3) 6 (λα2,β2,γ2 − ε)(α2x1 + β2x2 + γ2x3) (28)

for all xi ∈ [0, r] and t ∈ [0, 1]. This implies that

(Av)(t) 6 (λα2,β2,γ2 − ε)
1∫

0

G1(t, s)

×

(
α2

1∫
0

G1(s, τ)v(τ) dτ + β2

1∫
0

G2(s, τ)v(τ) dτ + γ2v(s)

)
ds

= (λα2,β2,γ2 − ε)
1∫

0

Gα2,β2,γ2(t, s)v(s) ds (29)

for all v ∈ Br ∩ P . Let M2 := {v ∈ Br ∩ P : v 6 Av}. Now, we claim M2 = {0}.
Indeed, if v ∈M2, by (29), we have

v(t) 6 (λα2,β2,γ2 − ε)
1∫

0

Gα2,β2,γ2(t, s)v(s) ds.

http://www.mii.lt/NA



Positive solutions for a class of fractional boundary value problems 11

Multiply (22) by ψα2,β2,γ2(t) on both sides and integrate over [0, 1] and use (15), (16) to
obtain

1∫
0

v(t)ψα2,β2,γ2(t) dt 6 (λα2,β2,γ2 − ε)λ−1α2,β2,γ2

1∫
0

v(t)ψα2,β2,γ2(t) dt

and thus
∫ 1

0
v(t)ψα2,β2,γ2(t) dt = 0. Consequently, we have v(t) ≡ 0, i.e., M2 = {0}.

Therefore,
v 
 Av ∀v ∈ ∂Br ∩ P. (30)

Now Lemma 7 indicates that the operatorA has at least one fixed point on (BR \Br)∩P .
That is, (1) has at least one positive solution. This completes the proof.

Theorem 2. Assume that (H1), (H4) and (H5) hold. Then (1) has at least one positive
solution.

Proof. By (H4), there exist r > 0 and ε > 0 such that

f(t, x1, x2, x3) > (λα3,β3,γ3 + ε)(α3x1 + β3x2 + γ3x3) ∀xi ∈ [0, r], t ∈ [0, 1]. (31)

This implies

(Av)(t) > (λα3,β3,γ3 + ε)

1∫
0

Gα3,β3,γ3(t, s)v(s) ds (32)

for all v ∈ Br ∩ P . Let M3 := {v ∈ Br ∩ P : v > Av}. We claim that M3 = {0}.
Indeed, if v ∈M3, combining with (32), we find

v(t) > (λα3,β3,γ3 + ε)

1∫
0

Gα3,β3,γ3(t, s)v(s) ds. (33)

Multiply (33) by ψα3,β3,γ3(t) on both sides and integrate over [0, 1] and use (15), (16) to
obtain

1∫
0

v(t)ψα3,β3,γ3(t) dt > (λα3,β3,γ3 + ε)λ−1α3,β3,γ3

1∫
0

v(t)ψα3,β3,γ3(t) dt

and thus
∫ 1

0
v(t)ψα3,β3,γ3(t) dt = 0. Hence, we see v(t) ≡ 0, i.e., M3 = {0}. Conse-

quently,
v � Av ∀v ∈ ∂Br ∩ P. (34)

In addition, by (H5), there exist ε ∈ (0, λα4,β4,γ4) and c2 > 0 such that

f(t, x1, x2, x3) 6 (λα4,β4,γ4−ε)(α4x1+β4x2+γ4x3)+c2 ∀xi > 0, t ∈ [0, 1]. (35)

Nonlinear Anal. Model. Control, 21(1):1–17



12 J. Xu, Z. Wei

Let M4 := {v ∈ P : v 6 Av}. We shall prove that M4 is bounded in P . Indeed, if
v ∈M4, then we have

v(t) 6 (λα4,β4,γ4 − ε)
1∫

0

Gα4,β4,γ4(t, s)v(s) ds+
c2

α(α− 1)Γ(α)
. (36)

Multiply (36) by ψα4,β4,γ4(t) on both sides and integrate over [0, 1] and use (15), (16) to
obtain

1∫
0

v(t)ψα4,β4,γ4(t) dt 6 (λα4,β4,γ4−ε)λ−1α4,β4,γ4

1∫
0

v(t)ψα4,β4,γ4(t) dt+
c2

α(α− 1)Γ(α)

and then
1∫

0

v(t)ψα4,β4,γ4(t) dt 6
ε−1λα4,β4,γ4c2
α(α− 1)Γ(α)

.

It follows from Lemma 6 that

‖v‖ 6
ε−1ω−1α4,β4,γ4

λα4,β4,γ4c2

α(α− 1)Γ(α)
(37)

for all v ∈M4. Choosing R > sup{‖v‖: v ∈M4} and R > r, we have

v 
 Av ∀v ∈ ∂BR ∩ P. (38)

Now Lemma 7 implies thatA has at least one fixed point on (BR \Br)∩P . Equivalently,
(1) has at least one positive solution. This completes the proof.

3.2 Uniqueness of positive solutions

In order to obtain our main results in this subsection, we first offer some lemmas. From
now on, we always assume that (H1)′ holds.

Lemma 9. If v(t) ∈ C[0, 1] is a positive fixed point of A in (12), then there exist
two positive constants av and bv such that avρ(t) 6 v(t) 6 bvρ(t), where ρ(t) =∫ 1

0
G1(t, s) ds.

Proof. The continuity of G1, G2 and v implies that there exists M > 0 such that |v(t)| 6
M and |

∫ 1

0
Gi(t, s)v(s) ds| 6M for all t ∈ [0, 1]. Taking

av = min
(t,x1,x2,x3)∈[0,1]×[0,M ]3

f(t, x1, x2, x3) > 0,

bv = max
(t,x1,x2,x3)∈[0,1]×[0,M ]3

f(t, x1, x2, x3) > 0.
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Then we have

avρ(t) 6 v(t) = (Av)(t)

=

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)v(τ) dτ,

1∫
0

G2(s, τ)v(τ) dτ, v(s)

)
ds

6 bvρ(t).

This completes the proof.

Lemma 10. Suppose that (H1)′, (H4)–(H7) hold. Then the operator A has exactly one
positive fixed point.

Proof. By Theorem 2, A has at least one positive fixed point. It then remains to prove that
A has at most one positive fixed point. Indeed, if v1 and v2 are two positive fixed points
of A, then

vi(t) =

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)vi(τ) dτ,

1∫
0

G2(s, τ)vi(τ) dτ, vi(s)

)
ds,

where i = 1, 2. By Lemma 9, there exist four positive numbers ai, bi for which aiρ(t) 6
vi(t) 6 biρ(t) for t ∈ [0, 1] and i = 1, 2. Clearly, v2 > (a2/b1)v1.

Let γ0 := sup{γ > 0: v2 > γv1} ( 6= ∅). Then γ0 > 0 and v2 > γ0v1. We shall claim
that γ0 > 1. Suppose the contrary. Then γ0 < 1 and

v2(t) >

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)γ0v1(τ) dτ,

1∫
0

G2(s, τ)γ0v1(τ) dτ, γ0v1(s)

)
ds

=

1∫
0

G1(t, s)g(s) ds+ γµ0 v1(t),

where

g(s) = f

(
s,

1∫
0

G1(s, τ)γ0v1(τ) dτ,

1∫
0

G2(s, τ)γ0v1(τ) dτ, γ0v1(s)

)

− γµ0 f

(
s,

1∫
0

G1(s, τ)v1(τ) dτ,

1∫
0

G2(s, τ)v1(τ) dτ, v1(s)

)
.

(H6) implies that g ∈ P \{0} and there is a a3 > 0 such that
∫ 1

0
G1(t, s)g(s) ds > a3ρ(t)

by Lemma 9. Consequently, v2(t) > a3ρ(t) + γµ0 v1(t) > (a3/b1)v1(t) + γ0v1(t), which
contradicts the definition of γ0. As a result, γ0 > 1 and v2 > v1. Similarly, v1 > v2.
Hence, v1 = v2. This completes the proof.

Nonlinear Anal. Model. Control, 21(1):1–17
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Theorem 3. Let all the conditions in Lemma 10 hold and v∗(t) be the unique positive
solution of A. Then for any v0 ∈ P \ {0}, we have Anv0 → v∗(n → ∞) uniformly in
t ∈ [0, 1].

Proof. Clearly, ρ(t) =
∫ 1

0
G1(t, s) ds is a bounded function on [0, 1]. Then by Lemma 9,

there exist aρ, bρ > 0 such that

aρρ(t) 6

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)ρ(τ) dτ,

1∫
0

G2(s, τ)ρ(τ) dτ, ρ(s)

)
ds

:= η(t) 6 bρρ(t).

Let β1(t) = δη(t) with 0 < δ < min{1/bρ, aµ/(1−µρ }. Then we can choose 0 < ε <
min{1, aρ}, and

(Aεβ1)(t)

=

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)εβ1(τ) dτ,

1∫
0

G2(s, τ)εβ1(τ) dτ, εβ1(s)

)
ds

=

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)
εβ1(τ)

ρ(τ)
ρ(τ) dτ,

1∫
0

G2(s, τ)
εβ1(τ)

ρ(τ)
ρ(τ) dτ,

εβ1(s)

ρ(s)
ρ(s)

)
ds

> εµ(δaρ)
µ

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)ρ(τ) dτ,

1∫
0

G2(s, τ)ρ(τ) dτ, ρ(s)

)
ds

= εµ(δaρ)
µη(t) > εµδη(t) > εδη(t) = εβ1(t).

Thus we have Aεβ1 > εβ1. On the other hand, let β2(t) = ξη(t) with ξ > max{1/aρ,
b
µ/(1−µ)
ρ }. Taking ε > max{1, bρ}, we find

εβ2(t) > εµξη(t)

= εµξ

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)ρ(τ) dτ,

1∫
0

G2(s, τ)ρ(τ) dτ, ρ(s)

)
ds

> εµξ

1∫
0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)ρ(τ)εβ2(τ)

εβ2(τ)
dτ,

1∫
0

G2(s, τ)ρ(τ)εβ2(τ)

εβ2(τ)
dτ,

ρ(s)εβ2(s)

εβ2(s)

)
ds
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> εµξε−µ(ξbρ)
−µ

×
1∫

0

G1(t, s)f

(
s,

1∫
0

G1(s, τ)εβ2(τ) dτ,

1∫
0

G2(s, τ)εβ2(τ) dτ, εβ2(s)

)
ds

>

1∫
0

G1(t, s)f

(
s,

∫ 1

0

G1(s, τ)εβ2(τ) dτ,

1∫
0

G2(s, τ)εβ2(τ) dτ, εβ2(s)

)
ds

= (Aεβ2)(t).

Hence, Aεβ2 6 εβ2.
(H7) implies that A is an increasing operator. It follows from Lemma 8 that A has the

smallest fixed point v∗∗ and the largest fixed point v∗∗ in [εβ1, εβ2], respectively. Based
on this, we first show v∗ ∈ [εβ1, εβ2]. Indeed, for all n ∈ N+, we have

εβ1 6 Anεβ1 6 Anεβ2 6 εβ2. (39)

Let n → ∞ in (39), we see εβ1 6 v∗∗ 6 v∗ 6 v∗∗ 6 εβ2. For all εβ1 6 v0 6 εβ2 and
n ∈ N+, we have v0 ∈ P \ {0} and

Anεβ1 6 Anv0 = vn 6 Anεβ2. (40)

By Theorem 2 and Lemma 10, we know that A has only a positive fixed point, i.e.,
limn→∞Anεβ1 = limn→∞Anεβ2 = v∗, and thus limn→∞Anv0 → v∗. This completes
the proof.

To facilitate computations for the following examples, let α1 = α2, β1 = β2, γ1 = γ2,
α3 = α4, β3 = β4, γ3 = γ4 in (H2)–(H5).

Example 1. Let α = 2.5, α1 = Γ2(α) = 9π/16 ≈ 1.77, β1 = Γ(2α) = 24, γ1 =
Γ(α) = 3

√
π/4 ≈ 1.33. Then by Lemma 5, we get 0.23 6 r(Lα1,β1,γ1) 6 2.47, and

0.40 6 λα1,β1,γ1 6 4.35.
Let

f(t, x1, x2, x3) =
1

4

∣∣ sin(α1x1 + β1x2 + γ1x3)
∣∣+ (α1x1 + β1x2 + γ1x3)2.

Then

lim inf
α1x1+β1x2+γ1x3→+∞

1
4 | sin(α1x1 + β1x2 + γ1x3)|+ (α1x1 + β1x2 + γ1x3)2

α1x1 + β1x2 + γ1x3

=∞ > λα1,β1,γ1 ,

and

lim sup
α1x1+β1x2+γ1x3→0+

1
4 | sin(α1x1 + β1x2 + γ1x3)|+ (α1x1 + β1x2 + γ1x3)2

α1x1 + β1x2 + γ1x3

=
1

4
< λα1,β1,γ1

Nonlinear Anal. Model. Control, 21(1):1–17
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uniformly for t ∈ [0, 1]. All conditions of Theorem 1 hold. Therefore, (1) has at least one
positive solution.

Example 2. Let α = 2.5, α3 = Γ2(α) = 9π/16 ≈ 1.77, β3 = Γ(2α − 2) = 2, γ3 =
Γ(α − 1) =

√
π/2 ≈ 0.89. Then from Lemma 5 we have 0.10 6 r(Lα3,β3,γ3) 6 0.43,

and 2.33 6 λα3,β3,γ3 6 10.
Let

f(t, x1, x2, x3) = et + ln
(
1 + (α3x1 + β3x2 + γ3x3)

)
.

Then

lim inf
α3x1+β3x2+γ3x3→0+

et + ln(1 + (α3x1 + β3x2 + γ3x3))

α3x1 + β3x2 + γ3x3
=∞ > λα3,β3,γ3

and

lim sup
α3x1+β3x2+γ3x3→+∞

et + ln(1 + (α3x1 + β3x2 + γ3x3))

α3x1 + β3x2 + γ3x3
= 0 < λα3,β3,γ3

uniformly for t ∈ [0, 1]. Hence, (H4), (H5) hold, and Theorem 2 implies that (1) has at
least one positive solution.

Example 3. Let α = 2.5, α3 = Γ2(2α− 2) = 4, β3 = γ3 = Γ(α− 2) =
√
π ≈ 1.77. By

Lemma 5, we can obtain λα3,β3,γ3 ∈ [1.48, 4.90].
Let

f(t, x1, x2, x3) = et +
√
α3x1 + β3x2 + γ3x3.

Similar with Example 2, we can show (H4) and (H5) hold. On the other hand, for any
κ ∈ (0, 1), we have

√
κ 6 1 and

√
κ
[
et +

√
α3x1 + β3x2 + γ3x3

]
=
√
κet +

√
α3κx1 + β3κx2 + γ3κx3 6 et +

√
α3κx1 + β3κx2 + γ3κx3.

As a result, (H6) is also satisfied. In addition, (H1)′ and (H7) automatically hold. Hence,
from Theorem 3, (1) has a unique positive solution.
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