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Abstract. This paper considers the state constrained optimal control problem for Lengyel–Epstein
model with obstacles. We prove existence and regularity results for this model by applying the
standard methods. We show the relationship between the control problem and its approximation.
Moreover, we derive the necessary conditions for the optimal control of our original problem by
using the approximate problem.
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1 Introduction

This paper is concerned with the state constrained optimal control problem for the
Lengyel–Epstein model

minL(u, v, w) =

T∫
0

[
g
(
t, u(t)

)
+ h
(
w(t)

)]
dt (1)

subject to

ut −∆u+ cu+
4uv

1 + u2
+ κ∂I[σ∗,σ∗](u) 3 a− φ in Q := Ω × (0, T ),

vt − δ∆v − bθu+
θuv

1 + u2
= θφ+Bw in Q,

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

u(x, t) = 0, v(x, t) = 0 on Σ := ∂Ω × (0, T )

(2)

and
F (u) ⊂ S, (3)

where Ω is a bounded domain in RN (N = 1, 2, 3) with a smooth boundary ∂Ω, say
of class C2, u and v are the dimensionless concentration for activator and inhibitor,
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Optimal control problem for Lengyel–Epstein model 19

respectively; a, b, c and θ are dimensionless parameters of the chemical system; δ > 0
is proportional to the ratio of the diffusion coefficients of the main species. The obstacle
∂I[σ∗,σ∗](u) is the subdifferential of the indicator function I[σ∗,σ∗](u) on the closed in-
terval [σ∗, σ

∗]; κ > 0, σ∗, σ∗ ∈ R are the given constants. u0(x), h0(x) and φ(x, t) are
given functions and Bw is the control term. Here F (u) ⊂ S is the state constraint, which
can be regarded as the description of the physical background of the Lengyel–Epstein
model.

Equation (2) without the control term Bw and κ = 0 is the classical Lengyel–
Epstein model (see [4, 6, 10, 11, 13, 15, 16, 20, 26]). It comes from the reaction between
chlorine dioxide, iodine and malonic acid (CDIMA reaction), and is one of the most
thoroughly studied oscillatory chemical systems both in experiment and in numeric. In
[10], the photosensitive CDIMA reaction was investigated by using the Lengyel–Epstein
model modified to include the effect of external illumination. Jensen et al. studied the
localized structures and front propagation in the Lengyel–Epstein model [13]. Recently,
based on Runge–Kutta method, Bastian, Kartawidjaja [4] solved the parallel performance
of the Lengyel–Epstein model. More recently, Váquez et al. [10] studied the chaotic
behaviors induced by modulated illumination in the Lengyel–Epstein model under Turing
considerations. As we all know, in some physical examples, the range of the activator u
would not be the whole real numbers R, but often be a bounded closed interval [σ∗, σ

∗].
Here we are going to pay attention to this point and give an adequate mathematical
treatment to it. Note that ∂I[σ∗,σ∗](u) is a multi-valued and maximal monotone graph
in R, which can coincide with the subdifferential of I[σ∗,σ∗](u). Namely, I[σ∗,σ∗](u) is
assumed to be +∞ out of a bounded interval.

Throughout this paper we denote L2(Ω) by H with the usual norm denoted by |·|2,
and H1

0 (Ω) by V endowed with norm ‖v‖V = |∇v|2, which is denoted by ‖·‖1. Set
H1(0, T ;H) = {y ∈ L2(0, T ;H); yt ∈ L2(0, T ;H)}, H2,1(Q) = {y ∈ L2(0, T ;
H2(Ω)); yt ∈ L2(Q)} and W 1,2(0, T ;V ∗) = {y ∈ L2(0, T ;V ∗); yt ∈ L2(0, T ;V ∗)}.
Then we have V ⊂ H ⊂ V ∗ = H−1 and denote 〈·〉 be the scalar product of H and the
pairing between V and V ∗.

A pair (u, v) is said to be a weak solution of (2) if and only if

(u, v) ∈
(
C
(
[0, T ];H

)
∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗)

)2
and (u, v) satisfies

d

dt

(
u, ũ

)
+ (∇u,∇ũ) +

(
cu+

4uv

1 + u2
+ κ∂I[σ∗,σ∗](u), ũ

)
3 (a− φ, ũ) ∀ũ ∈ V,

d

dt

(
v, ṽ
)

+ δ(∇v,∇ṽ) +

(
−bθu+

θuv

1 + u2
, ṽ

)
=
(
Bw, ṽ

)
∀ ṽ ∈ V,

u(0) = u0, v(0) = v0

(4)

in the sense of D′(0, T ). Let U be a real Hilbert space and B : U → H be a linear
continuous operator. Assume that Z is a Banach space with the dual Z∗, which is strictly
convex, and S ⊂ Z is a closed convex subset with finite codimensionality.
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20 J. Zheng

The following items are the assumptions on data:

(H1) F : L2(0, T ;H)→ Z is in the class of C1.
(H2) g : [0, T ] × H → R+ is measurable in t, g(t, 0) ∈ L∞(0, T ) and for every

Λ > 0, there exists LΛ > 0 independent on t such that for t ∈ [0, T ] and
|y|2 + |z|2 6 Λ, ∣∣g(t, y)− g(t, z)

∣∣ 6 LΛ|y − z|2.

(H3) U → R̄ is lower semicontinuous and convex with the following growth prop-
erty: there exist c1 > 0 and c2 ∈ R such that

h(u) > c1‖u‖2U + c2 ∀u ∈ U.
Let

Aad =
{

(u, v, w) ∈ Y × Y × L2(0, T ;U): (u, v) is the solution of (2)

corresponding to w,F (u) ⊂ S
}
,

where

Y =

{
y ∈ L2

(
0, T ;H2(Ω)

)
∩ C

(
[0, T ];V

)
,

dy

dt
∈ L2(0, T ;H)

}
and F (u) ⊂ S is the state constraint. In this paper, we consider the following optimal
control problem:

Minimize (P): L(u, v, w) over all (u, v, w) ∈ Aad.

It is known that for each w ∈ L2(Q), u0 ∈ V and v0 ∈ V , system (2) has a unique
solution u, v ∈ Y (see [9]). The first question regarding problem (P) is if there is an ad-
missible solution, namely, if the set Aad is nonempty. Taking into account the arguments
in the proof of the main results in [3], we may assume in the sequel that problem (P)
admits at least one admissible solution.

In the past decades, much attention has been paid to the optimal control problems
governed by nonlinear parabolic system including semilinear equations, variational in-
equalities and system with phase transitions [5, 7, 8, 12, 14, 18, 21, 22, 23, 27, 28]. In
particular, the optimal control for semilinear parabolic system without state constraint
was discussed in [14, 21, 25, 29]. Recently, in [23], based on the energy estimates and the
compact methods, Ryu and Yagi considered the optimal control problems of adsorbate–
induced phase transition model. More recently, a first order optimality condition for non-
homogeneous Cauchy–Neumann boundary optimal control problem of non-linear phase-
field system was derived in [5]. In [24], the authors studied Pontryagin’s maximum prin-
ciple for optimal control problems (with a state constraint) governed by the 3-dimensional
Navier–Stokes equations. In order to overcome the problem associated with the state con-
straint, the authors first defined a new penalty functional depending on a small parameter ε
with which they approximated the original problem with a family of optimal control
problems (Pε) without state constraints. Pontryagin’s maximum principle is derived for
the approximate problem (Pε) and the limit as ε goes to 0 yields an optimality condition
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Optimal control problem for Lengyel–Epstein model 21

for the original control problem with a state constraint. These are the steps followed in this
article. The main differences between the present work and works mentioned above are as
follows. In this paper, the nonlinearity involved in the Lengyel–Epstein model is stronger
than that in the 3-dimensional Navier–Stokes equations, which makes the analysis of the
optimal control problems in this article more involved. Moreover, because of the obstacle
∂I[σ∗,σ∗](u) in the first equation of system (2), we cannot obtain the optimal conditions
of problem (2) directly. In this paper, we derive the necessary conditions for problem (P)
by showing the relation between approximation problem (Pε) (problem (Pε) contains the
approximation of ∂I[σ∗,σ∗](u)) and problem (P).

In order to give the necessary conditions for problem (P), we specify our notion of
a strong solution to problem (2).

Definition 1. A weak solution (u, v) is called a strong solution to problem (2) on the time
interval [0, T ) if it satisfies

(u, v) ∈ Y × Y.

The main purpose of this paper is to derive the necessary optimal conditions for (P)
governed by the Lengyel–Epstein model with state constraints and obstacles, which can
be stated as follows.

Theorem 1. Suppose that (H1), (H2) and (H3) hold and (u∗, v∗, w∗) is optimal for
problem (P). Then there exists a tetrad (µ0, p, q, ζ0) ∈ R×W 1,2(0, T ;V ∗)∩L2(0, T ;V )∩
C([0, T ];H) ×W 1,2(0, T ;V ∗) ∩ L2(0, T ;V ) ∩ C([0, T ];H) × Z∗ and a measure η ∈
L∞(Q)∗ such that

−pt −∆p+ cp+
v∗(1− (u∗)2)

(1 + (u∗)2)2
(4p+ θq)− bθq + η

∈ −
[
F ′(u∗)

]∗
ζ0 − µ0∂g(t, u∗),

−qt − δ∆q +
u∗

1 + (u∗)2
(4p+ θq) = 0,

p(T ) = 0, q(T ) = 0

(5)

and
B∗q(t) ∈ µ0∂h

(
w∗(t)

)
,〈

ζ0, s− F (u∗)
〉
Z∗,Z

6 0 ∀ s ∈ S
(6)

with (µ0, ζ0) 6= 0. Furthermore, if [F ′(u∗)]∗ is injective, then (µ0, p, q) 6= 0.

Remark 1.
(i) For the definition of a set to be finite codimensional in Z and for related results,

one can refer to [1, 17].
(ii) Some basic examples of the F, g, h are: F (u) = u(x, T ), g(t, u) = α|u|22 and

h(w) = |w|22, where α > 0, one can see [18] for more details.
pagebreak
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(iii) Let F ≡ I , Z = L2(0, T ;H), S = {u ∈ L2(0, T ;H)
∫ T
0
|u|22 dt 6 r}. In this

case, (3) is equivalent to
∫ T
0
|u|22 dt 6 r.

(iv) Let Z = RN and hi ∈ H with 1 6 i 6 N , which are linearly independent in H .
We define

F (u) =

(∫
Q

u(x, t)h1(x, t) dxdt,

∫
Q

u(x, t)h2(x, t) dxdt, . . . ,

∫
Q

u(x, t)hN (x, t) dxdt

)
and

S =
(
[a1, b1], [a2, b2], . . . , [aN , bN ]

)
⊂ RN , ai < bi, i = 1, 2, . . . , N,

then S is a convex and closed subset with finite codimensionality in RN . Consider
a state constraint of the form

ai 6
∫
Q

u(x, t)hi(x, t) dxdt 6 bi, i = 1, 2, . . . , N,

we have [F ′(u)]∗y =
∑N
i=1 yihi with y := (y1, y2, . . . , yN ) ∈ RN . Due to

hi ∈ H are linearly independent in H , [F ′(u)]∗ is injective.
(v) The (u∗, v∗, w∗) is optimal for problem (P) if and only if there exists (u∗, v∗, w∗)∈

Aad, which satisfies that L(u∗, v∗, w∗) = minL(u, v, w).

(vi) The relations (5), (6)2 form the adjoint system, (p∗, q∗) is called the adjoint
state and it represents a Lagrange multiplier associated with the state constraint.
Equation (6)1 expresses the maximum principle.

The rest of this paper is organized as follows. In Section 2, we consider the approxi-
mation problem (Pε) of problem (P). After showing the solvability of (Pε), we obtain the
relationship between the optimal control problem (P) and its approximation problem (Pε).
In Section 3, we derive a priori estimates for the optimal pair (uε, vε, wε) of (Pε) and then
use a passage-to-limit procedure with ε↘ 0 to get the optimality conditions for (P).

2 The approximation problem

This section is to show the existence of the optimal control of the approximation problem
corresponding to Lengyel–Epstein model. Firstly, we show some technical lemmas and
the existence of problem (2), which is presented below for the sake of completeness and
easy reference. Next, we prove the existence of the control optimal problem (Pε), which
is the approximation of problem (P). In order to approximate the ∂I[σ∗,σ∗](·), we define
a nondecreasing function βε [19] on R by

βε(r) = sgn(r)

|r|∫
0

min

{
1

ε
,

[−s− σ∗]+

ε2
,

[s− σ∗]+

ε2

}
ds ∀r ∈ R,
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Optimal control problem for Lengyel–Epstein model 23

where [·]+ denotes the positive part. Then βε ∈ C1, (βε)′ ∈W 1,∞(R) and

0 6
(
βε
)′

(r) 6
1

ε
,
∣∣(βε)(r)∣∣ > 1

ε

(
[r − σ∗]++ [−σ∗ − r]+

)
− 1

2
∀ r ∈ R. (7)

We fix a primitive β̂ε of βε such that

β̂ε(0) = 0 and β̂ε(r) > 0 ∀ r ∈ R. (8)

Now, we consider the following approximating system of (2)

ut −∆u+ cu+
4uv

1 + u2
+ κβε(u) = a− φ in Q,

vt − δ∆v − bθu+
θuv

1 + u2
= θφ+Bw in Q,

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

u(x, t) = 0, v(x, t) = 0 on Σ.

(9)

Lemma 1. Suppose that βε satisfies (7)–(8), (u0, v0) ∈ V × V and φ ∈ L2(0, T ;H).

(i) Let Bw ∈ L2(0, T ;H). Then problem (9) admits a unique strong solution
(u, v) ∈ Y × Y , which satisfies the following estimates:∣∣β̂ε∣∣

L∞(0,T ;L1(Ω))
+
∣∣βε∣∣

L2(0,T ;H)
+ |u|L∞(0,T ;V )

+ |u|L2(0,T ;H2(Ω)) + |u′|L2(0,T ;H) 6 C (10)

and
|v|L∞(0,T ;V ) + |v|L2(0,T ;H2(Ω)) + |v′|L2(0,T ;H) 6 C, (11)

where C > 0 is a constant independent of u, v and ε.
(ii) Let wn ∈ L2(0, T ;U), wn → u weakly in L2(0, T ;U) and (u, v), (un, vn) be

the solutions of (9) corresponding to w and wn, respectively. Then on some
subsequence of (un, vn), still denoted by itself, we have(

un, vn
)
→ (u, v) weakly in

(
L2
(
0, T ;H2(Ω)

))2
, (12)(

un, vn
)
→ (u, v) strongly in

(
C
(
[0, T ];H

)
∩ L2(0, T ;V )

)2
(13)

and (
u′n, v

′
n

)
→ (u′, v′) weakly in

(
L2(0, T ;H)

)2
. (14)

Proof. The existence of weak solution is proved by the standard Galerkin method. In-
deed, let

A =

[
−∆ 0

0 −δ∆

]
.

Nonlinear Anal. Model. Control, 21(1):18–39
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Then A is a linear, self-adjoint operator in H with D(A) dense in H . Therefore, we can
define the powers As of s, s ∈ R, and V is nothing other than D(A1/2). Thus, there
exists an orthonormal family ψj (j ∈ N) of H and a sequence ηj (j ∈ N) such that

0 < η1 6 η2 6 · · · 6 ηj →∞ as j →∞,
Aψj = ηjψj .

For n ∈ N, we define the discrete ansatz space by Vn = span{ψ1, ψ2, . . . ψn} ⊂ V . Set
un(t) = un(x, t) =

∑n
i=1u

n
i (t)ψi(x) and require that un,0(x) → u0 in H . Performing

the Galerkin procedure for system (9),

un,t −∆un + cun +
4unvn
1 + u2n

+ κβε(un) = a− φ in Q,

vn,t − δ∆vn − bθun +
θunvn
1 + u2n

= θφ+Bw in Q,

un(x, 0) = un,0(x), vn(x, 0) = vn,0(x) in Ω,

un = vn = 0 on Σ.

(15)

According to the ODE theory, there is a unique solution to (15) in the interval [0, Tn),
where Tn → T is a consequence of the following a priori estimates.

Multiplying (15)1 by un and (15)2 by vn and integrating them, respectively, we derive

1

2

d

dt
|un|22 + |∇un|22 + c|un|22 +

∫
Ω

(
4u2nvn
1 + u2n

+ κβ̂ε(un)

)
dx

6 (a− φ, un) (16)
and

1

2

d

dt
|vn|22 + δ|∇vn|22 +

∫
Ω

(
−bθunvn +

θunv
2
n

1 + u2n

)
dx

= (θφ+Bw, vn). (17)

Here we have use the fact that

β̂ε(un) = β̂ε(un)− β̂ε(0) = βε(ξ)un 6 βε(un)un,

where ξ locates between 0 and un. Observing that∫
Ω

4u2nvn
1 + u2n

dx 6
∫
Ω

4|vn|dx.

Therefore, from (16), Young’s inequality and Hölder’s inequality it follows that

1

2

d

dt
|un|22 + |∇un|22 +

∫
Ω

κβ̂ε(un) dx 6 C
(
|un|22 + |vn|22

)
+ C. (18)
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Here and throughout the proof of Lemma 1, we shall denote by C several positive con-
stants independent of un, vn and ε. With similar arguments in the above, we show that

1

2

d

dt
|vn|22 + δ|∇vn|22 6 C

(
|un|22 + |vn|22

)
+ C, (19)

which, together with (18), implies that

1

2

d

dt

(
|un|22 + |vn|22

)
+ |∇un|22 + δ|∇vn|22 + κ

∫
Ω

β̂ε dx

6 C
(
|un|22 + |vn|22

)
+ C, (20)

which, combined with (8) and the Gronwall’s inequality, yields

|un|L∞(0,T ;H) + |un|L2(0,T ;V ) + |vn|L∞(0,T ;H) + |vn|L2(0,T ;V )

+ κ
∣∣β̂ε∣∣

L1(0,T ;L1(Ω))
6 C. (21)

Here we have use the fact that

β̂ε(0) = 0 and β̂ε(r) > 0 for any r ∈ R. (22)

On the other hand, testing (15)1 by−∆un and (15)2 by−∆vn, respectively, and integrat-
ing the resulting equations over Ω, we derive

1

2

d

dt
|∇un|22 + |∆un|22 + κ

∫
Ω

(βε)′(un)|∇un|2 dx

6 |c||∇un|22 +

∣∣∣∣ ∫
Ω

4unvn
1 + u2n

∆un dx

∣∣∣∣+ (a− φ, −∆un) (23)

and
1

2

d

dt
|∇vn|22 + δ|∆vn|22

6

∣∣∣∣ ∫
Ω

(
bθun∆vn +

θunvn
1 + u2n

∆vn

)
dx

∣∣∣∣+ (θφ+Bw, −∆vn). (24)

Notice that

|c||∇un|22 +

∣∣∣∣ ∫
Ω

4unvn
1 + u2n

∆un dx

∣∣∣∣+ (a− φ, −∆un)

6
1

2
|∆un|22 +

∫
Ω

16u2nv
2
n

(1 + u2n)2
dx+ |c||∇un|22 + C

6
1

2
|∆un|22 + C|vn|22 + |c||∇un|22 + C (25)

Nonlinear Anal. Model. Control, 21(1):18–39
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and ∣∣∣∣ ∫
Ω

(
bθun∆vn +

θunvn
1 + u2n

∆vn

)
dx

∣∣∣∣+ (θφ+Bw, −∆vn)

6
δ

2
|∆vn|22 +

∫
Ω

2θ2u2nv
2
n

δ(1 + u2n)2
dx+ C|un|22 + C

6
δ

2
|∆vn|22 + C

(
|un|22 + |vn|22

)
+ C. (26)

Inserting (25) and (26) into (23) and (24), respectively, we derive

1

2

d

dt
|∇un|22 + |∆un|22 + κ

∫
Ω

(βε)′(un)|∇un|2 dx

6
1

2
|∆un|22 + C|vn|22 + |c||∇un|22 + C (27)

and
1

2

d

dt
|∇vn|22 + δ|∆vn|22 6

δ

2
|∆vn|22 + C

(
|un|22 + |vn|22

)
+ C, (28)

which, combined with (7), (21) and the Gronwall’s inequality, implies that

|un|L∞(0,T ;V ) + |un|L2(0,T ;H2(Ω)) 6 C (29)
and

|vn|L∞(0,T ;V ) + |vn|L2(0,T ;H2(Ω)) 6 C. (30)

Now, multiplying (15)1 by βε, integrating over [0, T ] and invoking the Young’s inequality,
we derive

d

dt

∣∣β̂ε∣∣
L1(Ω)

+ κ
∣∣βε∣∣2

2
+

∫
Ω

(
βε
)′

(un)|∇un|2 dx

=

∫
Ω

[(
a− φ− cun −

4unvn
1 + u2n

)
βε(un)

]
dx

6
κ

2

∣∣βε∣∣2
2

+ C
(
|φ|22 + |un|22 + |vn|22 + 1

)
. (31)

Thanks to (7), (21) and the Gronwall’s inequality, we derive∣∣β̂ε∣∣
L∞(0,T ;L1(Ω))

+
∣∣βε∣∣

L2(0,T ;H)
6 C. (32)

Finally, multiplying (15)1 and (15)2 by un,t and vn,t, respectively, after some basic
calculation, we end up with

|u′n|L2(0,T ;H) 6 C and |v′n|L2(0,T ;H) 6 C. (33)
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By (29), (30) and (32)–(33) and applying the rather standard argument, we can conclude
that there exist a function (u, v) and a subsequence of (un, vn), still denoted by them-
selves, such that

(un, vn)→ (u, v) weakly in Y × Y (34)

and (u, v) is the solution of problem (9). The uniqueness of the solution to problem (9)
can be got easily, we omit it.

Now, we prove the w-dependence of this lemma. To this end, replacing (u, v) and w
by (un, vn) and wn in (9), respectively, we obtain

un,t −∆un + cun +
4unvn
1 + u2n

+ κβε(un) = a− φ in Q,

vn,t − δ∆vn − bθun +
θunvn
1 + u2n

= θφ+Bwn in Q,

un(x, 0) = u0(x), vn(x, 0) = v0(x) in Ω,

un = vn = 0 on Σ.

(35)

By the above analysis, we have∣∣β̂ε∣∣
L∞(0,T ;L1(Ω))

+
∣∣βε∣∣

L2(0,T ;H)
+ |un|L∞(0,T ;V ) + |un|L2(0,T ;H2(Ω))

+ |u′n|L2(0,T ;H) 6 C (36)

and
|vn|L∞(0,T ;V ) + |vn|L2(0,T ;H2(Ω)) + |v′n|L2(0,T ;H) 6 C, (37)

where C > 0 is a constant independent of n and ε. By (36)–(37) and using Ascoli–Arzela
theorem and compactness lemma, we infer that there exists a subsequence of (un, vn),
still denoted by itself, such that(

un, vn
)
→ (u, v) weakly in

(
L2
(
0, T ;H2(Ω)

))2
, (38)(

un, vn
)
→ (u, v) strongly in

(
C
(
[0, T ];H

)
∩ L2(0, T ;V )

)2
(39)

and (
u′n, v

′
n

)
→ (u′, v′) weakly in

(
L2(0, T ;H)

)2
(40)

as n→∞. The proof is completed.

Lemma 2. Suppose that βε satisfies (7)–(8), let wε ∈ L2(0, T ;U) with wε → w∗ weakly
inL2(0, T ;U) as ε→ 0, (uε, vε) is the solution of (9) corresponding towε. Then on some
subsequence (uεn , vεn) of (uε, vε), there exists a triple (u, v, η) ∈ Y × Y ×L2(0, T ;H)
such that

η ∈ ∂I[σ∗,σ∗](u) a.e. in L2(0, T ;H), (41)
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while (
uεn , vεn

)
→ (u, v) weakly in

(
L2
(
0, T ;H2(Ω)

))2
, (42)(

uεn , vεn
)
→ (u, v) strongly in

(
C
(
[0, T ];H

)
∩ L2(0, T ;V )

)2
, (43)(

u′εn , v
′
εn

)
→ (u′, v′) weakly in

(
L2(0, T ;H)

)2
, (44)

βε(uεn)→ η weakly in L2(0, T ;H) (45)

as εn → 0 and (u, v, η) is a solution of (2) satisfying the following estimates

|u|2Y + |v|2Y + |η|2L2(QT ) 6 C (46)

with C > 0 is independent of ε, n.

Proof. Rewrite (9) as following:

uε,t −∆uε + cuε +
4uεvε
1 + u2ε

+ κβε(uε) = a− φ in Q,

vε,t − δ∆vε − bθuε +
θuεvε
1 + u2ε

= θφ+Bwε in Q,

uε(x, 0) = u0(x), vε(x, 0) = v0(x) in Ω,

uε(x, t) = vε(x, t) = 0 on Σ.

(47)

Employing almost exactly the same arguments as in the proof of Lemma 1, we conclude
that the results (42)–(44). Furthermore, by a standard argument in [2], we get η ∈
∂I[σ∗,σ∗](u) a.e. in L2(0, T ;H). This completes the proof.

Now, we let (u∗, v∗, w∗) be optimal for problem (P). For each ε > 0, assume
(u∗ε, v

∗
ε , w

∗
ε) is the solution to

ut −∆u+ cu+
4uv

1 + u2
+ κβε(u) = a− φ in Q,

vt − δ∆v − bθu+
θuv

1 + u2
= θφ+Bw∗ in Q,

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

u(x, t) = v(x, t) = 0 on Σ.

(48)

It follows from Lemma 2 that

δ(ε) := |u∗ε − u∗|L2(0,T ;H) → 0. (49)

Now, for each ε > 0, the approximating optimal control problems (Pε) is as follows:

Minimize Lε(w) over w ∈ L2(0, T ;U),
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where Lε : L2(0, T ;U)→ R by

Lε(w) =

T∫
0

[
gε(t, uε) + h(w)

]
dt+

1

2
|w − w∗|2L2(0,T ;U)

+
1

2δ(ε)

[
dS
(
F (uε)

)
+ δ(ε)

]2
(50)

and (uε, vε) is the solution of (9). Here, dS(F (u)) denotes the distance between F (u)
and S,

gε(t, y) =

∫
Rn

g(t, Pny − εΛnτ)ρn(τ) dτ (51)

is the approximations of g [1], where n = [1/ε], ρn is a mollifier in Rn and Pn : H → Xn

is the projection of H on Xn, which is the finite dimensional space generated by {ei}ni=1,
{ei}∞i=1 is an orthonormal basis inH , Λn : Rn → Xn is the operator defined by Λn(τ) =∑n
i=1 τiei with τ = (τ1, τ2, . . . , τn).
In this case, one can transform the original state constrained optimal control prob-

lem (P) into non-constrained optimal control problem (Pε) and use the method [3] to
obtain the optimality condition for problem (P) by a passage-to-limit procedure for ε↘ 0.

First of all, we show the existence of the optimal solutions for (Pε).

Lemma 3. (Pε) has at least one optimal solution.

Proof. Let ε > 0 be fixed. It is clear that inf Lε(w) > −∞. Let dε = inf{Lε(w): w ∈
L2(0, T ;U)} and wn be a minimizing sequence such that

dε 6 Lε(wn) 6 dε +
1

n
, (52)

which, together with (H2), (H3) and (50), implies that wn is bounded in L2(0, T ;U).
Without loss of generality, we may assume that wn → w̃ weakly in L2(0, T ;U). Let
(un, vn) and (ũ, ṽ) be the solutions of (9) corresponding to wn and w̃, respectively. It
follows from Lemma 1 that on some subsequence of (un, vn), still denoted by itself,

(un, vn)→ (ũ, ṽ) weakly in Y × Y

and strongly in
(
C
(
[0, T ];H

)
∩ L2(0, T ;V )

)2
. (53)

With the help of (H2), (51) and (53), we also obtain

T∫
0

∣∣gε(t, un)− gε
(
t, ũ
)∣∣

2
dt 6 C

T∫
0

|un − ũ|2 dt→ 0 as n→∞. (54)

On the other hand, due to (53) and (H1), we have

lim
n→∞

F (un) = F
(
ũ
)

(55)
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and therefore,

lim
n→∞

1

2δ(ε)

[
dS
(
F (un)

)
+ δ(ε)

]2
=

1

2δ(ε)

[
dS
(
F (ũ)

)
+ δ(ε)

]2
. (56)

Finally, (50) and (54)–(56) imply that (ũ, ṽ, w̃) is the optimal for problem (Pε). This
concludes the proof of the Lemma 3.

Lemma 4. Let wε be optimal for problem (Pε) and (uε, vε) be the solution of (9) corre-
sponding to wε. Then on some subsequence εn,(

uεn , vεn
)
→ (u∗, v∗) strongly in

(
C
(
[0, T ];H

)
∩ L2(0, T ;V )

)2
, (57)

wεn → w∗ strongly in L2(0, T ;U). (58)

Proof. Since wε is solution to (Pε), we have

Lε(wε) 6

T∫
0

[
gε(t, u

∗
ε) + h(w∗)

]
dt+

1

2δ(ε)

[
dS
(
F (u∗ε)

)
+ δ(ε)

]2
, (59)

which, together with (49), implies that

1

2δ(ε)

[
dS
(
F (u∗ε)

)
+ δ(ε)

]2
6

1

2δ(ε)

[∣∣F (u∗ε)− F (u∗)
∣∣
Z

+ δ(ε)
]2

6
1

2δ(ε)

[
C|u∗ε − u∗|L2(0,T ;H) + δ(ε)

]2
6

(1 + C)2

2
δ(ε)→ 0 as ε→ 0, (60)

which, combined with (59), implies that

lim sup
ε→0

Lε(wε) 6

T∫
0

[
g(t, u∗) + h(w∗)

]
dt, (61)

which implies that wε is bounded in L2(0, T ;U). Without loss of generality, we may
assume that wε → w̃ weakly in L2(0, T ;U), which, together with Lemma 2, implies that
there exists a sequence of εn such that

(uεn , vεn)→ (ũ, ṽ) strongly in
(
C
(
[0, T ];H

)
∩ L2(0, T ;V )

)2
. (62)

On the other hand, (50) and (61) imply that

lim
εn→0

dS
(
F (uεn)

)
= 0 (63)

and thus,
lim
εn→0

dS
(
F (ũ)

)
= 0. (64)

http://www.mii.lt/NA



Optimal control problem for Lengyel–Epstein model 31

Thus, we conclude from (50), (62) and (64) that

T∫
0

[
g(t, u∗) + h(w∗)

]
dt = L(w∗) > lim inf

εn→0
Lεn(wεn)

>

T∫
0

[
g(t, ũ

)
+ h(w̃)

]
dt+

1

2
|w̃ − w∗|2L2(0,T ;U). (65)

Hence, ũ = u∗, ṽ = v∗, w̃ = w∗ and

wε → w∗ strongly in L2(0, T ;U), (66)

Finally, it follows from Lemma 2 that

(uεn , vεn , wεn)→ (u∗, v∗, w∗)

strongly in
(
C
(
[0, T ];H

)
∩ L2(0, T ;V )

)2 × L2(0, T ;U). (67)

This completes the proof.

3 The optimality condition for (Pε) and (P)

In the following, we derive the optimality condition for problem (P) by showing the
relation between approximation problem (Pε) and problem (P). We start this section with
the necessary conditions for (uε, vε, wε) to be optimal for (Pε).

Lemma 5. Suppose that βε satisfies (7)–(8) and (H1)–(H3) hold. Let (uε, vε, wε) be op-
timal for problem (Pε). Then there exists a tetrad (µε, pε, qε, ζε) ∈ R×W 1,2(0, T ;V ∗)∩
L2(0, T ;V ) ∩ C([0, T ];H) ×W 1,2(0, T ;V ∗) ∩ L2(0, T ;V ) ∩ C([0, T ];H) × Z∗ such
that

−pε,t −∆pε + cpε +
vε(1− u2ε)
(1 + u2ε)

2
(4pε + θqε)− bθqε + κ

(
βε
)′

(uε)pε

= −
(
F ′(uε)

)∗
ζε − µε∇gε(t, uε),

−qε,t − δ∆qε +
uε

1 + u2ε
(4pε + θqε) = 0,

pε(x, t) = 0, qε(x, t) = 0 in Σ,

pε(T ) = qε(T ) = 0

(68)

and
B∗qε = µε

[
∇hε(wε) + wε − w∗

]
a.e. t ∈ [0, T ]. (69)

Proof. Let wε be optimal for problem (Pε) and (uε, vε) be the solution of (9) correspond-
ing to wε. Set wχε = wε + χw for any w ∈ L2(0, T ;U), (uχε , v

χ
ε ) is the solution of (9)

corresponding to wχε . Then it is clear that(
uχε , v

χ
ε

)
→ (uε, vε) strongly in C

(
[0, T ];H

)
∩ L2(0, T ;V ) as χ→ 0. (70)
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Now, owing towε is the optimal for problem (Pε), we have (Lε(w
χ
ε )−Lε(wε))/χ > 0 for

all χ > 0. Hence, employing the same arguments as in the proof of [1], we conclude that

0 6 µε

T∫
0

[〈
∇gε(t, uε), yε

〉
+
〈
∇h(wε) + wε − w∗, w

〉
U

]
dt

+
〈(
F ′(uε)

)∗
ζε, yε

〉
Z∗,Z

, (71)

where (yε, ȳε) is the solution of

yε,t −∆yε + cyε +
4vε(1− u2ε)
(1 + u2ε)

2
yε +

4uε
1 + u2ε

ȳε + κ(βε)′(uε)yε = 0,

ȳε,t − δ∆ȳε +
θuε

1 + u2ε
ȳε +

θvε(1− u2ε)
(1 + u2ε)

2
yε − bθyε = Bw,

yε(0) = 0, ȳε(0) = 0,

(72)

∇gε(t, uε) denotes the gradient of gε to the second variable at uε, ∇h(wε) denotes the
gradient of h at wε and

|ζε|Z∗ =

{
∇dS(F (uε)) if F (uε) /∈ S,
0 if F (uε) ∈ S.

(73)

Thanks to S is convex and closed, we may also infer that

|ζε|Z∗ = 1 if F (uε) /∈ S. (74)

Let

µε =
δ(ε)

δ(ε) + dS(F (uε))
(75)

and (pε, qε) be the solution of (68). Due to [1, Thm. 1.14], the boundary value prob-
lem (68) has a unique solution (pε, qε) ∈W 1,2(0, T ;V ∗)∩L2(0, T ;V )∩C([0, T ];H)×
W 1,2(0, T ;V ∗) ∩ L2(0, T ;V ) ∩ C([0, T ];H). It follows from (68), (71) and (72) that

0 6

T∫
0

−〈B∗qε, w〉+ µε
〈
∇h(wε) + wε − w∗, w

〉
U

dt, (76)

which implies (69). This completes the proof.

Proof of Theorem 1. By using the properties of βε and Lemma 4 that, on a sequence of ε,
still denoted by ε,

(uε, vε)→ (u, v) weakly in
(
L2
(
0, T ;H2(Ω)

))2
, (77)

(uε, vε)→ (u, v) strongly in
(
C
(
[0, T ];H

)
∩ L2(0, T ;V )

)2
, (78)

(u′ε, v
′
ε)→ (u′, v′) weakly in

(
L2(0, T ;H)

)2
(79)
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and
βε(uεn)→ η weakly in L2(0, T ;H). (80)

On the other hand, by the same argument in [1], we obtain that on a subsequence, still
denoted by ε,

(pε, qε)→ (p, q) weakly in
(
L2(0, T ;V )

)2
and weakly star in

(
C
(
[0, T ];H

))2
, (81)

(pε, qε)→ (p, q) strongly in
(
L2
(
[0, T ];H

))2
(82)

and
(p′ε, q

′
ε)→ (p′, q′) weakly in

(
L2(0, T ;V ∗)

)2
. (83)

Now, we will prove that(
βε
)′

(uε)pε → η weakly star in
(
L∞(QT )

)∗
. (84)

In fact, let ψ : R→ R be a smooth, bounded and monotone approximation of the signum
function such that ψ(0) = 0 (see [1, Lemma 3.5]). Now, multiplying (68)1 by ψ(pε) and
integrating the resulting equations over [0, T ], we get∫
Q

κ
(
βε
)′

(uε)ψ(pε)pε dx dt

=

∫
Q

(
−
(
F ′(uε)

)∗
ζε − µε∇gε(t, uε) + pε,t + ∆pε − cpε

− vε(1− u2ε)
(1 + u2ε)

2
(4pε − θqε) + bθqε

)
ψ(pε) dx dt

6

T∫
0

∣∣(F ′(uε))∗ζε∣∣22 +
∣∣µε∇gε(t, uε)∣∣22 + γ(c, θ, b)

(
|pε|22+|qε|22+|p′ε|2V ∗+|vε|22

)
dt

6 C1, (85)

where C1 > 0 is independent of ε and γ(c, θ, b) is positive constant depending on c, θ
and b. Here we have use the fact that∫

Q

∆pεψ(pε) dx dt 6 C2 +

∫
Q

∣∣pε∆ψ(pε)
∣∣dxdt 6 C3 + C4|pε|22.

and ψ ∈ L2(0, T ;V ) (see [1, Lemma 5.3]). Here and throughout the proof of Theorem 1,
we shall denote by Ci (i ∈ N) several positive constants independent of ε. Therefore,
(85) implies that

κ

∫
Q

∣∣(βε)′(uε)pε∣∣dxdt 6 C5.
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Hence, by the above inequality, we infer that there exists η ∈ (L∞(QT ))∗ such that(
βε
)′

(uε)pε → η weakly star in
(
L∞(QT )

)∗
.

Thus, (84) holds.
On the other hand, it follows from (74) and (75) that

1 6 µε + |ζε|Z∗ 6 2 for any ε > 0. (86)

Therefore, there exist two generalized subsequences of µε and ζε such that

µε → µ0 as ε→ 0 and ζε → ζ0 weakly star in Z∗ as ε→ 0. (87)

Here we use the fact that µε and ζε are bounded on R and Z∗, respectively. Using
Lemma 4, we may pass to the limit in (69) and derive (6)1.

On the other hand, thanks to (H2) and (82), we may also infer from [1, Prop. 1.11]
that ∇gε(t, uε) weak star upper semicontinuous, which implies that

∇gε(t, uε)→ ρ(t) weakly in L2(0, T ;H) as ε→ 0, (88)

where ρ(t) ∈ ∂g(t, u∗) a.e. t ∈ (0, T ).
Similarly, due to (H1) [1, Prop. 1.12], we have[

F ′(uε)
]∗
ζε →

[
F ′(u∗)

]∗
ζ0 weakly in L2(0, T ;H) as ε→ 0. (89)

In the following we will prove

uε
1 + u2ε

pε →
u∗

1 + (u∗)2
p weakly in L2(0, T ;H) as ε→ 0 (90)

and
vε(1− u2ε)
(1 + u2ε)

2
pε →

v∗(1− (u∗)2)

(1 + (u∗)2)2
p weakly in L2(0, T ;V ∗) as ε→ 0. (91)

Indeed, let ϕ ∈ L2(0, T ;H), then we derive( T∫
0

∣∣∣∣〈 uε
1 + u2ε

pε −
u∗

1 + (u∗)2
p, ϕ

〉∣∣∣∣dt
)2

=

( T∫
0

∣∣∣∣〈uεpε(1 + (u∗)2)− u∗p(1 + u2ε)

(1 + u2ε)(1 + (u∗)2)
, ϕ

〉∣∣∣∣ dt
)2

6

( T∫
0

∣∣∣∣uεpε(1 + (u∗)2)− u∗p(1 + u2ε)

(1 + u2ε)(1 + (u∗)2)

∣∣∣∣
2

|ϕ|2 dt

)2

6

T∫
0

∣∣∣∣uεpε(1 + (u∗)2)− u∗p(1 + u2ε)

(1 + u2ε)(1 + (u∗)2)

∣∣∣∣2
2

dt

T∫
0

|ϕ|22 dt. (92)
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On the other hand,∣∣∣∣uεpε(1 + (u∗)2)− u∗p(1 + u2ε)

(1 + u2ε)(1 + (u∗)2)

∣∣∣∣2
2

=

∫
Ω

∣∣∣∣uεpε(1 + (u∗)2)− u∗p(1 + u2ε)

(1 + u2ε)(1 + (u∗)2)

∣∣∣∣2 dx

6 4

∫
Ω

(uεpε−u∗pε)2+(u∗pε−u∗p)2+u2ε(u
∗)2[(pεu

∗ − pu∗)2+(pu∗−puε)2]

(1+u2ε)
2(1+(u∗)2)2

dx

:= J1,ε(t) + J2,ε(t) + J3,ε(t) + J4,ε(t), (93)

where

J1,ε(t) = 4

∫
Ω

(uεpε − u∗pε)2

(1 + u2ε)
2(1 + (u∗)2)2

dx, (94)

J2,ε(t) = 4

∫
Ω

(u∗pε − u∗p)2

(1 + u2ε)
2(1 + (u∗)2)2

dx, (95)

J3,ε(t) = 4

∫
Ω

u2ε(u
∗)2(pεu

∗ − pu∗)2

(1 + u2ε)
2(1 + (u∗)2)2

dx (96)

and

J4,ε(t) = 4

∫
Ω

u2ε(u
∗)2(pu∗ − puε)2

(1 + u2ε)
2(1 + (u∗)2)2

dx. (97)

Moreover, due to the Hölder’s inequality and Young’s inequality, we have

J1,ε(t) = 4

∫
Ω

(uεpε − u∗pε)2

(1 + u2ε)
2(1 + (u∗)2)2

dx 6 4

∫
Ω

|uε − u∗|(|uε|+ |u∗|)p2ε
(1 + u2ε)

2(1 + (u∗)2)2
dx

= 4

∫
Ω

(
|uε − u∗||uε|p2ε

(1 + u2ε)
2(1 + (u∗)2)2

+
|uε − u∗||u∗|p2ε

(1 + u2ε)
2(1 + (u∗)2)2

)
dx

6 4

∫
Ω

(
|uε − u∗||uε|p2ε

1 + u2ε
+
|uε − u∗||u∗|p2ε

1 + (u∗)2

)
dx

6 2

∫
Ω

(
|uε − u∗|p2ε + |uε − u∗|p2ε

)
dx = 4

∫
Ω

|uε − u∗|p2ε dx

6 4|uε − u∗|2|pε|2L4(Ω) 6 4|uε − u∗|2|pε|2L6(Ω)|Ω|
1/6, (98)
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thus, by the Hölder’s inequality and Sobolev embedding theorem, we have

T∫
0

J1,ε(t) dt = 4

T∫
0

∫
Ω

(uεpε − u∗pε)2

(1 + u2ε)
2(1 + (u∗)2)2

dx dt

6 4

T∫
0

|uε − u∗|2|pε|2L6(Ω)|Ω|
1/6 dt

6 4|Ω|1/6 max
06t6T

∣∣uε(t)− u∗(t)∣∣2
T∫

0

|pε|2L6(Ω) dt,

6 4|Ω|1/6 max
06t6T

∣∣uε(t)− u∗(t)∣∣2
T∫

0

|pε|2V dt, (99)

which, together with (78) and (81), implies that

T∫
0

J1,ε(t) dt

T∫
0

|ϕ|22 dt→ 0 as ε→ 0.

Similarly, by the Young’s inequality and (82), we have

T∫
0

J2,ε(t) dt

T∫
0

|ϕ|22 dt = 4

T∫
0

∫
Ω

(u∗)2(pε − p)2

(1 + u2ε)
2(1 + (u∗)2)2

dxdt

T∫
0

|ϕ|22 dt

6 4

T∫
0

∫
Ω

(u∗)2(pε − p)2

(1 + (u∗)2)2
dx dt

T∫
0

|ϕ|22 dt

6 2

T∫
0

∫
Ω

(pε − p)2 dxdt

T∫
0

|ϕ|22 dt→ 0 as ε→ 0, (100)

T∫
0

J3,ε(t) dt

T∫
0

|ϕ|22 dt = 4

T∫
0

∫
Ω

u2ε(u
∗)4(pε − p)2

(1 + u2ε)
2(1 + (u∗)2)2

dxdt

T∫
0

|ϕ|22 dt

= 4

T∫
0

∫
Ω

u2ε(u
∗)4(pε − p)2

(1 + 2u2ε + u4ε)(1 + 2(u∗)2 + (u∗)4)
dxdt

T∫
0

|ϕ|22 dt

6 2

T∫
0

∫
Ω

(pε − p)2 dx dt

T∫
0

|ϕ|22 dt→ 0 as ε→ 0, (101)

http://www.mii.lt/NA



Optimal control problem for Lengyel–Epstein model 37

T∫
0

J4,ε(t) dt

T∫
0

|ϕ|22 dt

= 4

T∫
0

∫
Ω

u2ε(u
∗)2p2(u∗ − uε)2

(1 + u2ε)
2(1 + (u∗)2)2

dxdt

T∫
0

|ϕ|22 dt

6 4

T∫
0

∫
Ω

p2(u∗ − uε)2

(1 + u2ε)(1 + (u∗)2)
dxdt

T∫
0

|ϕ|22 dt

6 4

T∫
0

∫
Ω

p2|u∗ − uε|(|u∗|+ |uε|)
(1 + u2ε)(1 + (u∗)2)

dxdt

T∫
0

|ϕ|22 dt

= 4

T∫
0

∫
Ω

(
|uε − u∗||uε|p2ε

1 + u2ε
+
|uε − u∗||u∗|p2ε

1 + (u∗)2

)
dx dt

T∫
0

|ϕ|22 dt

6 2

T∫
0

∫
Ω

(
|uε − u∗|p2ε + |uε − u∗|p2ε

)
dxdt

T∫
0

|ϕ|22 dt

= 4

T∫
0

∫
Ω

|uε − u∗|p2ε dx dt

T∫
0

|ϕ|22 dt 6 4

T∫
0

|uε − u∗|2|pε|2L4(Ω) dt

T∫
0

|ϕ|22 dt

6 4|Ω|1/6 max
06t6T

∣∣uε(t)− u∗(t)|2 T∫
0

|pε|2L6(Ω) dt,

6 4|Ω|1/6 max
06t6T

∣∣uε(t)− u∗(t)∣∣2
T∫

0

|pε|2V dt→ 0 as ε→ 0. (102)

Here we have use the fact (u∗)2 6 1 + (u∗)2 and u2ε 6 1 + u2ε. With similar arguments
we can get (91).

With the help of (81)–(84) and (87)–(91), we can pass to the limit in (68) to derive
that (p, q) ∈ (W 1,2(0, T ;V ∗) ∩ L2(0, T ;V ) ∩ C([0, T ];H))2 and satisfies (5). On the
other hand, observe that ζε ∈ ∂dS(F (uε)), we derive〈

ζε, w − F (uε)
〉
Z∗,Z

6 0 ∀ w ∈ S. (103)

Since uε → u∗ strongly in L2(0, T ;H), by (H1), we yield that F (uε)→ F (u∗) strongly
in Z. Letting ε→ 0 in (103) we have (6)2.

Finally, we are in a position to prove that (µ0, ζ0) 6= 0. To this end, we suppose that
µ0 = 0. It follows from (74) and (75) that

0 < δ 6 |ζε|Z∗ for some δ > 0. (104)
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On the other hand, by (103), we have〈
ζε, w − F (u∗)

〉
Z∗,Z

6
〈
ζε, F (uε)− F (u∗)

〉
Z∗,Z

→ 0 uniformly in w ∈ S. (105)

Since S⊂Z is a closed convex subset with finite co-dimensionality, so does S−F (u∗),
which, together with (104) and (105), implies that (µ0, ζ0) 6= 0 ( [17]).

Assume [F ′(u∗)]∗ is injective and (µ0, p, q) = 0, and thanks to (5), we derive
(F ′(u∗))∗ζ0 = 0, which yields ζ0 = 0 and (µ0, ζ0) = 0. This is a contradiction with
(µ0, ζ0) 6= 0. Thus, if [F ′(u∗)]∗ is injective, then (µ0, p, q) 6= 0. We complete the
proof.
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