ISSN 1392-5113

On fixed point results for α -implicit contractions in quasi-metric spaces and consequences^{*}

Hassen Aydi^a, Manel Jellali^a, Erdal Karapınar^b

^aDepartment of Mathematics, University of Dammam PO 12020, Industrial Jubail 31961, Saudi Arabia hmaydi@ud.edu.sa; majellali@ud.edu.sa

^bDepartment of Mathematics, Atilim University, 06836, İncek, Ankara, Turkey erdalkarapinar@yahoo.com; ekarapinar@atilim.edu.tr

Received: April 30, 2014 / Revised: September 19, 2014 / Published online: November 16, 2015

Abstract. In this paper, we prove some fixed point results involving α -implicit contractions in quasi-metric spaces. Moreover, we provide some known results on *G*-metric spaces. An example and an application on a solution of a nonlinear integral equation are also presented.

Keywords: fixed point, implicit contraction, quasi-metric space, G-metric space.

1 Introduction and preliminaries

It is well known that passing from metric spaces to quasi-metric spaces, (i.e. dropping the requirement that the metric function $d : X \times X \to \mathbb{R}$ verifies d(x, y) = d(y, x)) carries with it immediate consequences to the general theory. For instance, the topological notions of quasi-metric spaces, such as, limit, continuity, completeness, Cauchyness all should be re-considered under the left and right approaches since the quasi-metric is not symmetric. Furthermore, uniqueness of limit of a sequence should be examined carefully since one can easily consider a sequence which has a left limit and right limit which are not equal to the each other. That's why a few results on fixed points in such spaces are considered.

The definition of a quasi-metric is given as follows:

Definition 1. Let X be a non-empty and let $d : X \times X \to [0, \infty)$ be a function which satisfies:

- (d1) d(x, y) = 0 if and only if x = y;
- (d2) $d(x,y) \leq d(x,z) + d(z,y)$.

Then d is called a quasi-metric and the pair (X, d) is called a quasi-metric space.

*This work was supported by the Deanship of Scientific Research (DSR) at Dammam University (project No. 2014094).

Remark 1. Any metric space is a quasi-metric space, but the converse is not true in general.

Now, we give convergence, completeness and continuity on quasi-metric spaces.

Definition 2. Let (X, d) be a quasi-metric space, $\{x_n\}$ be a sequence in X, and $x \in X$. The sequence $\{x_n\}$ converges to x if and only if

$$\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0.$$
(1)

Example 1. (See [1].) Let X be a subset of \mathbb{R} containing [0, 1] and define, for all $x, y \in X$,

$$q(x,y) = \begin{cases} x-y & \text{if } x \ge y, \\ 1 & \text{otherwise.} \end{cases}$$

Then (X,q) is a quasi-metric space. Notice that $\{q(1/n,0)\} \to 0$ but $\{q(0,1/n)\} \to 1$. Therefore, $\{1/n\}$ right-converges to 0 but it does not converge from the left. We also point out that this quasi-metric verifies the following property: if a sequence $\{x_n\}$ has a right-limit x, then it is unique.

Remark 2. A quasi-metric space is Hausdorff, that is, we have the uniqueness of limit of a convergent sequence.

Definition 3. Let (X, d) be a quasi-metric space and $\{x_n\}$ be a sequence in X. We say that $\{x_n\}$ is left-Cauchy if and only if for every $\varepsilon > 0$ there exists a positive integer $N = N(\varepsilon)$ such that $d(x_n, x_m) < \varepsilon$ for all $n \ge m > N$.

Definition 4. Let (X, d) be a quasi-metric space and $\{x_n\}$ be a sequence in X. We say that $\{x_n\}$ is right-Cauchy if and only if for every $\varepsilon > 0$ there exists a positive integer $N = N(\varepsilon)$ such that $d(x_n, x_m) < \varepsilon$ for all $m \ge n > N$.

Definition 5. Let (X, d) be a quasi-metric space and $\{x_n\}$ be a sequence in X. We say that $\{x_n\}$ is Cauchy if and only if for every $\varepsilon > 0$ there exists a positive integer $N = N(\varepsilon)$ such that $d(x_n, x_m) < \varepsilon$ for all m, n > N.

Remark 3. A sequence $\{x_n\}$ in a quasi-metric space is Cauchy if and only if it is left-Cauchy and right-Cauchy.

Definition 6. Let (X, d) be a quasi-metric space. We say that:

- 1. (X, d) is left-complete if and only if each left-Cauchy sequence in X is convergent.
- 2. (X, d) is right-complete if and only if each right-Cauchy sequence in X is convergent.
- 3. (X, d) is complete if and only if each Cauchy sequence in X is convergent.

Definition 7. Let (X, d) be a quasi-metric space. The map $f : X \to X$ is continuous if for each sequence $\{x_n\}$ in X converging to $x \in X$, the sequence $\{fx_n\}$ converges to fx, that is,

$$\lim_{n \to \infty} d(fx_n, fx) = \lim_{n \to \infty} d(fx, fx_n) = 0.$$
 (2)

On the other hand, the study of fixed point for mappings satisfying an implicit relation is initiated and studied by Popa [19] and [20]. It leads to interesting known fixed points results. Following Popa's approach, many authors proved some fixed point, common fixed point and coincidence point results in various ambient spaces, see [3,6,9,21,23].

In the literature, there are several types of implicit contraction mappings where many nice consequences of fixed point theorems could be derived. First, denote Ψ the set of functions $\psi : [0, \infty) \rightarrow [0, \infty)$ satisfying:

- $(\psi 1) \psi$ is nondecreasing,
- $(\psi 2) \sum_{n=1}^{\infty} \psi^n(t) < \infty$ for each $t \in \mathbb{R}^+$, where ψ^n is the *n*th iterate of ψ .

Remark 4. It is easy to see that if $\psi \in \Psi$, then $\psi(t) < t$ for any t > 0.

We introduce the following definition.

Definition 8. Let Γ be the set of all continuous functions $F(t_1, \ldots, t_6) : \mathbb{R}^6_+ \to \mathbb{R}$ such that:

- (F1) F is nondecreasing in variable t_1 and nonincreasing in variable t_5 ;
- (F2) There exists $h_1 \in \Psi$ such that for all $u, v \ge 0$, $F(u, v, v, u, u+v, 0) \le 0$ implies $u \le h_1(v)$;
- (F3) There exists $h_2 \in \Psi$ such that for all t, s > 0, $F(t, t, 0, 0, t, s) \leq 0$ implies $t \leq h_2(s)$.

Note that in Definition 8 and with respect to Popa and Patriciu [22], we did not take the same hypotheses on h_1 and h_2 and we also add the fact that F is nondecreasing in variable t_1 .

As in [22], we give the following examples.

Example 2. $F(t_1, \ldots, t_6) = t_1 - at_2 - bt_3 - ct_4 - dt_5 - et_6$, where $a, b, c, d, e \ge 0$, a + b + c + 2d + e < 1.

Example 3. $F(t_1, \ldots, t_6) = t_1 - k \max\{t_2, \ldots, t_6\}$, where $k \in [0, 1/2)$.

Some other examples could be derived from [22].

Very recently, Samet et al. [25] introduced the concept of α -admissible maps and suggested a very interesting class of mapping, α - ψ contraction mappings, to investigate the existence and uniqueness of a fixed point.

Definition 9. (See [25].) For a nonempty set X, let $T : X \to X$ and $\alpha : X \times X \to [0, \infty)$ be mappings. We say that the self-mapping T on X is α -admissible if for all $x, y \in X$, we have

$$\alpha(x,y) \ge 1 \implies \alpha(Tx,Ty) \ge 1. \tag{3}$$

Many papers dealing with above notion have been considered to prove some (common) fixed point results (for example, see [2, 10, 11, 13, 15, 16]).

Now, we introduce the concept of α -implicit contractive mappings in the setting of quasi-metric spaces.

42

http://www.mii.lt/NA

Definition 10. Let (X, d) be a quasi-metric space and $f : X \to X$ be a given mapping. We say that f is an α -implicit contractive mapping if there exist two functions $\alpha : X \times X \to [0, \infty)$ and $F \in \Gamma$ such that

$$F(\alpha(x,y)d(fx,fy),d(x,y),d(x,fx),d(y,fy),d(x,fy),d(y,fx)) \leqslant 0$$
(4)

for all $x, y \in X$.

In this paper, we provide some fixed point results involving α -implicit contractions on quasi-metric spaces. As consequences of our obtained results, we also prove some existing fixed point results on *G*-metric spaces. We also provide an illustrated example and an application on a solution of a nonlinear integral equation.

2 Fixed point theorems

In this section, we shall state and prove our main results.

Theorem 1. Let (X, d) be a complete quasi-metric space and $f : X \to X$ be an α -implicit contractive mapping. Suppose that:

- (i) f is α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$ and $\alpha(fx_0, x_0) \ge 1$;
- (iii) f is continuous.

Then there exists a $u \in X$ such that fu = u.

Proof. By assumption (ii), there exists a point $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$ and $\alpha(fx_0, x_0) \ge 1$. We define a sequence $\{x_n\}$ in X by $x_{n+1} = fx_n = f^{n+1}x_0$ for all $n \ge 0$. Suppose that $x_{n_0} = x_{n_0+1}$ for some n_0 . So the proof is completed since $u = x_{n_0} = x_{n_0+1} = fx_{n_0} = fu$. Consequently, throughout the proof, we assume that

$$x_n \neq x_{n+1}$$
 for all n . (5)

Since f is α -admissible and $\alpha(x_0, x_1) = \alpha(x_0, fx_0) \ge 1$, so observe that

$$\alpha(fx_0, fx_1) = \alpha(x_1, x_2) \ge 1.$$

By repeating the process above, we derive that

$$\alpha(x_n, x_{n+1}) \ge 1 \quad \text{for all } n = 0, 1, \dots$$
(6)

Now consider the case where $\alpha(fx_0, x_0) \ge 1$. By using the same technique above, we get that

$$\alpha(x_{n+1}, x_n) \ge 1 \quad \text{for all } n = 0, 1, \dots$$
(7)

From (4), we have

$$F(\alpha(x_{n-1}, x_n)d(fx_{n-1}, fx_n), d(x_{n-1}, x_n), d(x_{n-1}, fx_{n-1}), d(x_n, fx_n), d(x_{n-1}, fx_n), d(x_n, fx_{n-1})) \leq 0,$$

that is,

$$F(\alpha(x_{n-1}, x_n)d(x_n, x_{n+1}), d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_{n-1}, x_{n+1}), d(x_{n-1}, x_{n+1}), 0) \leq 0.$$

By (6) and (d2) in the fifth variable, we have using (F1)

$$F(d(x_n, x_{n+1}), d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_n) + d(x_n, x_{n+1}), 0) \leq 0.$$
(8)

Due to (F2), we obtain

$$d(x_n, x_{n+1}) \leqslant h_1 \big(d(x_{n-1}, x_n) \big).$$
(9)

If we go on like this, we get

$$d(x_n, x_{n+1}) \leqslant h_1^n \big(d(x_0, x_1) \big).$$
(10)

Now, we shall prove that $\{x_n\}$ is a Cauchy sequence in the quasi-metric space (X, d). Take m > n. By using (d2),

$$d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\leq (h_1^n + h_1^{n+1} + \dots + h_1^{m-1}) (d(x_0, x_1))$$

$$\leq \sum_{k=n}^{\infty} h_1^k (d(x_0, x_1))$$
(11)

which implies that $d(x_n, x_m) \to 0$ as $n, m \to \infty$ since $h_1 \in \Psi$. It follows that $\{x_n\}$ is a right-Cauchy sequence.

Similarly, by (4) we have

$$F(\alpha(x_n, x_{n-1})d(fx_n, fx_{n-1}), d(x_n, x_{n-1}), d(fx_{n-1}, x_{n-1}), d(fx_n, x_n), d(fx_n, x_{n-1}), d(fx_{n-1}, x_n)) \leq 0,$$

that is, using (7) and (F1), we have

$$F(d(x_{n+1}, x_n), d(x_n, x_{n-1}), d(x_n, x_{n-1}), d(x_{n+1}, x_n), d(x_{n+1}, x_{n-1}), 0) \leq 0.$$

Using again (F1) and (d2),

$$F(d(x_{n+1}, x_n), d(x_n, x_{n-1}), d(x_n, x_{n-1}), d(x_{n+1}, x_n), d(x_{n+1}, x_n) + d(x_n, x_{n-1}), 0) \leq 0.$$
(12)

By (F2), we obtain

$$d(x_{n+1}, x_n) \leq h_1(d(x_n, x_{n-1})).$$
 (13)

http://www.mii.lt/NA

If we go on like this, we get

$$d(x_{n+1}, x_n) \leqslant h_1^n (d(x_1, x_0)).$$
(14)

Thus, by using (d2), for n > m,

$$d(x_n, x_m) \leq d(x_n, x_{n-1}) + d(x_{n-1}, x_{n-2}) + \dots + d(x_{m+1}, x_m)$$

$$\leq \left(h_1^{n-1} + h_1^{n-2} + \dots + h_1^m\right) \left(d(x_1, x_0)\right)$$

$$\leq \sum_{k=m}^{\infty} h_1^k \left(d(x_1, x_0)\right)$$
(15)

which implies that $d(x_n, x_m) \to 0$ as $n, m \to \infty$ since $h_1 \in \Psi$. It follows that $\{x_n\}$ is a left-Cauchy sequence.

Thus, $\{x_n\}$ is a Cauchy sequence in (X, d). Since (X, d) is quasi-complete, so there exists a point u in X such that $x_n \to u$ as $n \to \infty$, that is, from Definition 2,

$$\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0.$$
 (16)

We shall prove that fu = u.

Since f is continuous, we obtain

$$\lim_{n \to \infty} d(x_{n+1}, fu) = \lim_{n \to \infty} d(fx_n, fu) = 0$$
(17)

and

$$\lim_{n \to \infty} d(fu, x_{n+1}) = \lim_{n \to \infty} d(fu, fx_n) = 0,$$
(18)

that is, $\lim_{n\to\infty} x_{n+1} = fu$. Taking Remark 2 into account, that is due the uniqueness of limit, we conclude that fu = u, that is, u is a fixed point of f.

Note that in Theorem 1, the continuity hypothesis of F is not required. But this hypothesis is essential for Theorem 2. In the next result, we drop the continuity hypothesis of f and we replace it by the following:

(H) If $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x \in X$ as $n \to \infty$, then there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, x) \ge 1$ for all k.

Theorem 2. Let (X, d) be a complete quasi-metric space and $f : X \to X$ be an α -implicit contractive mapping. Suppose that:

- (i) f is α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$ and $\alpha(fx_0, x_0) \ge 1$;

Then there exists a $u \in X$ such that fu = u.

⁽iii) (H) is verified.

Proof. Following the proof of Theorem 1, we know that the sequence $\{x_n\}$ defined by $x_{n+1} = fx_n$ for all $n \ge 0$ is Cauchy and converges to some $u \in X$. From condition (iii), there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, u) \ge 1$ for all k. We shall show that fu = u.

By (4), we have successively

$$F(\alpha(x_{n(k)-1}, u)d(fx_{n(k)-1}, fu), d(x_{n(k)-1}, u), d(x_{n(k)-1}, fx_{n(k)-1}), d(u, fu), d(x_{n(k)-1}, fu), d(u, fx_{n(k)-1})) \leq 0.$$

Using (F1) and $\alpha(x_{n(k)-1}, u) \ge 1$, we get

$$F(d(x_{n(k)}, fu), d(x_{n(k)-1}, u), d(x_{n(k)-1}, x_{n(k)}), d(u, fu), d(x_{n(k)-1}, fu), d(u, x_{n(k)})) \leq 0.$$

Letting k tend to infinity and using continuity of F, we have

 $F(d(u, fu), 0, 0, d(u, fu), d(u, fu), 0) \leq 0.$

By (F2), it follows that $d(u, fu) \leq 0$ which implies u = fu.

For the uniqueness, we need an additional condition:

(U) For all $x, y \in Fix(f)$, we have $\alpha(x, y) \ge 1$, where Fix(f) denotes the set of fixed points of f.

Theorem 3. Adding condition (U) to the hypotheses of Theorem 1 (resp. Theorem 2), we obtain that u is the unique fixed point of f.

Proof. We argue by contradiction, that is, there exist $u, v \in X$ such that u = fu and v = fv with $u \neq v$. By (4), we get

$$F\big(\alpha(u,v)d(fu,fv),d(u,v),d(u,fu),d(v,fv),d(u,fv),d(v,u)\big)\leqslant 0,$$

i.e.,

 $F\bigl(\alpha(u,v)d(u,v),d(u,v),0,0,d(u,v),d(v,u)\bigr)\leqslant 0.$

Due to the fact that $\alpha(u, v) \ge 1$, so by (F1), we get

$$F(d(u,v), d(u,v), 0, 0, d(u,v), d(v,u)) \leq 0.$$

Since F satisfies property (F3), so

$$d(u,v) \leqslant h_2(d(v,u)). \tag{19}$$

Analogously, we obtain

$$d(v,u) \leqslant h_2(d(u,v)). \tag{20}$$

Combining (19) to (20), we get

$$d(u,v) \le h_2(d(v,u)) \le h_2^2(d(u,v) < d(u,v)).$$
(21)

It is a contradiction. Hence u = v.

http://www.mii.lt/NA

In the sequel, we present the following corollaries as consequences of Theorem 1 (resp. Theorem 2).

Corollary 1. Let (X, d) be a complete quasi-metric space and $f : X \to X$ be such that

 $\alpha(x,y)d(fx,fy) \leq ad(x,y) + bd(x,fx) + cd(y,fy) + dd(x,fy) + ed(y,fx)$ (22)

for all $x, y \in X$, where $a, b, c, d, e \ge 0$ and a + b + d + 2d + e < 1. Suppose that:

- (i) f is α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$ and $\alpha(fx_0, x_0) \ge 1$;
- (iii) f is continuous or (H) is verified.

Then there exists a $u \in X$ such that fu = u.

Proof. It suffices to take F in Theorem 1 (resp. Theorem 2) as given in Example 3, that is, $F(t_1, \ldots, t_6) = t_1 - at_2 - bt_3 - ct_4 - dt_5 - et_6$, where $a, b, c, d, e \ge 0$ and a + b + c + 2d + e < 1.

Corollary 2. Let (X, d) be a complete quasi-metric space and $f : X \to X$ be such that

$$\alpha(x,y)d(fx,fy) \leq k \max\{d(x,y), d(x,fx), d(y,fy), d(x,fy), d(y,fx)\}$$

$$(23)$$

for all $x, y \in X$, where $k \in [0, 1/2)$. Suppose that:

- (i) f is α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$ and $\alpha(fx_0, x_0) \ge 1$;
- (iii) f is continuous or (H) is verified.

Then there exists a $u \in X$ such that fu = u.

Proof. It suffices to take F in Theorem 1 (resp. Theorem 2) as given in Example 3, that is, $F(t_1, \ldots, t_6) = t_1 - k \max\{t_2, \ldots, t_6\}$, where $k \in [0, 1/2)$.

We present the following example illustrating Corollary 2.

Example 4. Let $X = [0, \infty)$ endowed with the quasi-metric

$$d(x,y) = |x|$$
 if $x \neq y$ and $d(x,y) = 0$ if $x = y$.

It is clear that (X, d) is a complete quasi-metric space. Consider the mapping $T: X \to X$ defined by

$$Tx = \begin{cases} x^2 - 3x + 2 & \text{if } x > 2\\ x/3 & \text{if } x \in [0, 2]. \end{cases}$$

At first, we observe that the Banach contraction principle for $d_0(x, y) = |x - y|$ cannot be applied in this case since we have

$$d_0(T0, T4) = 6 > 4 = d_0(0, 4).$$

Now, we define the mapping $\alpha: X \times X \to [0,\infty)$ by

$$\alpha(x,y) = \begin{cases} 1 & \text{if } x,y \in [0,1], \\ 0 & \text{otherwise.} \end{cases}$$

If $x, y \in [0, 1]$ and $x \neq y$, we have

$$\alpha(x,y)d(Tx,Ty) = d(Tx,Ty) \leqslant |Tx| = \frac{x}{3} = \frac{1}{3}d(x,y)$$

$$\leqslant k \max\{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\}, \quad (24)$$

where k = 1/3. Similarly, it is obvious that (24) holds in the cases $(x, y \in [0, 1])$ with x = y and (x or y is not in [0, 1]). Now, we shall prove that the hypothesis (H) is satisfied. Let $\{x_n\}$ be a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x \in X$ as $n \to \infty$. Then by definition of α , we get

$$(x_n, x_{n+1}) \in [0, 1] \times [0, 1]$$
 for all n .

Assume that x > 1. Then $x_n \neq x$ for all n. Since $x_n \rightarrow x \in X$, so $d(x, x_n) = |x| \rightarrow 0$, which is a contradiction. Thus, $x \in [0, 1]$. We get that

$$(x_n, x) \in [0, 1] \times [0, 1]$$
 for all n ,

that is, $\alpha(x_n, x) = 1$, i.e., (H) is verified. Take $x_0 = 1$. We have

$$\alpha(x_0, Tx_0) = \alpha\left(1, \frac{1}{3}\right) = 1$$
 and $\alpha(Tx_0, x_0) = \alpha\left(\frac{1}{3}, 1\right) = 1.$

The mapping T is α -admissible. In fact, let $x, y \in X$ such that $\alpha(x, y) \ge 1$, so $x, y \in [0, 1]$. Then

$$\alpha(Tx, Ty) = \alpha\left(\frac{x}{3}, \frac{y}{3}\right) = 1$$

All hypotheses of Corollary 2 hold and the mapping T has a fixed point in X. Note that in this case, we have two fixed points of T which are u = 0 and $v = 2 + \sqrt{2}$.

3 Consequences

In this section, we give some consequences of our main results.

3.1 Standard fixed point theorems

We start with the following corollary.

Corollary 3. Let (X, d) be a complete quasi-metric space and $f : (X, d) \to (X, d)$ be agiven mapping. Suppose that

$$F(d(fx, fy), d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)) \leq 0$$
(25)

for all $x, y \in X$, where $F \in \Gamma$. Then f has a unique fixed point.

http://www.mii.lt/NA

Proof. It suffices to take $\alpha(x, y) = 1$ for all $x, y \in X$ in Theorem 2. Notice that the hypothesis (U) is satisfied, so we apply Theorem 3.

The following corollary is a Ćirić contraction type [8].

Corollary 4. Let (X, d) be a complete quasi-metric space and $f : (X, d) \rightarrow (X, d)$ be a given mapping such that

$$d(fx, fy) \le k \max\{d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)\}$$
(26)

for all $x, y \in X$, where $k \in [0, 1/2)$. Then f has a unique fixed point.

Proof. It suffices to take F as given in Example 3, that is, $F(t_1, \ldots, t_6) = t_1 - k \times \max\{t_2, \ldots, t_6\}$, where $k \in [0, 1/2)$. Then, we apply Corollary 3.

3.2 Fixed point theorems on metric spaces endowed with a partial order

Definition 11. Let (X, \preccurlyeq) be a partially ordered set and $f : X \to X$ be a given mapping. We say that f is nondecreasing with respect to \preccurlyeq if

$$x, y \in X, \quad x \preccurlyeq y \implies fx \preccurlyeq fy.$$

Definition 12. Let (X, \preccurlyeq) be a partially ordered set. A sequence $\{x_n\} \subset X$ is said to be nondecreasing with respect to \preccurlyeq if $x_n \preccurlyeq x_{n+1}$ for all n.

Definition 13. Let (X, \preccurlyeq) be a partially ordered set and d be a quasi-metric on X. We say that (X, \preccurlyeq, d) is regular if for every nondecreasing sequence $\{x_n\} \subset X$ such that $x_n \to x \in X$ as $n \to \infty$, there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $x_{n(k)} \preccurlyeq x$ for all k.

We state the following result.

Corollary 5. Let (X, \preccurlyeq) be a partially ordered set and d be a quasi-metric on X such that (X, d) is complete. Let $f : X \to X$ be a nondecreasing mapping with respect to \preccurlyeq . Suppose that there exists a function $F \in \Gamma$ such that

$$F(d(fx, fy), d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)) \leq 0,$$
(27)

for all $x, y \in X$ with $x \succeq y$. Suppose also that the following conditions hold:

- (i) there exists $x_0 \in X$ such that $x_0 \preccurlyeq fx_0 \text{ or } fx_0 \preccurlyeq x_0$;
- (ii) f is continuous or (X, \preccurlyeq, d) is regular.

Then f has a fixed point. Moreover, if Fix(f) is well-ordered, we have uniqueness of the fixed point.

Proof. Define the mapping $\alpha : X \times X \to [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1 & \text{if } x \preccurlyeq y \text{ or } x \succcurlyeq y, \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, f is an α -implicit contractive mapping, that is,

$$F(\alpha(x,y)d(fx,fy),d(x,y),d(x,fx),d(y,fy),d(x,fy),d(y,fx)) \leq 0$$

for all $x, y \in X$. From condition (i), we have $\alpha(x_0, fx_0) \ge 1$ and $\alpha(fx_0, x_0) \ge 1$. Moreover, for all $x, y \in X$, from the monotone property of f, we have

$$\begin{array}{rcl} \alpha(x,y) \ge 1 & \Longrightarrow & x \succcurlyeq y \quad \text{or} \quad x \preccurlyeq y \\ & \Longrightarrow & fx \succcurlyeq fy \quad \text{or} \quad fx \preccurlyeq fy \\ & \Longrightarrow & \alpha(fx,fy) \ge 1. \end{array}$$

Thus, f is α -admissible. Now, if f is continuous, the existence of a fixed point follows from Theorem 1. Suppose now that (X, \preccurlyeq, d) is regular. Let $\{x_n\}$ be a sequence in Xsuch that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x \in X$ as $n \to \infty$. From the regularity hypothesis, there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $x_{n(k)} \preccurlyeq x$ for all k. This implies from the definition of α that $\alpha(x_{n(k)}, x) \ge 1$ for all k. In this case, the existence of a fixed point follows from Theorem 2. To show the uniqueness, let $x, y \in X$. By hypothesis, there exists $z \in X$ such that $x \preccurlyeq z$ and $y \preccurlyeq z$, which implies from the definition of α that $\alpha(x, z) \ge 1$ and $\alpha(y, z) \ge 1$. Thus, we deduce the uniqueness of the fixed point by Theorem 3.

3.3 Fixed point theorems in the context of G-metric spaces

Before all, we need the following definitions and concepts.

Definition 14. (See [17].) Let X be a non-empty set, $G : X \times X \times X \to \mathbb{R}^+$ be a function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z; (G2) 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$; (G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$; (G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables); (G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ (rectangle inequality) for all $x, y, z, a \in X$.

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 15. (See [17]). A *G*-metric space (X, G) is said to be symmetric if G(x, y, y) = G(y, x, x) for all $x, y \in X$.

In their initial paper, Mustafa and Sims [17] also defined the basic topological concepts in *G*-metric spaces as follows:

Definition 16. (See [17].) Let (X, G) be a *G*-metric space, and let $\{x_n\}$ be a sequence of points of *X*. We say that $\{x_n\}$ is *G*-convergent to $x \in X$ if

$$\lim_{n,m\to+\infty} G(x,x_n,x_m) = 0$$

that is, for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x, x_n, x_m) < \varepsilon$ for all $n, m \ge N$. We call x the limit of the sequence and write $x_n \to x$ or $\lim_{n \to +\infty} x_n = x$.

Proposition 1. (See [17].) Let (X, G) be a G-metric space. The following are equivalent:

- (i) $\{x_n\}$ is G-convergent to x;
- (ii) $G(x_n, x_n, x) \to 0 \text{ as } n \to +\infty;$
- (iii) $G(x_n, x, x) \to 0$ as $n \to +\infty$.

Definition 17. (See [17].) Let (X, G) be a *G*-metric space. A sequence $\{x_n\}$ is called a *G*-Cauchy sequence if, for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x_n, x_m, x_l) < \varepsilon$ for all $m, n, l \ge N$, that is, $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to +\infty$.

Proposition 2. (See [17].) Let (X, G) be a G-metric space. Then the followings are equivalent:

- (i) the sequence $\{x_n\}$ is G-Cauchy;
- (ii) for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \varepsilon$ for all $m, n \ge N$.

Definition 18. (See [17].) A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in (X, G).

Notice that any G-metric space (X, G) induces a metric d_G on X defined by

$$d_G(x,y) = G(x,y,y) + G(y,x,x) \quad \text{for all } x, y \in X.$$
(28)

Furthermore, (X, G) is *G*-complete if and only if (X, d_G) is complete. Recently, Jleli and Samet [12] gave the following theorems.

Theorem 4. (See [12].) Let (X, G) be a *G*-metric space. Let $d : X \times X \to [0, \infty)$ be the function defined by d(x, y) = G(x, y, y). Then:

- (i) (X, d) is a quasi-metric space;
- (ii) $\{x_n\} \subset X$ is G-convergent to $x \in X$ if and only if $\{x_n\}$ is convergent to x in (X, d);
- (iii) $\{x_n\} \subset X$ is G-Cauchy if and only if $\{x_n\}$ is Cauchy in (X, d);
- (iv) (X,G) is G-complete if and only if (X,d) is complete.

Every quasi-metric induces a metric, that is, if (X, d) is a quasi-metric space, then the function $\delta : X \times X \to [0, \infty)$ defined by

$$\delta(x,y) = \max\{d(x,y), d(y,x)\}$$
(29)

is a metric on X [12].

Theorem 5. (See [12].) Let (X, G) be a *G*-metric space. Let $\delta : X \times X \to [0, \infty)$ be the function defined by $\delta(x, y) = \max\{G(x, y, y), G(y, x, x)\}$. Then:

- (i) (X, δ) is a metric space;
- (ii) $\{x_n\} \subset X$ is *G*-convergent to $x \in X$ if and only if $\{x_n\}$ is convergent to x in (X, δ) ;
- (iii) $\{x_n\} \subset X$ is G-Cauchy if and only if $\{x_n\}$ is Cauchy in (X, δ) ;
- (iv) (X, G) is G-complete if and only if (X, δ) is complete.

We need the following definition of Alghamdi and Karapınar [4,5] which is the analog of Definition 9.

Definition 19. (See [4].) For a nonempty set X, let $T : X \to X$ and $\beta : X^3 \to [0, \infty)$ be mappings. We say that the self-mapping T on X is β -admissible if for all $x, y \in X$, we have

$$\beta(x, y, y) \ge 1 \quad \Longrightarrow \quad \beta(Tx, Ty, Ty) \ge 1. \tag{30}$$

It is also known the following.

Lemma 1. (See [4,5].) Let $f : X \to X$, where X is non-empty set. It is clear that the self-mapping f is β -admissible if and only if f is α -admissible.

Now, we can give the following results on G-metric spaces.

Theorem 6. Let (X, G) be a complete G-metric space and $f : X \to X$ be such that

$$F(\beta(x, y, y)G(fx, fy, fy), G(x, y, y), G(x, fx, fx), G(y, fy, fy), G(x, fy, fy), G(y, fx, fx)) \leq 0$$
(31)

for all $x, y \in X$, where $\beta : X^3 \to [0, \infty)$ and $F \in \Gamma$. Suppose that:

- (i) f is β -admissible;
- (ii) there exists $x_0 \in X$ such that $\beta(x_0, fx_0, fx_0) \ge 1$ and $\beta(fx_0, x_0, x_0) \ge 1$;
- (iii) f is continuous.

Then there exists a $u \in X$ such that fu = u.

Proof. It suffices to take the quasi-metric d(x, y) = G(x, y, y) and $\alpha(x, y) = \beta(x, y, y)$. Due to (31), we get (4). Then due to Lemma 1, the result follows from Theorem 1.

Alghamdi and Karapınar [4, 5] also defined the following hypothesis.

(W) If $\{x_n\}$ is a sequence in X such that $\beta(x_n, x_{n+1}, x_{n+1}) \ge 1$ for all n and $x_n \to x \in X$ as $n \to \infty$, then there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\beta(x_{n(k)}, x, x) \ge 1$ for all k.

Theorem 7. Let (X, G) be a complete *G*-metric space and $f : X \to X$ be such that

$$F(\beta(x, y, y)G(fx, fy, fy), G(x, y, y), G(x, fx, fx), G(y, fy, fy),$$

$$G(x, fy, fy), G(y, fx, fx)) \leq 0$$
(32)

http://www.mii.lt/NA

for all $x, y \in X$, where $\beta : X^3 \to [0, \infty)$ and $F \in \Gamma$. Suppose that:

- (i) f is β -admissible;
- (ii) there exists $x_0 \in X$ such that $\beta(x_0, fx_0, fx_0) \ge 1$ and $\beta(fx_0, x_0, x_0) \ge 1$;
- (iii) (W) is verified.

Then there exists a $u \in X$ such that fu = u.

Proof. As in the proof of Theorem 6, we derive the result from Theorem 2.

Corollary 6. Let (X, G) be a complete *G*-metric space and $f : X \to X$ be such that

$$\beta(x, y, y)G(fx, fy, fy) \leqslant k \max\{G(x, y, y), G(x, fx, fx), G(y, fy, fy), G(x, fy, fy), G(y, fx, fx)\}$$
(33)

for all $x, y \in X$, where $k \in [0, 1/2)$. Suppose that:

- (i) f is β -admissible;
- (ii) there exists $x_0 \in X$ such that $\beta(x_0, fx_0, fx_0) \ge 1$ and $\beta(fx_0, x_0, x_0) \ge 1$;
- (iii) f is continuous or (W) is verified.

Then, there exists a $u \in X$ such that fu = u.

Proof. It is similarly as Corollary 2. It follows from Theorem 6 and Theorem 7. \Box

Corollary 7. Let (X,G) be a complete *G*-metric space and $f : X \to X$ be a mapping. Suppose that there exists a function $F \in \Gamma$ such that

$$F(G(fx, fy, fy), G(x, y, y), G(x, fx, fx), G(y, fy, fy), G(x, fy, fy), G(y, fx, fx)) \leq 0$$

$$(34)$$

for all $x, y \in X$. Then f has a unique fixed point.

Proof. Consider the case where $\beta(x, y, y) = 1$ for all $x, y \in X$ in Theorem 7. The uniqueness follows from Theorem 3.

As Corollary 4, we obtain from Corollary 7 the following:

Corollary 8. Let (X, G) be a complete *G*-metric space and $f : X \to X$ a given mapping. Suppose that

$$G(fx, fy, fy) \leq k \max\{G(x, y, y), G(x, fx, fx), G(y, fy, fy), G(x, fy, fy), G(y, fx, fx)\}$$

$$(35)$$

for all $x, y \in X$, where $k \in [0, 1/2)$. Then f has a unique fixed point.

H. Aydi et al.

4 Application

In this section, we provide an application to solve the nonlinear integral equation

$$x(t) = \int_{a}^{t} K(t, s, x(s)) \,\mathrm{d}s, \tag{36}$$

where $t \in J = [a, b]$ and $K : J \times J \times \mathbb{R} \to \mathbb{R}$ is continuous. Let $X = \mathcal{C}(J, \mathbb{R})$ with the usual supremum norm, that is,

$$||x|| = \max_{t \in J} |x(t)|.$$

Note that the existence for the unique solution of (36) is based on Corollary 4.

Theorem 8. Suppose the following conditions hold:

(i) there exists a continuous function $p: J \times J \to \mathbb{R}_+$ such that

$$\left|K(t,s,u)\right| \leqslant \frac{p(t,s)}{b-a}|u|$$

for each $t, s \in J$ and $u \in \mathbb{R}$;

- (ii) if $u, v \in X$ with $u \neq v$, we have $\int_a^t K(t, s, u(s)) ds \neq \int_a^t K(t, s, v(s)) ds$ for each $t \in J$;
- (iii) $\sup_{t \in J} p(t, s) = k < 1/2.$

Then the integral equation (36) has a unique solution $x \in \mathcal{C}(J, \mathbb{R})$.

Proof. Consider the quasi-metric $d: X \times X \to [0, \infty)$ defined by

$$d(x,y) = \|x\| \quad \text{if } x \neq y \quad \text{and} \quad d(x,y) = 0 \quad \text{if } x = y.$$

It is clear that (X, d) is a complete quasi-metric space. Consider the mapping $T: X \to X$ defined by

$$Tx(t) = \int_{a}^{t} K(t, s, x(s)) \,\mathrm{d}s$$

for all $x \in X$. We have to prove that T has a unique fixed point.

For all $x \in X$, we have

$$|Tx(t)| \leq \int_{a}^{t} |K(t, s, x(s))| \, \mathrm{d}s \leq \int_{a}^{b} \frac{p(t, s)}{b - a} |x(s)| \, \mathrm{d}s \leq ||x|| \int_{a}^{b} \frac{k}{b - a} \, \mathrm{d}s = k ||x||,$$

so $||Tx|| \leq k ||x||$. For all $x, y \in X$ with $x \neq y$, we get under assumption that $Tx \neq Ty$. Thus,

$$d(Tx, Ty) = ||Tx|| \leq k ||x|| = kd(x, y)$$

$$\leq k \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}.$$
 (37)

http://www.mii.lt/NA

On the other hand, obviously (37) holds in the case x = y. So all hypotheses of Corollary 4 are satisfied, and so T has a unique fixed point, that is, the problem (36) has a unique solution.

Acknowledgment. The authors express their gratitude to the referees for constructive and useful remarks and suggestions.

References

- R.P. Agarwal, E. Karapınar, A.-F. Roldán-López-de-Hierro, Fixed point theorems in quasimetric spaces and applications to multidimensional fixed point theorems on *G*-metric spaces, *J. Nonlinear Convex Anal.*, 16(9):1787–1816, 2015.
- 2. M.U. Ali, T. Kamran, E. Karapınar, On (α, ψ, η) -contractive multivalued mappings, *Fixed Point Theory Appl.*, **2014**, Article ID 7, 8 pp., 2014.
- 3. A. Aliouche, V. Popa, General common fixed point theorems for occasionally weakly compatible hybrid mappings and applications, *Novi Sad. J. Math.*, **39**(1):89–109, 2009.
- 4. M.A. Alghamdi, E. Karapinar, G- β - ψ contractive-type mappings and related fixed point theorems, *J. Inequal. Appl.*, **2013**, Article ID 70, 16 pp., 2013.
- M.A. Alghamdi, E. Karapınar, G-β-ψ-contractive type mappings in G-metric spaces, Fixed Point Theory Appl., 2013, Article ID 123, 17 pp., 2013.
- 6. V. Berinde, Approximating fixed points of implicit almost contractions, *Hacet. J. Math. Stat.*, **41**(1):93–102, 2012.
- 7. V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, *Fixed Point Theory Appl.*, **2012**, Article ID 105, 8 pp., 2012.
- 8. L.B. Ćirić, A generalization of Banach's contraction principle, *Proc. Am. Math. Soc.*, **45**(2):267–273, 1974.
- 9. M. Imdad, S. Kumar, M.S. Khan, Remarks on some fixed point theorems satisfying implicit relations, *Rad. Math.*, **11**(1):135–143, 2002.
- M. Jleli, E. Karapınar, B. Samet, Best proximity points for generalized alpha-psi-proximal contractive type mappings, *J. Appl. Math.*, 2013, Article ID 534127, 10 pp., 2013.
- 11. M. Jleli, E. Karapınar, B. Samet, Fixed point results for α - ψ_{λ} -contractions on gauge spaces and applications, *Abstr. Appl. Anal.*, **2013**, Article ID 730825, 7 pp., 2013.
- 12. M. Jleli, B. Samet, Remarks on G metric spaces and fixed point theorems, *Fixed Point Theory Appl.*, **2012**, Article ID 210, 7 pp., 2012.
- 13. E. Karapinar, B. Samet, Generalized α - ψ -contractive type mappings and related fixed point theorems with applications, *Abstr. Appl. Anal.*, **2012**, Article ID 793486, 17 pp. 2012.
- E. Karapinar, Fixed point theory for cyclic weak φ-contraction, *Appl. Math. Lett.*, 24:822–825, 2011.
- 15. V. La Rosa, P. Vetro, Common fixed points for α - ψ - φ -contractions in generalized metric spaces, *Nonlinear Anal. Model. Control*, **19**(1):43–54, 2014.

- 16. B. Mohammadi, Sh. Rezapour, N. Shahzad, Some results on fixed points of α - ψ -Ciric generalized multifunctions, *Fixed Point Theory Appl.*, **2013**, Article ID 24, 10 pp., 2013.
- Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7:289–297, 2006.
- M. Păcurar, I.A. Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., Theory Methods Appl., Ser. A, 72(3–4):1181–1187, 2010.
- V. Popa, Fixed point theorems for implicit contractive mappings, *Stud. Cercet. Ştiinţ., Ser. Mat. Univ. Bacău*, 7:129–133, 1997.
- 20. V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, *Demonstr. Math.*, **32**:157–163, 1999.
- 21. V. Popa, A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation, *Filomat*, **19**:45–51, 2005.
- 22. V. Popa, A.M. Patriciu, A general fixed point theorem for mappings satisfying an φ-implicit relation in complete *G*-metric spaces, *Gazi Univ. J. Science*, **25**(2):403–408, 2012.
- 23. V. Popa, A.M. Patriciu, A General fixed point theorem for pairs of weakly compatible mappings in *G*-metric spaces, *J. Nonlinear Sci. App.*, **5**(2):151–160, 2012.
- 24. S. Reich, A.J. Zaslawski, Well-posedness of fixed point problems, *Far East J. Math. Sci.*, **Spec.** Vol., Part III:393–401, 2001.
- B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal., Theory Methods Appl., Ser. A, 75(4):2154–2165, 2012.