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06836, İncek, Ankara, Turkey
erdalkarapinar@yahoo.com; ekarapinar@atilim.edu.tr

Received: April 30, 2014 / Revised: September 19, 2014 / Published online: November 16, 2015

Abstract. In this paper, we prove some fixed point results involving α-implicit contractions in
quasi-metric spaces. Moreover, we provide some known results on G-metric spaces. An example
and an application on a solution of a nonlinear integral equation are also presented.
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1 Introduction and preliminaries

It is well known that passing from metric spaces to quasi-metric spaces, (i.e. dropping
the requirement that the metric function d : X × X → R verifies d(x, y) = d(y, x))
carries with it immediate consequences to the general theory. For instance, the topological
notions of quasi-metric spaces, such as, limit, continuity, completeness, Cauchyness all
should be re-considered under the left and right approaches since the quasi-metric is not
symmetric. Furthermore, uniqueness of limit of a sequence should be examined carefully
since one can easily consider a sequence which has a left limit and right limit which are
not equal to the each other. That’s why a few results on fixed points in such spaces are
considered.

The definition of a quasi-metric is given as follows:

Definition 1. Let X be a non-empty and let d : X × X → [0,∞) be a function which
satisfies:

(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) 6 d(x, z) + d(z, y).

Then d is called a quasi-metric and the pair (X, d) is called a quasi-metric space.
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Remark 1. Any metric space is a quasi-metric space, but the converse is not true in
general.

Now, we give convergence, completeness and continuity on quasi-metric spaces.

Definition 2. Let (X, d) be a quasi-metric space, {xn} be a sequence in X , and x ∈ X .
The sequence {xn} converges to x if and only if

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0. (1)

Example 1. (See [1].) LetX be a subset of R containing [0, 1] and define, for all x, y ∈ X ,

q(x, y) =

{
x− y if x > y,

1 otherwise.

Then (X, q) is a quasi-metric space. Notice that {q(1/n, 0)} → 0 but {q(0, 1/n)} → 1.
Therefore, {1/n} right-converges to 0 but it does not converge from the left. We also
point out that this quasi-metric verifies the following property: if a sequence {xn} has
a right-limit x, then it is unique.

Remark 2. A quasi-metric space is Hausdorff, that is, we have the uniqueness of limit of
a convergent sequence.

Definition 3. Let (X, d) be a quasi-metric space and {xn} be a sequence in X . We say
that {xn} is left-Cauchy if and only if for every ε > 0 there exists a positive integer
N = N(ε) such that d(xn, xm) < ε for all n > m > N .

Definition 4. Let (X, d) be a quasi-metric space and {xn} be a sequence in X . We say
that {xn} is right-Cauchy if and only if for every ε > 0 there exists a positive integer
N = N(ε) such that d(xn, xm) < ε for all m > n > N .

Definition 5. Let (X, d) be a quasi-metric space and {xn} be a sequence in X . We say
that {xn} is Cauchy if and only if for every ε > 0 there exists a positive integerN = N(ε)
such that d(xn, xm) < ε for all m,n > N .

Remark 3. A sequence {xn} in a quasi-metric space is Cauchy if and only if it is left-
Cauchy and right-Cauchy.

Definition 6. Let (X, d) be a quasi-metric space. We say that:

1. (X, d) is left-complete if and only if each left-Cauchy sequence inX is convergent.
2. (X, d) is right-complete if and only if each right-Cauchy sequence in X is conver-

gent.
3. (X, d) is complete if and only if each Cauchy sequence in X is convergent.

Definition 7. Let (X, d) be a quasi-metric space. The map f : X → X is continuous if
for each sequence {xn} in X converging to x ∈ X , the sequence {fxn} converges to fx,
that is,

lim
n→∞

d(fxn, fx) = lim
n→∞

d(fx, fxn) = 0. (2)
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On the other hand, the study of fixed point for mappings satisfying an implicit relation
is initiated and studied by Popa [19] and [20]. It leads to interesting known fixed points
results. Following Popa’s approach, many authors proved some fixed point, common fixed
point and coincidence point results in various ambient spaces, see [3, 6, 9, 21, 23].

In the literature, there are several types of implicit contraction mappings where many
nice consequences of fixed point theorems could be derived. First, denote Ψ the set of
functions ψ : [0,∞)→ [0,∞) satisfying:

(ψ1) ψ is nondecreasing,
(ψ2)

∑∞
n=1 ψ

n(t) <∞ for each t ∈ R+, where ψn is the nth iterate of ψ.

Remark 4. It is easy to see that if ψ ∈ Ψ , then ψ(t) < t for any t > 0.

We introduce the following definition.

Definition 8. Let Γ be the set of all continuous functions F (t1, . . . , t6) : R6
+ → R such

that:

(F1) F is nondecreasing in variable t1 and nonincreasing in variable t5;
(F2) There exists h1 ∈ Ψ such that for all u, v > 0, F (u, v, v, u, u+v, 0) 6 0 implies

u 6 h1(v);
(F3) There exists h2 ∈ Ψ such that for all t, s > 0, F (t, t, 0, 0, t, s) 6 0 implies

t 6 h2(s).

Note that in Definition 8 and with respect to Popa and Patriciu [22], we did not take
the same hypotheses on h1 and h2 and we also add the fact that F is nondecreasing in
variable t1.

As in [22], we give the following examples.

Example 2. F (t1, . . . , t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, where a, b, c, d, e > 0,
a+ b+ c+ 2d+ e < 1.

Example 3. F (t1, . . . , t6) = t1 − kmax{t2, . . . , t6}, where k ∈ [0, 1/2).

Some other examples could be derived from [22].
Very recently, Samet et al. [25] introduced the concept of α-admissible maps and

suggested a very interesting class of mapping, α-ψ contraction mappings, to investigate
the existence and uniqueness of a fixed point.

Definition 9. (See [25].) For a nonempty setX , let T : X → X and α : X×X → [0,∞)
be mappings. We say that the self-mapping T on X is α-admissible if for all x, y ∈ X ,
we have

α(x, y) > 1 =⇒ α(Tx, Ty) > 1. (3)

Many papers dealing with above notion have been considered to prove some (com-
mon) fixed point results (for example, see [2, 10, 11, 13, 15, 16]).

Now, we introduce the concept of α-implicit contractive mappings in the setting of
quasi-metric spaces.
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Definition 10. Let (X, d) be a quasi-metric space and f : X → X be a given map-
ping. We say that f is an α-implicit contractive mapping if there exist two functions α :
X ×X → [0,∞) and F ∈ Γ such that

F
(
α(x, y)d(fx, fy), d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)

)
6 0 (4)

for all x, y ∈ X .

In this paper, we provide some fixed point results involving α-implicit contractions
on quasi-metric spaces. As consequences of our obtained results, we also prove some
existing fixed point results on G-metric spaces. We also provide an illustrated example
and an application on a solution of a nonlinear integral equation.

2 Fixed point theorems

In this section, we shall state and prove our main results.

Theorem 1. Let (X, d) be a complete quasi-metric space and f : X → X be an α-
implicit contractive mapping. Suppose that:

(i) f is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, fx0) > 1 and α(fx0, x0) > 1;

(iii) f is continuous.

Then there exists a u ∈ X such that fu = u.

Proof. By assumption (ii), there exists a point x0 ∈ X such that α(x0, fx0) > 1 and
α(fx0, x0) > 1. We define a sequence {xn} in X by xn+1 = fxn = fn+1x0 for
all n > 0. Suppose that xn0

= xn0+1 for some n0. So the proof is completed since
u = xn0

= xn0+1 = fxn0
= fu. Consequently, throughout the proof, we assume that

xn 6= xn+1 for all n. (5)

Since f is α-admissible and α(x0, x1) = α(x0, fx0) > 1, so observe that

α(fx0, fx1) = α(x1, x2) > 1.

By repeating the process above, we derive that

α(xn, xn+1) > 1 for all n = 0, 1, . . . . (6)

Now consider the case where α(fx0, x0) > 1. By using the same technique above, we
get that

α(xn+1, xn) > 1 for all n = 0, 1, . . . . (7)

From (4), we have

F
(
α(xn−1, xn)d(fxn−1, fxn), d(xn−1, xn), d(xn−1, fxn−1),

d(xn, fxn), d(xn−1, fxn), d(xn, fxn−1)
)
6 0,
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that is,

F
(
α(xn−1, xn)d(xn, xn+1), d(xn−1, xn), d(xn−1, xn),

d(xn, xn+1), d(xn−1, xn+1), 0
)
6 0.

By (6) and (d2) in the fifth variable, we have using (F1)

F
(
d(xn, xn+1), d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn) + d(xn, xn+1), 0
)
6 0. (8)

Due to (F2), we obtain

d(xn, xn+1) 6 h1
(
d(xn−1, xn)

)
. (9)

If we go on like this, we get

d(xn, xn+1) 6 hn1
(
d(x0, x1)

)
. (10)

Now, we shall prove that {xn} is a Cauchy sequence in the quasi-metric space (X, d).
Take m > n. By using (d2),

d(xn, xm) 6 d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

6
(
hn1 + hn+1

1 + · · ·+ hm−11

)(
d(x0, x1)

)
6
∞∑

k=n

hk1
(
d(x0, x1)

)
(11)

which implies that d(xn, xm) → 0 as n,m → ∞ since h1 ∈ Ψ . It follows that {xn} is
a right-Cauchy sequence.

Similarly, by (4) we have

F
(
α(xn, xn−1)d(fxn, fxn−1), d(xn, xn−1), d(fxn−1, xn−1), d(fxn, xn),

d(fxn, xn−1), d(fxn−1, xn)
)
6 0,

that is, using (7) and (F1), we have

F
(
d(xn+1, xn), d(xn, xn−1), d(xn, xn−1), d(xn+1, xn), d(xn+1, xn−1), 0

)
6 0.

Using again (F1) and (d2),

F
(
d(xn+1, xn), d(xn, xn−1), d(xn, xn−1), d(xn+1, xn),

d(xn+1, xn) + d(xn, xn−1), 0
)
6 0. (12)

By (F2), we obtain
d(xn+1, xn) 6 h1

(
d(xn, xn−1)

)
. (13)
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If we go on like this, we get

d(xn+1, xn) 6 hn1
(
d(x1, x0)

)
. (14)

Thus, by using (d2), for n > m,

d(xn, xm) 6 d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

6
(
hn−11 + hn−21 + · · ·+ hm1

)(
d(x1, x0)

)
6
∞∑

k=m

hk1
(
d(x1, x0)

)
(15)

which implies that d(xn, xm) → 0 as n,m → ∞ since h1 ∈ Ψ . It follows that {xn} is
a left-Cauchy sequence.

Thus, {xn} is a Cauchy sequence in (X, d). Since (X, d) is quasi-complete, so there
exists a point u in X such that xn → u as n→∞, that is, from Definition 2,

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0. (16)

We shall prove that fu = u.
Since f is continuous, we obtain

lim
n→∞

d(xn+1, fu) = lim
n→∞

d(fxn, fu) = 0 (17)

and
lim

n→∞
d(fu, xn+1) = lim

n→∞
d(fu, fxn) = 0, (18)

that is, limn→∞ xn+1 = fu. Taking Remark 2 into account, that is due the uniqueness of
limit, we conclude that fu = u, that is, u is a fixed point of f .

Note that in Theorem 1, the continuity hypothesis of F is not required. But this
hypothesis is essential for Theorem 2. In the next result, we drop the continuity hypothesis
of f and we replace it by the following:

(H) If {xn} is a sequence in X such that α(xn, xn+1) > 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) > 1 for all k.

Theorem 2. Let (X, d) be a complete quasi-metric space and f : X → X be an α-im-
plicit contractive mapping. Suppose that:

(i) f is α−admissible;
(ii) there exists x0 ∈ X such that α(x0, fx0) > 1 and α(fx0, x0) > 1;

(iii) (H) is verified.

Then there exists a u ∈ X such that fu = u.
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Proof. Following the proof of Theorem 1, we know that the sequence {xn} defined by
xn+1 = fxn for all n > 0 is Cauchy and converges to some u ∈ X . From condition (iii),
there exists a subsequence {xn(k)} of {xn} such that α(xn(k), u) > 1 for all k. We shall
show that fu = u.

By (4), we have successively

F
(
α(xn(k)−1, u)d(fxn(k)−1, fu), d(xn(k)−1, u), d(xn(k)−1, fxn(k)−1), d(u, fu),

d(xn(k)−1, fu), d(u, fxn(k)−1)
)
6 0.

Using (F1) and α(xn(k)−1, u) > 1, we get

F
(
d(xn(k), fu), d(xn(k)−1, u), d(xn(k)−1, xn(k)), d(u, fu),

d(xn(k)−1, fu), d(u, xn(k))
)
6 0.

Letting k tend to infinity and using continuity of F , we have

F
(
d(u, fu), 0, 0, d(u, fu), d(u, fu), 0

)
6 0.

By (F2), it follows that d(u, fu) 6 0 which implies u = fu.

For the uniqueness, we need an additional condition:

(U) For all x, y ∈ Fix(f), we have α(x, y) > 1, where Fix(f) denotes the set of
fixed points of f .

Theorem 3. Adding condition (U) to the hypotheses of Theorem 1 (resp. Theorem 2), we
obtain that u is the unique fixed point of f .

Proof. We argue by contradiction, that is, there exist u, v ∈ X such that u = fu and
v = fv with u 6= v. By (4), we get

F
(
α(u, v)d(fu, fv), d(u, v), d(u, fu), d(v, fv), d(u, fv), d(v, u)

)
6 0,

i.e.,
F
(
α(u, v)d(u, v), d(u, v), 0, 0, d(u, v), d(v, u)

)
6 0.

Due to the fact that α(u, v) > 1, so by (F1), we get

F
(
d(u, v), d(u, v), 0, 0, d(u, v), d(v, u)

)
6 0.

Since F satisfies property (F3), so

d(u, v) 6 h2
(
d(v, u)

)
. (19)

Analogously, we obtain
d(v, u) 6 h2

(
d(u, v)

)
. (20)

Combining (19) to (20), we get

d(u, v) 6 h2
(
d(v, u)

)
6 h22

(
d(u, v) < d(u, v)

)
. (21)

It is a contradiction. Hence u = v.
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In the sequel, we present the following corollaries as consequences of Theorem 1
(resp. Theorem 2).

Corollary 1. Let (X, d) be a complete quasi-metric space and f : X → X be such that

α(x, y)d(fx, fy) 6 ad(x, y) + bd(x, fx) + cd(y, fy) + dd(x, fy) + ed(y, fx) (22)

for all x, y ∈ X , where a, b, c, d, e > 0 and a+ b+ d+ 2d+ e < 1. Suppose that:

(i) f is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, fx0) > 1 and α(fx0, x0) > 1;

(iii) f is continuous or (H) is verified.

Then there exists a u ∈ X such that fu = u.

Proof. It suffices to take F in Theorem 1 (resp. Theorem 2) as given in Example 3, that
is, F (t1, . . . , t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, where a, b, c, d, e > 0 and a+ b+
c+ 2d+ e < 1.

Corollary 2. Let (X, d) be a complete quasi-metric space and f : X → X be such that

α(x, y)d(fx, fy) 6 kmax
{
d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)

}
(23)

for all x, y ∈ X , where k ∈ [0, 1/2). Suppose that:

(i) f is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, fx0) > 1 and α(fx0, x0) > 1;

(iii) f is continuous or (H) is verified.

Then there exists a u ∈ X such that fu = u.

Proof. It suffices to take F in Theorem 1 (resp. Theorem 2) as given in Example 3, that
is, F (t1, . . . , t6) = t1 − kmax{t2, . . . , t6}, where k ∈ [0, 1/2).

We present the following example illustrating Corollary 2.

Example 4. Let X = [0,∞) endowed with the quasi-metric

d(x, y) = |x| if x 6= y and d(x, y) = 0 if x = y.

It is clear that (X, d) is a complete quasi-metric space. Consider the mapping T : X → X
defined by

Tx =

{
x2 − 3x+ 2 if x > 2

x/3 if x ∈ [0, 2].

At first, we observe that the Banach contraction principle for d0(x, y) = |x − y| cannot
be applied in this case since we have

d0(T0, T4) = 6 > 4 = d0(0, 4).

Nonlinear Anal. Model. Control, 21(1):40–56



48 H. Aydi et al.

Now, we define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1],

0 otherwise.

If x, y ∈ [0, 1] and x 6= y, we have

α(x, y)d(Tx, Ty) = d(Tx, Ty) 6 |Tx| = x

3
=

1

3
d(x, y)

6 kmax
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
, (24)

where k = 1/3. Similarly, it is obvious that (24) holds in the cases (x, y ∈ [0, 1] with
x = y) and (x or y is not in [0, 1]). Now, we shall prove that the hypothesis (H) is satisfied.
Let {xn} be a sequence in X such that α(xn, xn+1) > 1 for all n and xn → x ∈ X as
n→∞. Then by definition of α, we get

(xn, xn+1) ∈ [0, 1]× [0, 1] for all n.

Assume that x > 1. Then xn 6= x for all n. Since xn → x ∈ X , so d(x, xn) = |x| → 0,
which is a contradiction. Thus, x ∈ [0, 1]. We get that

(xn, x) ∈ [0, 1]× [0, 1] for all n,

that is, α(xn, x) = 1, i.e., (H) is verified. Take x0 = 1. We have

α(x0, Tx0) = α

(
1,

1

3

)
= 1 and α(Tx0, x0) = α

(
1

3
, 1

)
= 1.

The mapping T is α-admissible. In fact, let x, y ∈ X such that α(x, y) > 1, so x, y ∈
[0, 1]. Then

α(Tx, Ty) = α

(
x

3
,
y

3

)
= 1.

All hypotheses of Corollary 2 hold and the mapping T has a fixed point in X . Note that
in this case, we have two fixed points of T which are u = 0 and v = 2 +

√
2.

3 Consequences

In this section, we give some consequences of our main results.

3.1 Standard fixed point theorems

We start with the following corollary.

Corollary 3. Let (X, d) be a complete quasi-metric space and f : (X, d) → (X, d) be
agiven mapping. Suppose that

F
(
d(fx, fy), d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)

)
6 0 (25)

for all x, y ∈ X , where F ∈ Γ . Then f has a unique fixed point.
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Proof. It suffices to take α(x, y) = 1 for all x, y ∈ X in Theorem 2. Notice that the
hypothesis (U) is satisfied, so we apply Theorem 3.

The following corollary is a Ćirić contraction type [8].

Corollary 4. Let (X, d) be a complete quasi-metric space and f : (X, d) → (X, d) be
a given mapping such that

d(fx, fy) 6 kmax
{
d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)

}
(26)

for all x, y ∈ X , where k ∈ [0, 1/2). Then f has a unique fixed point.

Proof. It suffices to take F as given in Example 3, that is, F (t1, . . . , t6) = t1 − k ×
max{t2, . . . , t6}, where k ∈ [0, 1/2). Then, we apply Corollary 3.

3.2 Fixed point theorems on metric spaces endowed with a partial order

Definition 11. Let (X,4) be a partially ordered set and f : X → X be a given mapping.
We say that f is nondecreasing with respect to 4 if

x, y ∈ X, x 4 y =⇒ fx 4 fy.

Definition 12. Let (X,4) be a partially ordered set. A sequence {xn} ⊂ X is said to be
nondecreasing with respect to 4 if xn 4 xn+1 for all n.

Definition 13. Let (X,4) be a partially ordered set and d be a quasi-metric on X . We
say that (X,4, d) is regular if for every nondecreasing sequence {xn} ⊂ X such that
xn → x ∈ X as n→∞, there exists a subsequence {xn(k)} of {xn} such that xn(k) 4 x
for all k.

We state the following result.

Corollary 5. Let (X,4) be a partially ordered set and d be a quasi-metric on X such
that (X, d) is complete. Let f : X → X be a nondecreasing mapping with respect to 4.
Suppose that there exists a function F ∈ Γ such that

F
(
d(fx, fy), d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)

)
6 0, (27)

for all x, y ∈ X with x < y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 4 fx0 or fx0 4 x0;
(ii) f is continuous or (X,4, d) is regular.

Then f has a fixed point. Moreover, if Fix(f) is well-ordered, we have uniqueness of the
fixed point.
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Proof. Define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 if x 4 y or x < y,

0 otherwise.

Clearly, f is an α-implicit contractive mapping, that is,

F
(
α(x, y)d(fx, fy), d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)

)
6 0

for all x, y ∈ X . From condition (i), we have α(x0, fx0) > 1 and α(fx0, x0) > 1.
Moreover, for all x, y ∈ X , from the monotone property of f , we have

α(x, y) > 1 =⇒ x < y or x 4 y

=⇒ fx < fy or fx 4 fy

=⇒ α(fx, fy) > 1.

Thus, f is α-admissible. Now, if f is continuous, the existence of a fixed point follows
from Theorem 1. Suppose now that (X,4, d) is regular. Let {xn} be a sequence in X
such that α(xn, xn+1) > 1 for all n and xn → x ∈ X as n → ∞. From the regularity
hypothesis, there exists a subsequence {xn(k)} of {xn} such that xn(k) 4 x for all k.
This implies from the definition of α that α(xn(k), x) > 1 for all k. In this case, the
existence of a fixed point follows from Theorem 2. To show the uniqueness, let x, y ∈ X .
By hypothesis, there exists z ∈ X such that x 4 z and y 4 z, which implies from the
definition of α that α(x, z) > 1 and α(y, z) > 1. Thus, we deduce the uniqueness of the
fixed point by Theorem 3.

3.3 Fixed point theorems in the context ofG-metric spaces

Before all, we need the following definitions and concepts.

Definition 14. (See [17].) LetX be a non-empty set,G : X×X×X → R+ be a function
satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) 6 G(x, y, z) for all x, y, z ∈ X with y 6= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables);
(G5) G(x, y, z) 6 G(x, a, a)+G(a, y, z) (rectangle inequality) for all x, y, z, a ∈ X .

Then the functionG is called a generalized metric, or, more specifically, aG-metric onX ,
and the pair (X,G) is called a G-metric space.

Definition 15. (See [17]). AG-metric space (X,G) is said to be symmetric ifG(x, y, y)=
G(y, x, x) for all x, y ∈ X .

In their initial paper, Mustafa and Sims [17] also defined the basic topological con-
cepts in G-metric spaces as follows:

http://www.mii.lt/NA



On fixed point results for α-implicit contractions 51

Definition 16. (See [17].) Let (X,G) be a G-metric space, and let {xn} be a sequence
of points of X . We say that {xn} is G-convergent to x ∈ X if

lim
n,m→+∞

G(x, xn, xm) = 0,

that is, for any ε > 0, there exists N ∈ N such that G(x, xn, xm) < ε for all n,m > N .
We call x the limit of the sequence and write xn → x or limn→+∞ xn = x.

Proposition 1. (See [17].) Let (X,G) be aG-metric space. The following are equivalent:

(i) {xn} is G-convergent to x;
(ii) G(xn, xn, x)→ 0 as n→ +∞;

(iii) G(xn, x, x)→ 0 as n→ +∞.

Definition 17. (See [17].) Let (X,G) be a G-metric space. A sequence {xn} is called
a G-Cauchy sequence if, for any ε > 0, there exists N ∈ N such that G(xn, xm, xl) < ε
for all m,n, l > N , that is, G(xn, xm, xl)→ 0 as n,m, l→ +∞.

Proposition 2. (See [17].) Let (X,G) be a G-metric space. Then the followings are
equivalent:

(i) the sequence {xn} is G-Cauchy;
(ii) for any ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε for all

m,n > N .

Definition 18. (See [17].) A G-metric space (X,G) is called G-complete if every
G-Cauchy sequence is G-convergent in (X,G).

Notice that any G-metric space (X,G) induces a metric dG on X defined by

dG(x, y) = G(x, y, y) +G(y, x, x) for all x, y ∈ X. (28)

Furthermore, (X,G) is G-complete if and only if (X, dG) is complete.
Recently, Jleli and Samet [12] gave the following theorems.

Theorem 4. (See [12].) Let (X,G) be a G-metric space. Let d : X × X → [0,∞) be
the function defined by d(x, y) = G(x, y, y). Then:

(i) (X, d) is a quasi-metric space;
(ii) {xn} ⊂ X is G-convergent to x ∈ X if and only if {xn} is convergent to x in

(X, d);
(iii) {xn} ⊂ X is G-Cauchy if and only if {xn} is Cauchy in (X, d);
(iv) (X,G) is G-complete if and only if (X, d) is complete.

Every quasi-metric induces a metric, that is, if (X, d) is a quasi-metric space, then the
function δ : X ×X → [0,∞) defined by

δ(x, y) = max
{
d(x, y), d(y, x)

}
(29)

is a metric on X [12].
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Theorem 5. (See [12].) Let (X,G) be a G-metric space. Let δ : X×X → [0,∞) be the
function defined by δ(x, y) = max{G(x, y, y), G(y, x, x)}. Then:

(i) (X, δ) is a metric space;
(ii) {xn} ⊂ X is G-convergent to x ∈ X if and only if {xn} is convergent to x in

(X, δ);
(iii) {xn} ⊂ X is G-Cauchy if and only if {xn} is Cauchy in (X, δ);
(iv) (X,G) is G-complete if and only if (X, δ) is complete.

We need the following definition of Alghamdi and Karapınar [4,5] which is the analog
of Definition 9.

Definition 19. (See [4].) For a nonempty set X , let T : X → X and β : X3 → [0,∞)
be mappings. We say that the self-mapping T on X is β-admissible if for all x, y ∈ X ,
we have

β(x, y, y) > 1 =⇒ β(Tx, Ty, Ty) > 1. (30)

It is also known the following.

Lemma 1. (See [4, 5].) Let f : X → X , where X is non-empty set. It is clear that the
self-mapping f is β-admissible if and only if f is α-admissible.

Now, we can give the following results on G-metric spaces.

Theorem 6. Let (X,G) be a complete G-metric space and f : X → X be such that

F
(
β(x, y, y)G(fx, fy, fy), G(x, y, y), G(x, fx, fx), G(y, fy, fy),

G(x, fy, fy), G(y, fx, fx)
)
6 0 (31)

for all x, y ∈ X , where β : X3 → |0,∞) and F ∈ Γ . Suppose that:

(i) f is β-admissible;
(ii) there exists x0 ∈ X such that β(x0, fx0, fx0) > 1 and β(fx0, x0, x0) > 1;

(iii) f is continuous.

Then there exists a u ∈ X such that fu = u.

Proof. It suffices to take the quasi-metric d(x, y) = G(x, y, y) and α(x, y) = β(x, y, y).
Due to (31), we get (4). Then due to Lemma 1, the result follows from Theorem 1.

Alghamdi and Karapınar [4, 5] also defined the following hypothesis.

(W) If {xn} is a sequence in X such that β(xn, xn+1, xn+1) > 1 for all n and
xn → x ∈ X as n→∞, then there exists a subsequence {xn(k)} of {xn} such
that β(xn(k), x, x) > 1 for all k.

Theorem 7. Let (X,G) be a complete G-metric space and f : X → X be such that

F
(
β(x, y, y)G(fx, fy, fy), G(x, y, y), G(x, fx, fx), G(y, fy, fy),

G(x, fy, fy), G(y, fx, fx)
)
6 0 (32)
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for all x, y ∈ X , where β : X3 → |0,∞) and F ∈ Γ . Suppose that:

(i) f is β-admissible;
(ii) there exists x0 ∈ X such that β(x0, fx0, fx0) > 1 and β(fx0, x0, x0) > 1;

(iii) (W ) is verified.

Then there exists a u ∈ X such that fu = u.

Proof. As in the proof of Theorem 6, we derive the result from Theorem 2.

Corollary 6. Let (X,G) be a complete G-metric space and f : X → X be such that

β(x, y, y)G(fx, fy, fy) 6 kmax
{
G(x, y, y), G(x, fx, fx), G(y, fy, fy),

G(x, fy, fy), G(y, fx, fx)
}

(33)

for all x, y ∈ X , where k ∈ [0, 1/2). Suppose that:

(i) f is β-admissible;
(ii) there exists x0 ∈ X such that β(x0, fx0, fx0) > 1 and β(fx0, x0, x0) > 1;

(iii) f is continuous or (W ) is verified.

Then, there exists a u ∈ X such that fu = u.

Proof. It is similarly as Corollary 2. It follows from Theorem 6 and Theorem 7.

Corollary 7. Let (X,G) be a complete G-metric space and f : X → X be a mapping.
Suppose that there exists a function F ∈ Γ such that

F
(
G(fx, fy, fy), G(x, y, y), G(x, fx, fx), G(y, fy, fy), G(x, fy, fy),

G(y, fx, fx)
)
6 0 (34)

for all x, y ∈ X . Then f has a unique fixed point.

Proof. Consider the case where β(x, y, y) = 1 for all x, y ∈ X in Theorem 7. The
uniqueness follows from Theorem 3.

As Corollary 4, we obtain from Corollary 7 the following:

Corollary 8. Let (X,G) be a completeG-metric space and f : X → X a given mapping.
Suppose that

G(fx, fy, fy) 6 kmax
{
G(x, y, y), G(x, fx, fx), G(y, fy, fy),

G(x, fy, fy), G(y, fx, fx)
}

(35)

for all x, y ∈ X , where k ∈ [0, 1/2). Then f has a unique fixed point.
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4 Application

In this section, we provide an application to solve the nonlinear integral equation

x(t) =

t∫
a

K
(
t, s, x(s)

)
ds, (36)

where t ∈ J = [a, b] and K : J × J × R → R is continuous. Let X = C(J,R) with the
usual supremum norm, that is,

‖x‖ = max
t∈J

∣∣x(t)∣∣.
Note that the existence for the unique solution of (36) is based on Corollary 4.

Theorem 8. Suppose the following conditions hold:

(i) there exists a continuous function p : J × J → R+ such that∣∣K(t, s, u)
∣∣ 6 p(t, s)

b− a
|u|

for each t, s ∈ J and u ∈ R;
(ii) if u, v ∈ X with u 6= v, we have

∫ t

a
K(t, s, u(s)) ds 6=

∫ t

a
K(t, s, v(s)) ds for

each t ∈ J ;
(iii) supt∈J p(t, s) = k < 1/2.

Then the integral equation (36) has a unique solution x ∈ C(J,R).

Proof. Consider the quasi-metric d : X ×X → [0,∞) defined by

d(x, y) = ‖x‖ if x 6= y and d(x, y) = 0 if x = y.

It is clear that (X, d) is a complete quasi-metric space. Consider the mapping T : X → X
defined by

Tx(t) =

t∫
a

K
(
t, s, x(s)

)
ds

for all x ∈ X . We have to prove that T has a unique fixed point.
For all x ∈ X , we have

∣∣Tx(t)∣∣ 6 t∫
a

∣∣K(t, s, x(s))∣∣ds 6 b∫
a

p(t, s)

b− a
∣∣x(s)∣∣ ds 6 ‖x‖ b∫

a

k

b− a
ds = k‖x‖,

so ‖Tx‖ 6 k‖x‖. For all x, y ∈ X with x 6= y, we get under assumption that Tx 6= Ty.
Thus,

d(Tx, Ty) = ‖Tx‖ 6 k‖x‖ = kd(x, y)

6 kmax
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
. (37)
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On the other hand, obviously (37) holds in the case x = y. So all hypotheses of Corol-
lary 4 are satisfied, and so T has a unique fixed point, that is, the problem (36) has a unique
solution.

Acknowledgment. The authors express their gratitude to the referees for constructive
and useful remarks and suggestions.
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