
http://dx.doi.org/10.15388/NA.2016.1.9
Nonlinear Analysis: Modelling and Control, Vol. 21, No. 1, 121–134 ISSN 1392-5113

On the optimality of some multi-point methods for finding
multiple roots of nonlinear equation∗

Nebojša M. Ralević, Dejan Ćebić

Faculty of Engineering, University of Novi Sad,
Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
nralevic@uns.ac.rs; cebicd@gmail.com

Received: October 9, 2014 / Revised: July 5, 2015 / Published online: November 25, 2015

Abstract. This paper deals with the problem of determining the multiple roots of nonlinear
equations, where the multiplicity of the roots is known. The paper contains some remarks on
the optimality of the recently published methods [B. Liu, X. Zhou, A new family of fourth-order
methods for multiple roots of nonlinear equations, Nonlinear Anal. Model. Control, 18(2):143–152,
2013] and [X. Zhou, X. Chen, Y. Song, Families of third- and fourth-order methods for multiple
roots of nonlinear equations, Appl. Math. Comput., 219(11):6030–6038, 2013]. Separate analysis of
odd and even multiplicity, has shown the cases where those methods lose their optimal convergence
properties. Numerical experiments are made and they support theoretical analysis.

Keywords: nonlinear equation, multiple roots, the modified Newton’s method, optimal order of
convergence.

1 Introduction

The problem of solving nonlinear equation f(x) = 0 is one of the most frequent problems
in numerical mathematics and engineering. The classical Newton’s method

xn+1 = xn −
f(xn)

f ′(xn)
. (1)

is the most commonly used iterative method for finding the solutions of f(x) = 0. When
the initial iteration x0 is close enough to the root α, the Newton’s method has quadratic
convergence if α is a simple root, or linear convergence if α is a multiple root.

According to the Kung–Traub conjecture, the iterative method is optimal if it reaches
order of convergence 2n using n + 1 function or derivative evaluations per iteration.
Therefore, the classical Newton’s method is optimal only for simple roots. When the

∗This research was supported by grant No. 174009, Ministry of Education, Science and Technological
Development of the Republic of Serbia.

c© Vilnius University, 2016

mailto:nralevic@uns.ac.rs
mailto:cebicd@gmail.com

122 N.M. Ralević, D. Ćebić

multiplicity ofα (denoted bym) is known, more suitable method is the modified Newton’s
method given by

xn+1 = xn −m
f(xn)

f ′(xn)
, (2)

which has optimal properties, i.e. it converges quadraticaly.
Based on the methods (1), (2) and on the work of Jarratt [4], many multipoint methods

for finding multiple roots of f(x) = 0, where the multiplicity of roots is known in
advance have been constructed in order to improve rate of convergence. In this paper,
we are concerned only with the multipoint methods free from the second or higher order
derivatives. In the literature, one can find the third-order methods, which require three
function or derivative evaluations per iteration (see for example [1,2,3,5,9,10,13,15,17]),
or the fourth-order methods with four function/derivative evaluations (see [10, 12]), but
these methods are not optimal in the sense of Kung–Traub.

Beside them, there are other more efficient optimal methods for multiple roots. In the
further text, we briefly recall only optimal fourth-order methods that are most commonly
used and compare them with the recently developed optimal iteration schemes based on
the modified Newton’s method.

First, we present the method developed by Li et al. [7] denoted by LLC

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn −
1
2m(m− 2)(m

m+2)
−mf ′(yn)− m2

2 f
′(xn)

f ′(xn)− (m
m+2)

−mf ′(yn)

f(xn)

f ′(xn)
.

The following method, denoted by ShSh, has been constructed by Sharma and Sharma
in [16]:

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn − a1
f(xn)

f ′(xn)
− a2

f(xn)

f ′(yn)
− a3

f(xn)f
′(xn)

f ′(yn)2
,

where a1 = (1/8)m(m3 − 4m + 8), a2 = −(1/4)m(m − 1)(m + 2)2(m/(m + 2))m

and a3 = (1/8)m(m+ 2)3(m/(m+ 2))2m.
In [6], Li et al. have introduced several fourth-order methods, but we restrict our

attention on the following method (LCN) with optimal properties:

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn − a1
f(xn)

f ′(xn)
− f(xn)

a2f ′(xn) + a3f ′(yn)
,

(3)

where

a1 = −1

2
m2 +m, a2 = − 1

m
and a3 =

(
m

m+ 2

)−m
1

m
.

http://www.mii.lt/NA

On the optimality of some multi-point methods 123

Zhou et al. [18] have developed a more general version of (3), where iteration scheme
is defined by

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn −Q
(
f ′(yn)

f ′(xn)

)
f(xn)

f ′(xn)
,

(4)

where the functionQ(·) ∈ C2(R) satisfies the following conditions: Q(u) = m,Q′(u) =
−(1/4)m3−m(m+2)m andQ′′(u) = (1/4)m4(m/(m+2))−2m for u = (m/(m+2))m−1.
Beside the method (3), in further analysis we use another member of the family (4), where
the function Q(·) is chosen such that

Q(t) = At2 +Bt+ C,

A =
1

8
m4

(
m+ 2

m

)2m

, B = −1

4
m3(m+ 3)

(
m+ 2

m

)m

,

C =
1

8
m
(
m3 + 6m2 + 8m+ 8

)
.

This method is denoted by ZCS.
Recently, Rhee and Kim have presented a more general family of fourth-order meth-

ods (see [14] for details), and we list here just two special cases, which are tested and
numerically verified by authors. They are defined by iteration schemes RK1 and RK2 as
follows:

RK1: yn = xn −
(

2m

m+ 2
+

h3

h+ 1

)
h,

xn+1 = xn − h
(
Av2 +Bv + C

)
,

where

h =
f(xn)

f ′(xn)
, v =

f ′(yn)

f ′(xn)
, ρ =

(
m

m+ 2

)m−1

,

A =
(m(m+2))2

8ρ2
, B =

m2(m+2)(m+3)

−4ρ
and C =

m(m3+6m2+8m+8)

8
;

RK2: yn = xn −
(

2m

m+ 2
+

h3

h+ 1

)
h,

xn+1 = xn − h
(
A+Bv3

C + v3

)
,

where

h =
f(xn)

f ′(xn)
, v =

f ′(yn)

f ′(xn)
, ρ =

(
m

m+ 2

)m−1

,

A =
ρ3m(m2 + 4)

2(m+ 4)
, B = −m(m2 − 8)

2(m+ 4)
and C = −ρ

3(m− 2)

m+ 4
.

Nonlinear Anal. Model. Control, 21(1):121–134

124 N.M. Ralević, D. Ćebić

Since all the methods mentioned above are of fourth order and require one function
and two first derivative evaluations per iteration, their efficiency index calculated by p1/n

(p is convergence order and n is number of function/derivative evaluations per iteration)
equals 41/3 ≈ 1.587, while for the method (2) it is 21/2 ≈ 1.414. Furthermore, all these
methods are based on the Jarratt method.

On the other hand, recently developed method, obtained by Liu and Zhou [8], is based
on the modified Newton’s method (2) with iteration scheme

yn = xn −m
f(xn)

f ′(xn)
,

xn+1 = yn −mQ(wn)
f(xn)

f ′(xn)
,

(5)

where wn = m−1
√
f ′(yn)/f ′(xn), and the function Q(·) satisfies conditions

Q(0) = 0, Q′(0) = 1, Q′′(0) =
4m

m− 1
and Q′′′(0) <∞, (6)

demanded for reaching the fourth order of convergence. Two special choices of Q(wn),
slightly modified from those suggested in [8], will be considered to illustrate numerical
behavior of the methods, denoted by LZ1 and LZ2 for

Q(wn) = wn +
2m

m− 1
w2

n + kw3
n and Q(wn) =

(m− 1)wn

m− 1− 2mwn
,

respectively, where k is some real coefficient.
Although this method requires computation of the (m− 1)st root in every iteration, it

does not affect the cost of the method. In [11], Neta et al. have numerically verified that
evaluations of (m−1)st root do not significantly increase CPU time compared with other
methods.

To construct a family of two-point methods using only one derivative and two function
evaluations per iteration, Zhou et al. have investigated in [19] the following method:

yn = xn −m
f(xn)

f ′(xn)
,

xn+1 = yn −mG(wn)
f(xn)

f ′(xn)
,

(7)

where wn = m
√
f(yn)/f(xn), and the function G(·) satisfies the following conditions:

G(0) = 0, G′(0) = 1, G′′(0) = 4 and G′′′(0) <∞. (8)

With the purpose of comparing with other iterative methods, we have chosen two special
members of this family using two variants of G(wn),

G(wn) = kw3
n + 2w2

n + wn and G(wn) =
wn

(1− wn)2
,

http://www.mii.lt/NA

On the optimality of some multi-point methods 125

denoted by ZCS1 and ZCS2, respectively, where k is a real coefficient. For k = 0, we get
the methods considered in [19].

In the next section, we focus on method (5), especially on its convergence order,
and consecutively on the optimal properties of the method. There we separately analyze
cases when the multiplicity m is odd and when it is even. Similarly, in Section 3, we
derive some conclusions about optimal properties of method (7). The numerical results
and comparison of the methods with concluding remarks are given in Section 4.

2 On the optimality of method (5)

To obtain the optimal fourth order of convergence for iterative method (5), Theorem 1 in
[8] gives the sufficient conditions for solving nonlinear equation f(x) = 0: if α is a mul-
tiple root with multiplicity m (m > 1) of sufficiently differentiable function f : I → R
for some open interval I , and if the initial approximation x0 is sufficiently close to α, then
conditions (6) provide at least fourth convergence order of method (5) with error equation

en+1 =
1

6(m− 1)2m3

((
3
(
m3 + 8m2 +m+ 2

)
− (m− 1)2Q′′′(0)

)
c31

− 6(m− 1)m2c1c2
)
e4n +O

(
e5n
)
, (9)

where en denotes the error of the nth iteration, i.e. en=xn−α, and ci=(m!/(m+ i)!)×
(f (m+i)(α)/f (m)(α)) for i > 1. Theorem 1 is proved and the error equation (9) is derived
in [8].

On the other hand, we will show that there is a class of nonlinear sufficiently dif-
ferentiable functions with multiple root α with odd multiplicity m, for which method (5)
satisfying the conditions of Theorem 1 does not reach fourth order. Consequently, it means
that Theorem 1 does not provide optimality of the method.

Since our remarks are based on the proof of Theorem 1, we recall here some relevant
steps of the proof and use similar notation as in [8]. The Taylor’s expansion of f(xn) and
f ′(xn) about α yields

f(xn) =
f (m)(α)

m!
emn
(
1 + c1en + c2e

2
n + c3e

3
n +O

(
e4n
))
, (10)

f ′(xn) =
f (m)(α)

(m− 1)!
em−1n

×
(
1 +

m+ 1

m
c1en +

m+ 2

m
c2e

2
n +

m+ 3

m
c3e

3
n +O

(
e4n
))
, (11)

f(xn)

f ′(xn)
=

1

m
en −

c1
m2

e2n +
c21(m+ 1)− 2mc2

m3
e3n

+
c1c2(3m+ 4)− 3m2c3 − (m+ 1)2c31

m4
+O

(
e5n
)
, (12)

Nonlinear Anal. Model. Control, 21(1):121–134

126 N.M. Ralević, D. Ćebić

yn − α =
c1
m
e2n −

(m+ 1)c21 − 2mc2
m2

e3n

+
(m+ 1)2c31 − (3m+ 4)mc1c2 + 3m2c3

m3
e4n +O

(
e5n
)
. (13)

From (11) and (13), using Mathematica symbolic computation, it is not difficult to get

f ′(yn) =
f (m)(α)

(m− 1)!
e2(m−1)n

(
c1
m

)m−1[
1 +

m− 1

mc1

(
2mc2 − (m+ 1)c21

)
en

+
1

2m2c21

(
2(m+ 1)c41 +m(m− 1)

(
(m+ 1)2c41 − 2m(2m+ 1)c21c2

+ 4m(m− 2)c22 + 6mc1c3
)
e2n +O

(
e3n
)]
,

and after dividing by f ′(xn) and simplification, the result is

f ′(yn)

f ′(xn)
= em−1n

(
c1
m

)m−1(
1 + ψ1en + ψ2e

2
n +O

(
e3n
))
, (14)

where

ψ1 = 2(m− 1)
c2
c1
− (m+ 1)c1,

ψ2 = 3
c3
c1

(m− 1) + 2
c22
c21

(m− 2)(m− 1)−m(2m+ 1)c2

+
(m+ 1)(m+ 2)(m2 + 1)

2m2
c21.

Now, since the argument of the function Q(·) is wn = m−1
√
f ′(yn)/f ′(xn), it is

reasonable to calculate wn using (14) and Taylor’s expansion about α. This result is
presented in [8] by

wn =
c1
m

(
en +

ψ1

m− 1
e2n −

(m− 2)ψ2
1 − 2(m− 1)ψ2

2(m− 1)2
e3n

+
(m− 2)ψ1((2m− 3)ψ2

1 − 6(m− 1)ψ2

6(m− 1)3
e4n +O

(
e5n
))
. (15)

Our main remark on the proof of Theorem 1 is related to (15) because it does not hold
for every sufficiently differentiable function f(x), even when the initial point x0 is very
close to α. Namely, if the multiplicity m is odd (m− 1 is even), and if enc1 < 0, then wn

must be positive, so then wn has the following form:

wn = −c1
m
en

(
1 +

ψ1

m− 1
en −

(m− 2)ψ2
1 − 2(m− 1)ψ2

2(m− 1)2
e2n

+
(m− 2)ψ1((2m− 3)ψ2

1 − 6(m− 1)ψ2

6(m− 1)3
e3n +O

(
e4n
))
. (16)

http://www.mii.lt/NA

On the optimality of some multi-point methods 127

Furthermore, if Q(wn) is chosen such that it satisfies conditions (6), then from (12), (13)
and (16), we have

en+1 =
2c1
m
e2n +

4m(m− 1)c2 − 2(m2 + 2m− 1)c21
m2(m− 1)

e3n +O
(
e4n
)
.

Thus, it is intuitively clear that such iteration step provides just second order of conver-
gence instead fourth.

For further analysis, we rewrite the error equation (9) by

en+1 =
1

6(m− 1)2m3
c1A · e4n +O

(
e5n
)
, (17)

where A = (3(m3 + 8m2 +m+ 2)− (m− 1)2Q′′′(0))c21 − 6(m− 1)m2c2. When the
multiplicity m is odd, the coefficient A plays a crucial role in the convergence behavior
of method (5).

For instance, letA be negative and x0 is chosen very close to α such that e0c1 > 0 (e0
is error of the initial approximation). Then, after calculating (m − 1)st root of (14), we
have wn defined by (15), and the error of the first iteration x1 can be obtained from (17)
as follows:

e1 ≈
1

6(m− 1)2m3
c1A · e40.

Since A < 0, e1 has opposite sign to c1, so in the next iteration step, we get e1c1 < 0.
Thus, (m− 1)st root of (14) is now defined by (16) instead by (15), and we have

e2 ≈
2c1
m
e21 +O

(
e31
)
. (18)

Clearly, e2c1 > 0 from (18), and the next iteration calculates wn by (15), which leads
to (9) and, informally speaking, to the step of fourth order.

The alternation of the second- and the fourth-order iteration steps continues until
some stopping criterion is satisfied. Therefore, a sequence {xn} produced by method
(5) does not converge to α with fourth order of convergence. Consequently, method (5)
is not optimal for odd multiplicity m of root α when A < 0. This theoretical approach is
numerically verified in Section 4 (see Tables 1 and 2).

Nevertheless, Theorem 1 is valid for every even m. Furthermore, method (5) is of
fourth order for every odd m > 1 if the functions f(x) and Q(·) satisfy A > 0.

3 On the optimality of method (7)

The iterative method (7) has been developed in [19], where Theorem 3.1 gives the fol-
lowing conclusion: if α is a multiple root of multiplicity m of sufficiently differentiable
function f : I → R (I is some open interval), and if the starting point x0 is close enough
to α, then for the function G(·) ∈ C2(R) satisfying (8), the convergence order of method
defined by (7) is at least four with the error equation

en+1 =
1

6m3

((
3m+ 27−G′′′(0)

)
c31 − 6mc1c2

)
e4n +O

(
e5n
)
. (19)

Nonlinear Anal. Model. Control, 21(1):121–134

128 N.M. Ralević, D. Ćebić

According to the Kung–Traub conjecture and Theorem 3.1, method (7) is optimal since it
requires one derivative and two function evaluations per iteration. But, similarly to method
(5), in the further text, we will show that Theorem 3.1. does not hold for some nonlinear
functions with multiple root α with even multiplicity m.

The first step in the iteration scheme (7) is the modified Newton’s step, which is the
same as in (5). Hence, results (10), (11), (12) and (13) can be used for further analysis.
From (10) and (13), we have

f(yn) =
f (m)(α)

m!
e2mn

(
c1
m

)m[
1 +

2mc2 − (m+ 1)c21
c1

en

+
1

2mc21

((
m3 + 3m2 + 3m+ 3

)
c41 − 2m

(
2m2 + 3m+ 2

)
c21c2

+ 4m2(m− 1)c22 + 6m2c1c3

)
e2n +O

(
e3n
)]
. (20)

Dividing (20) by (10), we get

f(yn)

f(xn)
= emn

(
c1
m

)m[
1 +

2mc2 − (m+ 2)c21
c1

en

+
1

2mc21

(
(m+ 1)2(m+ 3)c41 − 2m

(
2m2 + 5m+ 3

)
c21c2

+ 4m2(m− 1)c22 + 6m2c1c3

)
e2n +O

(
e3n
)]
. (21)

For every odd m (including m = 1) and for every even m when c1en > 0, the mth
root of (21) is obtained by

wn = en
c1
m

[
1 +

(
2c2
c1
− (m+ 2)c1

m

)
en

+
(2m2 + 7m+ 7)c31 − 2m(3m+ 7)c1c2 + 6m2c3

2m2c1
e2n +O

(
e3n
)]
. (22)

Thus, using (12), (22) and Taylor’s expansion of G(wn) about 0, the second equation
of (7) yields the error equation (19) derived in [19], which can be rearranged as

en+1 =
1

6m3
c1Âe

4
n +O

(
e5n
)
, (23)

where Â = −6mc2 + c21(3(m+ 9)−G′′′(0)).
On the other hand, when the multiplicity m is even and c1en < 0, because wn has to

be positive, we get the mth root of (21) defined by

wn = −en
c1
m

[
1 +

(
2c2
c1
− (m+ 2)c1

m

)
en

+
(2m2 + 7m+ 7)c31 − 2m(3m+ 7)c1c2 + 6m2c3

2m2c1
e2n +O

(
e3n
)]
. (24)

http://www.mii.lt/NA

On the optimality of some multi-point methods 129

Therefore, for G(wn) satisfying (8), by substituting (13), (21) and (24) into the second
step of (7), we get

en+1 =
2c1
m
e2n +

8mc2 − 4(m+ 3)c21
2m2

e3n +O
(
e4n
)
, (25)

which clearly represents the iteration step of the second order.
When the multiplicity of root α is even, the convergence behavior of method (7)

is strongly dependent on the corresponding coefficient Â from (23). If Â > 0, the
fourth convergence order remains. If Â < 0, it is easy to show in the same fashion
as in previous section, that method (7) implies the alternation of the second- and the
fourth-order iteration steps with the errors given by (25) and (23), respectively, and the
method loses optimal properties. The numerical examples, which confirm this theoretical
analysis, are given in the next section.

4 Numerical results

All numerical computations presented in this section have been carried out by Mathe-
matica with the aid of SetPrecision function with 10000 significant digits, on a personal
computer with 32-bit Windows Vista operating system and 1.73 GHz processor speed.
The stopping criterion for all test examples has been |f(xn)| < 10−200, where the number
of iterations does not exceed 100.

With the aim to consider the convergence properties of the method LZ1 (5) for the
roots with odd multiplicity, in Table 1 and Table 2, we present the numerical results
for various choices of coefficient k. Although conditions (6) for the function Q(wn) are
satisfied for every real k, it is not enough to provide the fourth convergence order of
LZ1. On the left side of the tables, we have shown the results for the choice of k, where
A < 0, while the results for k where A > 0 are on the right side. It is easy to obtain
that the variants of LZ1, where A < 0 require more iterations to satisfy the stopping
criterion, and that they have slower convergence compared with the right side competitors.
More importantly, the convergence behavior can be numerically checked by considering
exponents of 10 in xi − α or |f(xi)| columns, especially for iterations {xi} very close
to solution α. It is well-known that if p is the order of convergence of some method,
then the method approximately multiplies by p the number of exact decimals after every
iteration in some very close neighborhood of α, i.e. the number of zeros after decimal
point multiplies by p after each iteration. Obviously, by dividing the exponents of xi − α
or |f(xi)|, the right-hand side methods have results approximately equal four. On the
other hand, by dividing the exponents of the left-side methods, we get alternation of the
two results, two and four, which ruin optimal properties of the method (5) for oddmwhen
A < 0. In these cases, the sequence {xi} oscillates about α until the stopping criterion
is satisfied. These test examples clearly confirm the theoretical analysis from Section 2.
Tables 3 and 4 show similar behavior of the method ZCS1 (7) when the multiplicity of
the root α is even for different sign of the coefficient Â.

Nonlinear Anal. Model. Control, 21(1):121–134

130 N.M. Ralević, D. Ćebić

Table 1. Numerical results for f(x) = x3(x− 1)2, α = 0, m = 3 and x0 = −0.5.

i xi − α |f(xi)| xi − α |f(xi)|
Method LZ1 for k = 15 (A = −300) Method LZ1 for k = 1 (A = 1044)

1 −0.010718 1.2578 · 10−6 −0.021346 1.1015 · 10−5

2 9.6869 · 10−9 9.0898 · 10−25 −5.8496 · 10−7 2.0016 · 10−19

3 −1.2511 · 10−16 1.9585 · 10−48 −3.7728 · 10−25 5.3702 · 10−74

4 2.2689 · 10−64 1.1679 · 10−191 −6.5284 · 10−98 2.7824 · 10−292

5 −6.8636 · 10−128 3.2334 · 10−382

Table 2. Numerical results for f(x) = (x2− ex− 3x+2)5, α = 0.25753 . . . , m = 5
and x0 = 1.8.

i xi − α |f(xi)| xi − α |f(xi)|
Method LZ1 for k = 0 (A ≈ −6.12) Method LZ1 for k = −1 (A ≈ 14.84)

1 0.025738 8.5990 · 10−6 0.037103 5.3260 · 10−5

2 −1.2117 · 10−4 2.0121 · 10−17 −2.4923 · 10−4 7.4089 · 10−16

3 5.0974 · 10−20 2.6512 · 10−94 −2.2463 · 10−18 4.4060 · 10−86

4 −4.8566 · 10−40 2.0814 · 10−194 −1.4714 · 10−74 5.3129 · 10−367

5 1.3258 · 10−161 3.1559 · 10−802

Table 3. Numerical results for f(x) = x3(x− 1)2, α = 1, m = 2 and x0 = 1.75.

i xi − α |f(xi)| xi − α |f(xi)|
Method ZCS1 for k = 10 (Â = −297) Method ZCS1 for k = 2 (Â = 153)

1 0.05332 0.0033229 0.1095 0.016367
2 −5.789 · 10−5 3.3607 · 10−9 6.764 · 10−4 4.5847 · 10−7

3 1.009 · 10−8 1.0175 · 10−16 1.993 · 10−12 3.9713 · 10−24

4 −1.805 · 10−31 3.2590 · 10−62 1.508 · 10−46 2.2744 · 10−92

5 9.777 · 10−62 9.5590 · 10−123 4.947 · 10−183 2.4469 · 10−365

6 −1.593 · 10−243 2.5387 · 10−486

Table 4. Numerical results for f(x) = (x2− ex− 3x+2)4, α = 0.25753 . . . , m = 4
and x0 = 2.

i xi − α |f(xi)| xi − α |f(xi)|
Method ZCS1 for k = 0 (Â ≈ −1.29) Method ZCS1 for k = −2 (Â ≈ 0.39)

1 0.055831 0.0019412 0.11229 0.031168
2 −5.5293 · 10−4 1.9060 · 10−11 −2.0972 · 10−3 3.9467 · 10−9

3 1.1652 · 10−16 3.7575 · 10−62 −7.9249 · 10−15 8.0414 · 10−55

4 −2.5375 · 10−33 8.4521 · 10−129 −1.5016 · 10−60 1.0365 · 10−237

5 5.1894 · 10−134 1.4785 · 10−531

The test examples from [18] and [14] given in Table 4 have been used for further
analysis. For the functions where the exact root α is not available, we have used the
approximation calculated with 10000 digits (only 7 digits are displayed).

Numerical results for all relevant fourth-order previously presented methods, together
with the second-order modified Newton’s method (2) denoted by MNM, are given in
Tables 6–11, with the purpose of comparing with the results of the methods LZ1 (for
k = 0), LZ2, ZCS1 (for k = 0) and ZCS2. Each table lists the number of iterations for

http://www.mii.lt/NA

On the optimality of some multi-point methods 131

Table 5. Test functions.

f(x) α m x0
f1(x) = (x2 − ex − 3x+ 2)5 0.2575302 . . . 5 1.8
f2(x) = (cosx− x)3 0.7390851 . . . 3 2.5
f3(x) = (log x+

√
x/x2 − 1)3 1.7910672 . . . 3 1.95

f4(x) = (2x+ e−x + sin(x2)− 3)5 0.9244631 . . . 5 0.75
f5(x) = (ex + x− 20)4 2.8424389 . . . 4 3

f6(x) = (x10 −
√
3x3 cos(xπ/6) + 1/(x2 + 1))(x− 1)5 1.0000000 6 1.08

Table 6. Numerical results for f1(x).

Method it |x3 − α| |f(x3)| CPU COC
MNM 6 4.2743 · 10−6 1.0991 · 10−24 0.890 2.0000
LLC 4 3.3967 · 10−22 3.4830 · 10−105 0.943 4.0000
ShSh 4 1.4137 · 10−22 4.3495 · 10−107 0.953 4.0000
LCN 4 3.3967 · 10−22 3.4830 · 10−105 0.922 4.0000
ZCS 4 6.8563 · 10−23 1.1672 · 10−108 0.950 4.0000
RK1 4 4.5104 · 10−16 1.4380 · 10−74 0.930 4.0000
RK2 4 1.8611 · 10−15 1.7200 · 10−71 0.967 4.0000
LZ1 5 5.0974 · 10−20 2.6512 · 10−94 1.38 6.0718
LZ2 4 3.5201 · 10−13 4.1636 · 10−60 1.06 6.0133
ZCS1 3 4.2578 · 10−60 1.0780 · 10−294 0.507 4.0004
ZCS2 4 6.8013 · 10−32 1.1211 · 10−153 0.867 4.0000

Table 7. Numerical results for f2(x).

Method it |x3 − α| |f(x3)| CPU COC
MNM 7 0.00016723 2.1924 · 10−11 2.90 2.0000
LLC 5 4.2258 · 10−15 3.5375 · 10−43 3.59 4.0000
ShSh 5 4.9948 · 10−15 5.8414 · 10−43 3.60 4.0000
LCN 5 4.2258 · 10−15 3.5375 · 10−43 3.54 4.0000
ZCS 5 6.7304 · 10−15 1.4292 · 10−42 3.60 4.0000
RK1 – – – – –
RK2 – – – – –
LZ1 7 0.18489 0.025967 5.31 4.0000
LZ2 6 0.17199 0.026513 4.49 4.0000
ZCS1 4 1.4633 · 10−22 1.4689 · 10−65 2.06 4.0000
ZCS2 4 2.2723 · 10−25 5.5003 · 10−74 2.26 4.0000

corresponding method required to satisfy the stopping criterion. The tables also display
errors |xi − α| and residual errors |f(xi)| at the same level of iterative process for all
methods (in most cases there are errors and residual errors after third iteration). For all
test examples we have run each method 25 times and the average time is given in fifth
column (CPU). To numerically check the convergence order, the computational order of
convergence (COC) has been calculated by

COC =
log |(xn − α)/(xn−1 − α)|

log |(xn−1 − α)/(xn−2 − α)|
. (26)

If the method exceeds 100 iterations or diverges, it is denoted by “–”.
In Tables 6–9, we have tested the examples where the multiplicity m is odd. From

those tables, by observing the errors and residual errors, it is easy to see that both variants

Nonlinear Anal. Model. Control, 21(1):121–134

132 N.M. Ralević, D. Ćebić

Table 8. Numerical results for f3(x).

Method it |x3 − α| |f(x3)| CPU COC
MNM 6 1.4277 · 10−10 2.6545 · 10−32 0.653 2.0000
LLC 4 2.2008 · 10−60 9.7229 · 10−182 0.677 4.0000
ShSh 4 2.7396 · 10−60 1.8755 · 10−181 0.688 4.0000
LCN 4 2.2008 · 10−60 9.7229 · 10−182 0.669 4.0000
ZCS 4 3.9855 · 10−60 5.7740 · 10−181 0.685 4.0000
RK1 4 4.6859 · 10−64 9.3847 · 10−193 0.693 4.0000
RK2 4 2.0615 · 10−64 7.9904 · 10−194 0.716 4.0000
LZ1 4 3.7256 · 10−59 4.7166 · 10−178 0.696 4.0000
LZ2 4 1.3035 · 10−64 2.0199 · 10−194 0.704 4.0000
ZCS1 4 9.4430 · 10−65 7.6802 · 10−195 0.678 4.0000
ZCS2 3 6.6386 · 10−68 2.6685 · 10−204 0.499 4.0000

Table 9. Numerical results for f4(x).

Method it |x3 − α| |f(x3)| CPU COC
MNM 5 1.0818 · 10−13 2.6289 · 10−63 2.84 2.0000
LLC 3 4.9466 · 10−72 5.2541 · 10−355 2.62 4.0000
ShSh 3 4.8957 · 10−72 4.9896 · 10−355 2.64 4.0000
LCN 3 4.9466 · 10−72 5.2541 · 10−355 2.60 4.0000
ZCS 3 4.8470 · 10−72 4.7461 · 10−355 2.63 4.0000
RK1 3 2.3530 · 10−64 1.2797 · 10−316 2.65 4.0000
RK2 3 2.3646 · 10−64 1.3114 · 10−316 2.66 4.0000
LZ1 4 4.6441 · 10−22 3.8326 · 10−105 4.03 4.0000
LZ2 4 4.0581 · 10−22 1.9526 · 10−105 4.04 4.0000
ZCS1 3 1.2254 · 10−74 4.9011 · 10−368 2.15 4.0000
ZCS2 3 5.2477 · 10−75 7.0607 · 10−370 2.24 4.0000

Table 10. Numerical results for f5(x).

Method it |x3 − α| |f(x3)| CPU COC
MNM 6 1.6650 · 10−9 8.3529 · 10−31 0.996 2.0000
LLC 3 1.2065 · 10−71 2.3030 · 10−279 0.809 4.0000
ShSh 3 8.2939 · 10−71 5.1435 · 10−276 0.819 4.0000
LCN 3 1.2065 · 10−71 2.3030 · 10−279 0.802 4.0000
ZCS 3 6.8692 · 10−70 2.4203 · 10−272 0.818 4.0000
RK1 3 3.6965 · 10−78 2.0296 · 10−305 0.824 4.0000
RK2 3 6.1394 · 10−83 1.5443 · 10−324 0.837 4.0000
LZ1 3 7.6842 · 10−56 3.7899 · 10−216 0.829 4.0000
LZ2 3 1.9590 · 10−73 1.6008 · 10−286 0.836 4.0000
ZCS1 3 4.4084 · 10−61 4.1055 · 10−237 0.660 4.0000
ZCS2 3 5.1501 · 10−71 7.6473 · 10−277 0.655 4.0000

of the method (7) have faster convergence to the exact root α. On the other hand, for
some test examples such as f1(x) and f2(x) (Tables 6 and 7), method (7) requires less
CPU time for root-finding. In Tables 10 and 11, we present the numerical results for the
functions where multiplicities of the roots are even. Again, the new methods ZCS1 and
ZCS2 produce relatively good numerical results, especially for CPU time.

In every test example from Table 5, the methods ZCS1 and ZCS2 reach optimal
fourth order of convergence, even when m = 4 or m = 6. For the later cases when
the multiplicity is even, the optimal order is achieved because Â is positive. Note that

http://www.mii.lt/NA

On the optimality of some multi-point methods 133

Table 11. Numerical results for f6(x).

Method it |x3 − α| |f(x3)| CPU COC
MNM 6 4.0588 · 10−9 2.4380 · 10−50 3.64 2.0000
LLC 3 2.5592 · 10−55 1.5320 · 10−327 3.09 3.9999
ShSh 3 3.5306 · 10−55 1.0563 · 10−326 3.08 3.9999
LCN 3 2.5592 · 10−55 1.5320 · 10−327 3.06 3.9999
ZCS 3 4.4903 · 10−55 4.4701 · 10−326 3.08 3.9999
RK1 3 3.7429 · 10−55 1.4993 · 10−326 3.10 3.9999
RK2 3 2.1744 · 10−55 5.7643 · 10−328 3.11 3.9999
LZ1 3 3.6869 · 10−51 1.3697 · 10−302 3.14 3.9998
LZ2 3 1.4482 · 10−62 5.0302 · 10−371 3.14 4.0000
ZCS1 3 4.3113 · 10−54 3.5019 · 10−320 2.09 3.9999
ZCS2 3 9.6919 · 10−61 4.5197 · 10−360 2.12 4.0000

for f1(x) methods LZ1 and LZ2 have COC values approximately 6. It is not difficult
to show that for stopping criterion |f(xn)| < 10−300, method LZ2 requires one more
iteration, and COC value is then approximately 1.3. This happens because m is odd and
the corresponding coefficients A are negative. Similarly, evaluating COC from (26) for
method (7) when m is even and corresponding Â < 0, leads to the same COC values.

This is the main drawback of methods (5) and (7). One possible way to overcome
this difficulty is to choose sufficiently good functions Q(wn) and G(wn) (for example,
for each negative k with sufficiently large absolute value, ZCS1 method gives positive
coefficient Â due to G′′′(0) = 6k). Nevertheless, the numerical results show that these
methods are very competitive. According to the CPU time, evaluation of the mth root in
every iteration does not significantly increase computational cost, which agrees with the
conclusions of the paper [11]. Developing higher order schemes based on these methods
could be worth of investigation.

References

1. C. Dong, A basic theorem of constructing an iterative formula of the higher order for computing
multiple roots of an equation, Math. Numer. Sin., 11:445–450, 1982.

2. C. Dong, A family of multipoint iterative functions for finding multiple roots of equations, Int.
J. Comput. Math., 21:363–367, 1987.

3. Y.H. Geum, Y.I. Kim, Cubic convergence of parameter-controlled newton-secant method for
multiple zeros, Journal of Computational and Applied Mathematics, 233:931–937, 2009.

4. P. Jarratt, Mulitipoint iterative methods for solving certain equations, Comput. J., 8:398–400,
1966.

5. Y.I. Kim, Y.H. Geum, A cubic-order variant of newton’s method for finding multiple roots of
nonlinear equations, Computers and Mathematics with Applications, 62:1634–1640, 2011.

6. S. Li, L. Cheng, B. Neta, Some fourth-order nonlinear solvers with closed formulae for multiple
roots, Comput. Math. Appl., 59:126–135, 2010.

7. S. Li, X. Liao, L. Cheng, A new fourth-order iterative method for finding multiple roots of
nonlinear equations, Appl. Math. Comput., 215:1288–1292, 2009.

Nonlinear Anal. Model. Control, 21(1):121–134

134 N.M. Ralević, D. Ćebić

8. B. Liu, X. Zhou, A new family of fourth-order methods for multiple roots of nonlinear
equations, Nonlinear Anal. Model. Control, 18(2):143–152, 2013.

9. B. Neta, New third order nonlinear solvers for multiple roots, Appl. Math. Comput., 202:162–
170, 2008.

10. B. Neta, Extension of murakami’s high order nonlinear solver to multiple roots, Int. J. Comput.
Math., 87:1023–1031, 2010.

11. B. Neta, C. Chun, M. Scott, On the development of iterative methods for multiple roots, Appl.
Math. Comput., 224:358–361, 2013.

12. B. Neta, A.N. Johnson, High-order nonlinear solver for multiple roots, Comput. Math. Appl.,
55:2012–2017, 2008.

13. N. Osada, An optimal multiple root-finding method of order three, J. Comput. Appl. Math.,
51:131–133, 1994.

14. M.S. Rhee, Y.I. Kim, A general class of optimal fourth-order multiple-root finders without
memory for nonlinear equations, Appl. Math. Sci., 111:5537–5551, 2013.

15. D. Sbibih, A. Serghini, A. Tijini, A. Zidna, A general family of third order method for finding
multiple roots, Appl. Math. Comput., 233:338–350, 2014.

16. J.R. Sharma, R. Sharma, Modified jarratt method for computing multiple roots, Appl. Math.
Comput., 217:878–881, 2010.

17. H.D. Victory, B. Neta, A higher order method for multiple zeros of nonlinear functions, Int. J.
Comput. Math., 12:329–335, 1983.

18. X. Zhou, X. Chen, Y. Song, Constructing higher-order methods for obtaining the multiple roots
of nonlinear equations, J. Comput. Appl. Math., 235:4199–4206, 2011.

19. X. Zhou, X. Chen, Y. Song, Families of third and fourth order methods for multiple roots of
nonlinear equations, Appl. Math. Comput., 219:6030–6038, 2013.

http://www.mii.lt/NA

	Introduction
	On the optimality of method (5)
	On the optimality of method (7)
	Numerical results
	References

