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Abstract. In this paper, the adaptive control and parameters identification problems are investigated
for a class of linearly parametric strict feedback system with unknown control direction. Firstly,
by using backstepping design procedure, the adaptive tracking control scheme combined with
Nussbaum gain function is proposed. In the controller, the adaptive law of estimated parameters
is derived from Lyapunov stability theorem and Nussbaum-type function. All the signals in closed-
loop system are proved to be bounded. Secondly, the identification of unknown parameters in
the strict feedback system with unknown control direction is studied. By constructing a novel
Lyapunov function, a sufficient condition (PE condition), which can guarantee that the parameters
estimation converge to the actual values of parameters, is obtained for the first time. Also, it is more
simplified than the existing results on PE. Under the PE condition proposed here, it is shown that
the parameters estimation errors are convergent to zero asymptotically by using Nussbaum function
technique and Barbalat’s lemma. Finally, illustrated examples are given to demonstrate the main
results.

Keywords: unknown control direction, Barbalat lemma, Nussbaum gain, persistency excitation
condition, convergence of estimated parameters.

1 Introduction

Since the early stages of control methods development, adaptive control of nonlinear
systems has been an active area of research with the appearance of recursive backstepping
design [7,8,9]. Backstepping is an effective method for adaptive nonlinear control because
it can guarantee global stability and asymptotic tracking for parametric strict-feedback
systems. These papers are proposed to tackle the nonlinear systems with unknown con-
stant parameters and known control coefficients. In the last two decades, a great deal
of attention has been paid to systems with unknown control directions [3, 12, 15, 16, 18,
20, 22]. One effective method is using the Nussbaum gain approach to remove the basic
assumptions in many existing studies that the control direction is known and invariant.
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[2, 4, 24, 26] extended the adaptive backstepping technique to parametric strict-feedback
systems with unknown virtual control coefficients using Nussbaum gain. However, the
identification problem of unknown parameters in the adaptive control for nonlinear strict
feedback systems with unknown control direction has not been considered, yet.

Recently, the convergence problem of parameter estimation has been widely studied
for adaptive systems. For many adaptive schemes, the relationship between parameter
identification and the persistency of excitation condition (PE) has been widely studied. PE
established a necessary (and sometimes sufficient) condition for parameter identification
with the reference trajectory [6]. For large classes of systems, PE implied that tracking
error converges to zero only when the adaptation law identifies the actual parameters [21].
Recently, PE was shown to be necessary and sufficient for uniform global asymptotic
stability of a class of nonlinear systems that includes the manipulator dynamics [10, 11].
Ref. [14] proposed an adaptive control method for a class of nonlinear systems with un-
known high-frequency gains, in which the tracking error and estimation error of unknown
parameters were convergent to zero asymptotically with the assumption that the signs of
unknown high-frequency gains are known. In [5], a simple PE condition was proposed
with an adaptive backstepping controller for parametric strict-feedback systems. In more
recent years, the parameters identification has been considered with consensus of multi-
agents and synchronization of dynamical complex networks, chaotic networks. From
this perspective, some novels results on parameters identification have been presented
(see [1,13,17,19,23,25]). However, for nonlinear strict-feedback system, the parameters
identification problem is more complicated, due to the complex structure of system and
complex controller design procedure. Moreover, the parameters identification problem
becomes more practical in real world, with unknown control direction.

Inspired by the aforementioned discussions, in this paper, we address the control and
parameters identification problem for linearly parametric strict feedback systems with
unknown control direction. An adaptive controller is designed by using backstepping
procedure and Nussbaum function technique, where the tracking error is proved to be
convergent to zero asymptotically. By constructing a novel Lyapunov function, a simple
PE condition for system functions is obtained to guarantee that the estimation of param-
eters is convergent to the actual values with rigorous analysis. Also, the boundedness
of all signals in the closed-loop system is guaranteed. The main contributions of this
paper are summarized as follows. 1) An adaptive controller for linearly parametric strict
feedback system is proposed to force the system to track the specified trajectory, by
using Nussbaum functions technique. 2) A novel Lyapunov function is constructed to
analysis the convergence of parameters estimation for linearly parametric strict feedback
system with unknown control direction for the first time, which is different with the works
in [14]. 3) By rigorous analysis, a PE condition is derived, which is simpler than the
existing results. As a result, the PE condition proposed in this paper can be used widely
in convergence analysis of parameters with adaptive laws.

The rest of this paper is organized as follows. In Section 2, the problem and controller
designing are introduced simply. Based on a novel Lyapunov function, Section 3 shows
the convergence analysis of parameters identification under PE condition. In Section 4,
an illustrated example is introduced to demonstrate the PE condition and convergence of
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estimated parameters. Finally, Section 5 concludes the paper. For notations convenience,
| · | denotes a suitable norm.

2 Problem formulation and preliminary

2.1 System description and basic assumptions

In this section, we consider the following strict feedback system:

ẋi = xi+1 + θTfi(x̄i)

ẋn = bnu+ θTfn(x),
(1)

where the trajectory of system is x = [x1, x2, . . . , xn]T ∈ Rn and x̄i = [x1, x2,
. . . , xi]

T ∈ Ri. fi : Ri → Rp (1 6 i 6 n) is continuous known nonlinear functions
vector, u ∈ R is the input of control, bn ∈ R is the unknown control coefficient whose
value and sign are completely unknown, θ ∈ Rp is the vector of unknown parameters.

The control objective is to design an adaptive controller to force system (1) such that
x1 tracks a reference trajectory xr asymptotically and the adaptive law identifies the actual
values of θ with PE condition which will be specified later.

For practical systems in real world, system functions may be completely unknown.
To study this problem, the systems can be modeled as linearly parametric systems. In
this paper, we consider the linearly parametric nonlinear strict feedback system. From the
linearly parametric perspective, the unknown functions such as f(x) can be represented as
a unknown parameters vector multiplied by a known functions vector: f(x) = θTφ(x),
where θ is a unknown parameters vector and φ(x) is a known functions vector. There-
fore, the linearly parametric nonlinear strict feedback system is a widely used model.
Parameters identification problem is a basic problem in the adaptive control. Although
many adaptive control methods have been presented, that the estimation of parameters
converges to the real value of unknown parameters is not guaranteed. In practical case,
due to the disturbance of uncertainties or the bias of modeling, the control direction
will be completely unknown. Therefore, the parameters identification method based on
known control direction will be invalid. Nussbaum gain method can adapt the control
direction on-line and resists the disturbance of variation on control direction. In this paper,
a parameters identification problem is considered by using the Nussbaum gain method to
adapt the variation of control direction and to overcome the limitation of identification
problem presented before.

To show the main results, several assumptions are given as follows.

Assumption 1. The reference trajectory xr, x
(i)
r , i = 1, 2, . . . , n, exist and x(n)

r is piece-
wise continuous. Then there is a positive constant B such that max06i6n{|x(i)

r |∞} 6 B.

Assumption 2. (See [6].) For all t ∈ R, there exist a constant T > 0 and a known
constant µ > 0 such that

∫ t
t−T f1(xr(τ))fT

1 (xr(τ)) dτ > µI , where I is the identity
matrix.
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Definition 1. (See [20].) A function N(ξ), is called a Nussbaum-type function if it has
the following properties:

lim
s→∞

sup
1

s

s∫
s0

N(ξ) dξ = +∞,

lim
s→∞

inf
1

s

s∫
s0

N(ξ) dξ = −∞.

For instance, in this paper, N(ξ) = ξ2 cos(ξ) is considered.

Lemma 1. (See [24].) Let V (·) and ξ(·) be smooth functions defined on [0, tf ) with
V (t) > 0 for all t ∈ [0, tf ), and N(·) be an even smooth Nussbaum-type function. If the
following inequality holds:

V (t) 6 c0 +

t∫
0

(
bN(ξ) + 1

)
ξ̇ dτ ∀t ∈ [0, tf ),

where b is a nonzero constant and c0 represent some suitable constant, then V (t), ξ(t)
and

∫ t
0

(bN(ξ) + 1)ξ̇ dτ must be bounded on [0, tf ).

2.2 The backstepping design with Nussbaum gain

To study the identification problem of parameters in parametric strict feedback system,
firstly we will give the control strategy. In this subsection, for system (1), a backstepping
approach combined with Nussbaum gain technique is proposed.

As the traditional backstepping design procedure, introduce the new coordinates such
that z1 = x1 − xr, zi = xi − αi−1 with i = 2, 3, . . . , n.

Following [24], the virtual controllers are given as follows:

α1 = −k1z1 − θ̂Tf1(x1) + ẋr, (2)

αi = −zi−1 − kizi − θ̂Tωi +

i−1∑
j=1

∂αi−1

∂xj
xj+1 +

i−1∑
j=0

∂αi−1

∂x
(j)
r

x(j+1)
r

+
∂αi−1

∂θ̂T
Γτi +

i−2∑
k=1

zk+1
∂αk

∂θ̂T
Γωi, (3)

where ω1 = f1(x1), ωi = fi(x̄i) −
∑i−1
j=1(∂αi−1/∂xj)fj(x̄j), τ1 = ω1z1, τi = τi−1 +

ωizi (i = 2, 3, . . . , n) and θ̂ is the estimation of θ.
For the nonlinear system with unknown control direction in (1), we design the actual

controller as

u = N(ξ)β, (4)
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β = zn−1 + knzn + θ̂Tωn −
n−1∑
j=1

∂αn−1

∂xj
xj+1 −

n−1∑
j=0

∂αn−1

∂x
(j)
r

x(j+1)
r

− ∂αn−1

∂θ̂T
Γτn −

n−2∑
k=1

zk+1
∂αk

∂θ̂T
Γωn, (5)

where N(ξ) is an even smooth Nussbaum-type function.
From (2)–(5), the tracking error dynamic is:

ż1 = −k1z1 + z2 + θ̃Tf1(x1),

żi = −zi−1 − kizi + zi+1 + θ̃Tωi −
∂αi−1

∂θ̂T
(

˙̂
θ − Γτi) +

i−2∑
k=1

zk+1
∂αk

∂θ̂T
Γωi,

...

żn =
(
bnN(ξ) + 1

)
β − zn−1 − knzn + θ̃Tωn −

∂αn−1

∂θ̂T
(

˙̂
θ − Γτn)

+

n−2∑
k=1

zk+1
∂αk

∂θ̂T
Γωn.

(6)

The control scheme will be clear if we give the adaptive law on the unknown estimated
parameters. Here, we design the adaptive laws as

˙̂
θ = Γτn, (7)

ξ̇ = βzn. (8)

Theorem 1. Consider nonlinear system (1) with the virtual controller (2), (3), actual
controller (4), (5) and adaptive laws (7), (8). Then, one has:

1) The tracking errors zi (i = 1, 2, . . . , n) are convergent to zero asymptotically.
2) There exist a positive constant Ω such that Vn 6 Ω for all t > 0. Furthermore,

all the signals in the close-loop system, including ξ, the estimation of parameter θ̂,
the control u and the trajectory of system (1) x are bounded in t ∈ [0,∞).

Proof. Consider the Lyapunov function candidate as

Vn =
1

2

n∑
i=1

z2
i +

1

2
θ̃TΓ−1θ̃, (9)

where θ̃ is the estimation error defined as θ̃ = θ − θ̂ and Γ = ΓT > 0.
As shown in [9], due to the “skew-symmetry” property in the error system (6), the

derivate of (9) is calculated as follows:

V̇n 6 −
n∑
i=1

kiz
2
i +

(
n−2∑
k=1

zk+1
∂αk

∂θ̂T

)
(Γτn − ˙̂

θ) + θ̃T
(
τn − Γ−1 ˙̂

θ
)

+
(
bnN(ξ) + 1

)
βzn. (10)
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Substituting the adaptive laws (7), (8) into (10), results in

V̇n 6 −
n∑
i=1

kiz
2
i +

(
bnN(ξ) + 1

)
βzn. (11)

Integrate both sides of (11), we have

Vn(t) 6 Vn(0)−
n∑
j=1

kj

t∫
0

z2
j dτ +

t∫
0

(
bnN(ξ) + 1

)
ξ̇ dτ . (12)

For the positive property of
∑n
j=1 kj

∫ t
0
z2
j dτ , the following inequality is induced

from (12):

Vn(t) 6 Vn(0) +

t∫
0

(
bnN(ξ) + 1

)
ξ̇ dτ . (13)

According to Lemma 1, we can conclude that V (t), ξ(t) and
∫ t

0
(bnN(ξ) + 1)ξ̇ dτ are

bounded for all t ∈ [0,∞). Then there exists a positive constant Ω such that Vn(t) 6 Ω.
Following (12),

∑n
j=1 kj

∫ t
0
z2
j dτ is bounded for all t > 0. From the boundedness of

V (t) and ξ(t), all the signals in close-loop system are bounded for all t ∈ [0,∞). Then,
the derivative of z2

i (i = 1, 2, . . . , n) is bounded. Based on the Barbalat’s lemma, we have
that zi → 0, i = 1, 2, . . . , n.

3 Convergence analysis of parameters estimation

Throughout the discussion above, under the adaptive controller designed with Nussbaum
gain, the identification problem of estimated parameters in equation (7) has not been con-
sidered till now. In this section, we will address the convergence problem of parameters
estimation under the PE condition in Assumption 2 from the Lyapunov perspective.

To analyze the convergence of the adaptive law on the estimated parameters θ in (7) by
using a Lyapunov method, some auxiliary functions are needed to construct the Lyapunov
function. Firstly, define the following increasing functions:

f̄1(s)
∆
= max

{∣∣f1(l)
∣∣: |l| 6 s

}
, (14)

f̃1(s)
∆
= sup

{∣∣∣∣df1(σ(t))

dt

∣∣∣∣
∞

: σ(t) ∈ c1, max
{∣∣σ(t)

∣∣
∞,
∣∣σ̇(t)

∣∣
∞

}
6 s

}
. (15)

From (14), (15) and Assumption 1, it is easy to see that

∣∣f1(xr)
∣∣ 6 f̄1(B),

∣∣∣∣df1(xr(t))

dt

∣∣∣∣
∞

6 f̃1(B). (16)
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According to Theorem 1, all the signals in close-loop system are bounded for t ∈
[0,∞). Then there exists positive constants Mi, Ai,j such that

∣∣fi(x̄i)∣∣ 6Mi,

∣∣∣∣∂αi∂xj

∣∣∣∣ 6 Ai,j (17)

with i = 2, 3, . . . , n and j = 1, 2, . . . , i.
Based on the Theorem 1, the boundedness of all signals is guaranteed. Thus, it is easy

to construct the following auxiliary functions by using equation (14)–(17):

g0,1 = max
{

2c1f̄1(B), 2f̃1(B)
}
,

g0,2 = f̄1(B),

g1,1(s) = |Γ |f̄1(B)f̄1(
√

2s+B),

g1,2(s) = |Γ |f̄1(B)
[
M2 +A1,1f̄1(

√
2s+B)

]
,

g1,i(s) = |Γ |f̄1(B)

[
Mi +

i−1∑
j=2

Ai−1,jMj +Ai−1,1f̄1(
√

2s+B)

]
,

g2,1(s) =
√

2sp sup
|q|6
√

2l+B

{
max
j

∣∣∣∣∂f1,j(q)

∂q

∣∣∣∣}f̄1(B),

g3,1(s) = |Γ |T f̄2
1 (B)f̄1(

√
2s+B),

g3,2(s) = |Γ |T f̄2
1 (B)

[
M2 +A1,1f̄1(

√
2s+B)

]
,

g3,i(s) = |Γ |T f̄2
1 (B)

[
Mi +

i−1∑
j=2

Ai−1,jMj +Ai−1,1f̄1(
√

2s+B)

]
,

g4,1(s) =
nT

2µ

{[
g0,1 + g2,1(s) + g3,1(s)

]2
+

n∑
j=2

g2
1,j(s)

}
+ g1,1(s) + k,

g4,2(s) =
nT

2µ

[
g0,2 + g3,2(s)

]2
+

µ

2nT
,

g4,i(s) =
nT

2µ
g2

3,i(s) +
µ

2nT

with 3 6 i 6 n and k = min{k1, k2, . . . , kn}.
Synthesizing the increasing functions proposed above, the components of Lyapunov

function can be obtained:

Va,1 = θ̃Tf1(xr)z1, (18)

Va,2 =
1

T
θ̃T

t∫
t−T

t∫
m

f1

(
xr(τ)

)
fT

1

(
xr(τ)

)
dτ dmθ̃, (19)

Va = −Va,1 + Va,2. (20)
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According to Theorem 1, there exists a positive constant Ω > 0 such that Vn 6 Ω for
all t ∈ [0,∞). Considering the parameters estimation problem based on the adaptive law
in (7), we have the following theorem.

Theorem 2. Under Assumptions 1–2, consider the nonlinear system (1) together with
controllers (4), (5) and adaptive laws (7), (8). Construct a Lyapunov function such as

V (z1, z2, . . . , zn, θ̃) = Va +

[
1

k

n∑
i=1

g4,i(Ω) + bf̄1(B) + 1

]
Vn,

where b is a constant defined as b = max{1, 1/λmin(Γ−1)}. Then, the following proper-
ties hold:

1) There exist functions α1, α2 ∈ K∞ such that

α1

(
|z1, z2, . . . , zn, θ̃|

)
6 V 6 α2

(
|z1, z2, . . . , zn, θ̃|

)
.

2) Under the PE condition in Assumption 2, the tracking error zi and estimation error
of parameters θ̃ are convergent to zero asymptotically, when t→∞.

Proof. 1) From the Lyapunov function (9) in Theorem 1 and the function definition
in (14), using Young’s inequality, results in∣∣θ̃Tf1(xr)z1

∣∣ 6 bf̄1(B)Vn. (21)

Since Va,2 in (19) and
∑n
i=1 g4,i(Ω) are nonnegative, one can conclude that

V = Va + bf̄1(B)Vn +
1

k

n∑
i=1

g4,i(Ω)Vn + Vn >
1

2

n∑
i=1

z2
i + λmin(Γ−1)|θ̃|2. (22)

Based on the integral mean value theorem and inequalities (16), equation (19) has the
following property:∣∣∣∣∣θ̃T

t∫
t−T

t∫
m

f1

(
xr(τ)

)
fT

1

(
xr(τ)

)
dτ dmθ̃

∣∣∣∣∣ 6 T 2

2
f̄2

1 (B)θ̃Tθ̃. (23)

Using (21) and (23), results in

V 6 f̄1(B)|θ̃||z1|+
T

2
f̄2

1 (B)θ̃Tθ̃ +
1

k

n∑
i=1

g4,i(Ω)Vn + bf̄1(B)Vn + Vn

6

[
2bf̄1(B) + bT f̄2

1 (B) +
1

k

n∑
i=1

g4,i(Ω) + 1

]
Vn

6

[
2bf̄1(B) + bT f̄2

1 (B) +
1

k

n∑
i=1

g4,i(Ω) + 1

]

×

(
1

2

n∑
i=1

z2
i + λmax

(
Γ−1

)
θ̃Tθ̃

)
. (24)
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From (22) and (24), it is easy to see that there exist functions α1, α2 ∈ K∞ such that

α1

(
|z1, z2, . . . , zn, θ̃|

)
6 V 6 α2

(
|z1, z2, . . . , zn, θ̃|

)
.

2) Similarly to the proof in [5], using the auxiliary functions (14)–(17) and Young’s
inequality, the derivate of Va along with the tracking error dynamics (6) is

V̇a 6
nT

2µ

[
g0,1 + g2,1(Vn) + g3,1(Vn)

]2
z2

1 +
µ

2nT
θ̃Tθ̃

+
nT

2µ

[
g0,2 + g3,2(Vn)

]2
z2

2 +
µ

2nT
θ̃Tθ̃ +

nT

2µ

n∑
i=3

g2
3,i(Vn)z2

i

+ (n− 2)
µ

2nT
θ̃Tθ̃ + g1,1(Vn)z2

1 +
nT

2µ
g2

1,2(Vn)z2
1 +

µ

2nT
z2

2

+
nT

2µ

n∑
i=3

g2
1,i(Vn)z2

1 +
µ

2nT

n∑
i=3

z2
i −

µ

T
θ̃Tθ̃

6
n∑
i=1

g4,i(Vn)z2
i −

µ

2T
θ̃Tθ̃. (25)

Due to the monotonicity of functions g4,i(·) (i = 1, 2, . . . , n), (25) can be rewritten as

V̇a 6
n∑
i=1

g4,i(Ω)z2
i −

µ

2T
θ̃Tθ̃, (26)

where Ω is a positive constant such that Vn 6 Ω, which has been proved in Theorem 1.
Synthesizing (11), (26), one gets

V̇ = V̇a +

[
1

k

n∑
i=1

g4,i(Ω) + bf̄1(B) + 1

]
V̇n

6
n∑
i=1

g4,i(Ω)z2
i −

µ

2T
θ̃Tθ̃

+

[
1

k

n∑
i=1

g4,i(Ω) + bf̄1(B) + 1

](
−

n∑
j=1

kjz
2
j +

(
bnN(ξ) + 1

)
ξ̇

)

6 −
n∑
j=1

kjz
2
j −

µ

2T
θ̃Tθ̃ +

[
1

k

n∑
i=1

g4,i(Ω) + bf̄1(B) + 1

](
bnN(ξ) + 1

)
ξ̇

6 −
n∑
j=1

kjz
2
j −

µ

2T
θ̃Tθ̃ + g0

(
bnN(ξ) + 1

)
ξ̇, (27)

where g0 is a constant defined as g0
∆
= (1/k)

∑n
i=1 g4,i(Ω) + bf̄1(B) + 1.
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Integrate both sides of (27), yields

V (t) 6 V (0)−
n∑
j=1

kj

t∫
0

z2
j dτ − µ

2T

t∫
0

θ̃Tθ̃ dτ +

t∫
0

g0

(
bnN(ξ) + 1

)
ξ̇ dτ

6 V (0) +

t∫
0

g0

(
bnN(ξ) + 1

)
ξ̇ dτ . (28)

Based on Lemma 1, one can conclude that V (t), ξ and
∫ t

0
g0(bnN(ξ) + 1)ξ̇ dτ are

bounded for all t > 0. From (28), one has that
∑n
j=1 kj

∫ t
0
z2
j dτ and (µ/(2T ))

∫ t
0
θ̃Tθ̃ dτ

are bounded for all t ∈ [0,∞) and the derivate of θ̃Tθ̃ is d(θ̃Tθ̃)/dt = −2θ̃TΓτn. Due
to the boundedness of V (t), we can conclude that all the signals in close-loop system are
bounded. Then, d(θ̃Tθ̃)/dt is bounded for all t > 0. Using the Barbalat’s lemma, we can
conclude that zi → 0 and |θ̃| → 0, when t→∞.

4 Simulation study

In this section, we demonstrate the effectiveness of approach proposed in this paper.
Actually, linearly parametric strict feedback system is widely used such as the pendulum
system. In this section, we consider a more complex third-order nonlinear system as
following:

ẋ1 = x2 + θx1,

ẋ2 = x3 + θx1 sinx2,

ẋ3 = bu+ θx2x3,

(29)

where θ, b are unknown constants. f1(x1) = x1, f2(x̄2) = x1 sinx2, f3(x) = x2x3. The
reference trajectory is xr = sin(t). Obviously, Assumption 1 holds.

Defining z1 = x1−xr,z2 = x2−α1 and z3 = x3−α2, from (2), the virtual controller
is designed as

α1 = −k1z1 − θ̂f1(x1) + ẋr,

α2 = −z1 − k2z2 − θ̂ω2 +
∂α1

∂x1
x2 +

1∑
j=0

∂α1

∂x
(j)
r

x(j+1)
r +

∂α1

∂θ̂
Γτ2.

According to (4) and (5), the actual controller is

u = N(ξ)β,

β = z2 + k3z3 + θ̂ω3 −
2∑
j=1

∂α2

∂xj
xj+1 −

2∑
j=0

∂α2

∂x
(j)
r

x(j+1)
r − ∂α2

∂θ̂
Γτ3 − z2

∂α1

∂θ̂
Γω3,
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where ω1 = f1(x1), ω2 = f2(x̄2) − (∂α1/∂x1)f1(x1), ω3 = f3(x) −
∑2
j=1(∂α2/

∂xj)fj(x̄j), τ1 = ω1z1, τ2 = τ1 + ω2z2, τ3 = τ2 + ω3z3. From the adaptive laws (7),
(8), the estimated algorithm on unknown parameter are designed as ˙̂

θ = Γτ3, ξ̇ = βz3.
We choose control coefficients k1 = 1, k2 = 1, k3 = 1, Γ = 0.2.

It is easily seen that there exist constants T = 2π and 0 < µ < π such that∫ t
t−2π

x2
r(τ) dτ > µ for all t ∈ R. Thus, Assumption 2 holds. As shown in Theorem 1,

under Assumptions 1 and 2, we have proved that the estimation error of parameters is
convergent to zero for system (1) with the controller (4), (5) and adaptive laws (7), (8).

Without variation of control direction, we choose θ = 2 and b = −1 for all t ∈ [0,∞).
Figure 1 shows the curves of x1, xr and curves of x2, α1. While, the curves of x3, α2 and
the convergence of estimation of θ is presented in Fig. 2. In Fig. 3, the variation of ξ is
given. In Figs. 1 and 2, the convergence of z1, z2 and z3 is shown, respectively. From
Fig. 2, it is easily seen that the estimation of θ is convergent to the actual value of θ
without variation of control direction.

To test the effectiveness of Nussbaum gain method, we try several times control
direction switches. Let θ = 2 and b = −1 for all t ∈ (0s, 20s], b = 1 for all t ∈ (20s, 40s],
b = −1 for all t ∈ (40s, 60s], b = 1 for all t ∈ (60s, 80s], we have the following
simulation results. Figure 4 shows the curves of x1, xr and curves of x2, α1. Curves of
x3, α2 and the convergence of estimation of θ is shown in Fig. 5. Also, Fig. 6 gives the
variation of ξ. From Figs. 4–6, we have that the Nussbaum gain method can adapt the
control direction effectively. In Fig. 5, the convergence of estimation of θ is guaranteed
with the switches of control direction.

In this paper, θ is a vector of unknown parameters. It means that there should be
some different θi in the plant system. From the main conclusion in this paper, it is
easily seen that the estimations of unknown parameters in the plant system which satisfies

Fig. 1. Curves of x1, xr and x2, α1.
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Fig. 2. Curves of x3, α2 and θ̂.

Fig. 3. Curves of ξ.

Assumptions 1 and 2 (PE condition) can converge to the actual value of the estimated
parameters, with unknown control direction. Although simulation example (29) illustrates
the identification problem for strict feedback nonlinear system with unknown control
direction, the conservatism of the PE condition in Assumption 2 is not discussed. Es-
pecially, when the PE condition in Assumption 2 does not hold, the convergence of the
estimation of unknown parameters is not considered. Therefore, we give the following
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Fig. 4. Curves of x1, xr and x2, α1 with switches of control direction.

Fig. 5. Curves of x3, α2 and θ̂ with switches of control direction.

example:
ẋ1 = x2 + θ1x1 + θ2x

2
1,

ẋ2 = x3 + θ3x1 sinx2,

ẋ3 = bu+ θ4x2x3,

(30)

where θ1, θ2, θ3 and θ4 are unknown parameters. b denotes the unknown control gain.

Nonlinear Anal. Model. Control, 20(4):469–486
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Fig. 6. Curves of ξ with switches of control direction.

Fig. 7. Curves of x1, xr and x2, α1.

From (1), θ = [θ1, θ2, θ3, θ4]T, f1(x1) = [x1, x
2
1, 0, 0]T, f2(x̄2) = [0, 0, x1 sinx2, 0]T

and f3(x) = [0, 0, 0, x2x3]T.
Considering Assumption 2 (PE condition), yields

t∫
t−T

f1(xr)f
T
1 (xr) dτ =

[∫ t
t−T φ(xr)φ

T(xr) dτ 0

0 0

]
,
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Fig. 8. Curves of x3, α2 and ξ.

Fig. 9. Curves of θ̂ (solid line) and θ (dashed line).

where φ(x1) = [x1, x
2
1]T. Obviously, PE condition does not hold for plant system (30).

Therefore, the identification of unknown parameters vector θ is not guaranteed. However,
we can easily conclude that the estimations of unknown parameters θ1 and θ2 corre-
sponding to φ(x1) converge to its actual values in plant system with φ(x1) satisfying
Assumption 2. Actually, we can construct the Lyapunov function in (18) and (19) by
using φ(xr) and Θ̃ = [θ̃1, θ̃2]T instead of f1(xr) and θ̃. Under PE condition on φ(x1),

Nonlinear Anal. Model. Control, 20(4):469–486
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following Theorem 2, yields V̇ 6 −
∑n
j=1 kjz

2
j − (µ/(2T ))Θ̃TΘ̃ + g0(bN(ξ) + 1)ξ̇.

Thus, θ̃1 and θ̃2 converge to zero.
To illustrate this property, we assume that θ1 = 0.2, θ2 = 0.6, θ3 = −0.2,

θ4 = −0.5 and reference signal is xr = sin t. With the reference signal, it is easily seen
that there exist constants T = 2π and µ = (3/4)π such that

∫ t
t−T φ(xr)φ

T(xr) dτ > µI .
The control direction is b = −1 for all t ∈ [0s, 60s) and we give a switch at t =
60s, then b = 1 for all t ∈ [60s, 145s). Following the controller design procedure in
(2)–(5), adaptive laws (7) and (8), choose the control coefficients: k1 = 2, k2 = 2,
k3 = 2, Γ = diag(1, 1, 1) and the simulation results are shown in Figs. 7–9, respectively.
Figure 7 shows the curves of x1 and xr and curves of x2, α1. The variation of ξ and curves
of x3 and α2 is presented in Fig. 8. The estimation of unknown parameters: θ̂1, θ̂2, θ̂3, θ̂4

are shown with solid line in Fig. 9, while the actual value of θ is presented with dashed
line. From Fig. 9, the estimation: θ̂1, θ̂2 can converge to the actual value of θ1, θ2 with
variation of control direction. However, θ̂4 does not converge to θ4. Also, θ̂3 can achieve
the actual value θ3, which can not be concluded from Theorem 2.

5 Conclusions

In this paper, based on Nussbaum function technique and backstepping design procedure,
an adaptive controller for strict feedback system with unknown control direction has been
proposed. It has been proved that the tracking error is asymptotically convergent to zero.
Based on the conclusion above, the parameters identification problem has been studied.
A new simple PE condition has been obtained with a novel Lyapunov function. Under
the PE condition, the parameters estimations have been proved, by using the property
of Nussbaum function and Barbalat’s lemma, to be asymptotically convergent to the
actual values of parameters. Finally, simulation examples have been given to show the
effectiveness of controller and the conservatism of PE condition.
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