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Abstract. We analyze the extended tanh-function method to realize variable separation, however,
we find that various “different” solutions obtained by this method are seriously equivalent to the
general solution derived by the multilinear variable separation approach. In order to illustrate this
point, we take a general (2+1)-dimensional Korteweg–de Vries system in water for example. Eight
kind of variable separation solutions for a general (2 + 1)-dimensional Korteweg–de Vries system
are derived by means of the extended tanh-function method and the improved tanh-function
method. By detailed investigation, we find that these seemly independent variable separation
solutions actually depend on each other. It is verified that many of so-called “new” solutions are
equivalent to one another. Based on the uniform variable separation solution, abundant localized
coherent structures can be constructed. However, we must pay our attention to the solution
expression of all components to avoid the appearance of some un-physical related and divergent
structures: seemly abundant structures for a special component are obtained while the divergence
of the corresponding other component for the same equation appears.
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1 Introduction

As the self-localized robust and long-lived nonlinear solitary wave object, the soliton
provides a luxuriant source of inspiration in many areas of mathematics, fundamental
physics, biology, chemistry and technology over the past 40 years.

The investigation of soliton solutions is an essential and important issue in nonlinear
science. A vast variety of significant methods have been established such as the F -expan-
sion method [10], the multilinear variable separation approach (MLVSA) [4], the Painlevé
method [13], the mapping method [8], and the similarity transform method [5], and the
like. Note that Navickas et al. [18] have remarked the Exp-function method and Zhao et
al. [23] have also remarked the (G′/G)-expansion method. Many authors claim that they
obtained large lists of so-called “new” exact solutions. However, many of these “new”
solutions are equivalent to one another and can be reduced to some well-known solutions
[18, 23]. In this paper, we will verify again this conclusion.

As one of the effective tools in linear mathematical physics, the variable separa-
tion approach (VSA) has been successfully extended to nonlinear domain. Among all
kind of “variable separation” procedures to solve NLEEs, the MLVSA is a crucial and
powerful mean to obtain abundant and general solutions [20] since it was established
firstly in 1996 for the Davey–Stewartsen equation [11]. Moreover, many direct meth-
ods [6, 7, 9, 16, 19, 21, 22, 26, 27], which used to obtain travelling wave solutions of
NLEEs, have been successfully extended to derive variable separation solutions. As one
of outstanding examples of the direct method, the extended tanh-function method (ETM)
was firstly extended to obtain variable separation solutions of (2+1)-dimensional Broer–
Kaup system [25], and then was extensively applied to many other NLEEs [6, 9, 22, 27].
Then, the projective Ricatti equation method (PREM) was also generalized to derive
variable separation solutions for NLEEs [7]. Recently, some improved ETMs [16, 19, 21,
26] have been presented to derive variable separation solutions via “variable separation”
procedures. Based on these variable separation solutions, abundant localized coherent
structures such as the periodic, dromion, peakon, compacton and foldon solutions are
discovered [6, 7, 9, 11, 16, 19, 20, 21, 22, 25, 26, 27].

However, to the best of our knowledge, the study for the relation between different
ETMs and the discussion and analysis for the rationality for the construction of abundant
localized coherent structures based on variable separation solutions were less carried
out. Motivated by these reasons, we consider the following general (2 + 1)-dimensional
Korteweg–de Vries (GKdV) system [14]

ut − uxxy − auuy − bux∂−1x uy = 0, (1)

where a and b are two arbitrary constants. The KdV equation was initially used to describe
competition between weak nonlinearity and weak dispersion in a shallow liquid. Now
the KdV system has been applied in many apparently unrelated phenomena in various
physical systems such as plasmas and lattice vibrations of a crystal at low temperatures.
Many researchers have investigated the above GKdV system. For example, Calogero [2]
proved the integrability of Eq. (1). Clarkson and Manshield [3] studied the Painlevé
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property test and proved the completely integrable for the equation only when a = 2b.
Lou et al. [12] and Ma et al. [15] obtained some variable separation solutions for the
special model with a = b, respectively. Zheng et al. [4] discussed some semifolded
localized coherent structures via MLVSA. Ma et al. [14] investigated also complex wave
excitations and chaotic patterns for Eq. (1) with a = 2b.

In this paper, we firstly use the ETM and an improved ETM to obtain variable separa-
tion solutions of the (2+1)-dimensional GKdV system. Then, by further studying, we find
that these variable separation solutions obtained by the ETM and improved ETM, which
seem independent, actually depend on each other. These “different” solutions obtained
by this method are seriously equivalent to the general solution derived by the MLVSA.
Finally, based on the variable separation solutions, we discuss and analyze the rationality
for the construction of abundant localized coherent structures.

2 Remark on ETM

In this section, we consider the integrable GKdV system with a = 2b. To solve this
system, first, let us make a transformation for Eq. (1): v = ∂−1x uy . Substituting this trans-
formation into Eq. (1) yields a set of two coupled nonlinear partial differential equations

ut − uxxy − 2buvx − bvux = 0, uy − vx = 0. (2)

Introducing the transformation

u = Gx, v = Gy (3)
into Eq. (2), one obtains

Gxt −Gxxxy − 2bGxGxy − bGxxGy = 0. (4)

It is possible to use the generalized operator of differentiation to produce a formal
structure of the solution for Eq. (4). In [17], authors used an analytical criterion based on
the concept of H-ranks and determine if a solution of the KdV equation can be expressed
in an analytical form comprising standard functions. The employment of this criterion
gave the structure of the solution so that one does not have to guess what the form of
the solution is. Here we focus on the formal structure of the solution for Eq. (4) via the
ETM.

Along with the ETM [6,9,22,25,27], we assume that Eq. (4) has the following ansätz:

G = a0 +

m∑
i=1

{
aiφ

i
[
w(x, y, t)

]
+ a−iφ

−i[w(x, y, t)]}, (5)

where ai = ai(x, y, t) (i = −m, . . . ,m), w = w(x, y, t) are all arbitrary functions of
indicated variables, and φ(w) satisfies

dφ

dw
= l0 + φ2 (6)
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with its solutions

φ =



−
√
−l0 tanh(

√
−l0w), l0 < 0,

−
√
−l0 coth(

√
−l0w), l0 < 0,

√
l0 tan(

√
l0w), l0 > 0,

−
√
l0 cot(

√
l0w), l0 > 0,

−1/w, l0 = 0,

(7)

where l0 is constant.
The homogeneous balance principle determines m = 1 in (4). Inserting ansätz (5)

with (6) into Eq. (4), selecting the variable separation form w = p(x) + q(y − ct) [14]
with an arbitrary constant c and eliminating all the coefficients of polynomials of φi, we
derive the following special solutions:

a0 = −
∫

4l0p
4
x + p2xx − cp2x − 2pxpxxx

2bp2x
dx,

a1 = −4px
b
, a−1 = 0

(8)

and

a0 = −
∫

16l0p
4
x + p2xx − cp2x − 2pxpxxx

2bp2x
dx,

a1 = −4px
b
, a−1 =

4l0px
b

,

(9)

where p ≡ p(x) and q ≡ q(y − ct).
Therefore, we can derive two families of the variable separation solutions for the

(2 + 1)-dimensional GKdV:

Family 1. From (3), (5), (7) and (8), one has:

Case 1. For l0 < 0,

u1 =
4l0p

4
x + p2xx − cp2x − 2pxpxxx

2bp2x

+
4
√
−l0
b

pxx tanh
[√
−l0(p+ q)

]
− 4l0

b
p2x sech

2
[√
−l0(p+ q)

]
, (10)

v1 = −4l0
b
pxqy sech

2
[√
−l0(p+ q)

]
, (11)

u2 =
4l0p

4
x + p2xx − cp2x − 2pxpxxx

2bp2x
+

4
√
−l0
b

pxx coth
[√
−l0(p+ q)

]
+

4l0
b
p2x csch

2
[√
−l0(p+ q)

]
, (12)

v2 =
4l0
b
pxqy csch

2
[√
−l0(p+ q)

]
. (13)
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Case 2. For l0 > 0,

u3 =
4l0p

4
x + p2xx − cp2x − 2pxpxxx

2bp2x

− 4
√
−l0
b

pxx tan
[√

l0(p+ q)
]
− 4l0

b
p2x sec

2
[√

l0(p+ q)
]
, (14)

v3 = −4l0
b
pxqy sec

2
[√

l0(p+ q)
]
, (15)

u4 =
4l0p

4
x + p2xx − cp2x − 2pxpxxx

2bp2x
+

4
√
−l0
b

pxx cot
[√

l0(p+ q)
]

− 4l0
b
p2x csc

2
[√

l0(p+ q)
]
, (16)

v4 = −4l0
b
pxqy csc

2
[√

l0(p+ q)
]
. (17)

Case 3. For l0 = 0,

u5 =
p2xx − cp2x − 2pxpxxx

2bp2x
+

4pxx
b(p+ q)

− 4p2x
b(p+ q)2

, (18)

v5 = − 4pxqy
b(p+ q)2

, (19)

where p ≡ p(x) and q ≡ q(y − ct).
Family 2. From (3), (5), (7) and (9), we gets:
Case 4. For l0 < 0,

u6 =
16l0p

4
x + p2xx − cp2x − 2pxpxxx

2bp2x

+
4
√
−l0
b

pxx
{
tanh

[√
−l0(p+ q)

]
+ coth

[√
−l0(p+ q)

]}
+

4l0
b
p2x sech

2
[√
−l0(p+ q)

]
csch2

[√
−l0(p+ q)

]
, (20)

v6 =
4l0
b
pxqy sech

2
[√
−l0(p+ q)

]
csch2

[√
−l0(p+ q)

]
. (21)

Case 5. For l0 > 0,

u7 =
16l0p

4
x + p2xx − cp2x − 2pxpxxx

2bp2x

− 4l0
b
pxx
{
tan
[√
−l0(p+ q)

]
+ cot

[√
−l0(p+ q)

]}
+

4l0
b
p2x
{
csc2

[√
l0(p+ q)

]
− sec2

[√
l0(p+ q)

]}
(22)

v7 =
4l0
b
pxqy

{
csc2

[√
l0(p+ q)

]
− sec2

[√
l0(p+ q)

]}
. (23)

Case 6. For l0 = 0, we can derive solutions (18) and (19) again.
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Remark 1. By means of this ETM, it seems that seven new variable separation solutions
of the (2 + 1)-dimensional GKdV are obtained. However, by detailed investigation, we
find that only variable separation solutions (18) and (19) are essentially effective. For
Family 1, when being re-defined p = exp{−2

√
−l0p}, q = exp{2

√
−l0q} and p =

exp{−2i
√
l0p}, q = exp{2i

√
l0q} in solutions (18) and (19), solutions (10), (11) and

(14), (15) can be obtained, respectively. Similarly, if being taken as p = − exp{−2 ×√
−l0p}, q = exp{2

√
−l0q} and p = − exp{−2i

√
l0p}, q = exp{2i

√
l0q} in solutions

(18) and (19), solutions (12), (13) and (16), (17) can be recovered, respectively. For
Family 2, when we re-define p = exp[−(4

√
−l0p + iπ)], q = exp[4

√
−l0q] in solutions

(18) and (19), solutions (20) and (21) can be obtained. Similarly, if one takes p =
exp[−i(4

√
l0p + π)], q = exp[4i

√
l0q] in solutions (18) and (19), solutions (22) and

(23) can be recovered. Note that solutions (18) and (19) have the same form with the
general solution derived by the MLVSA in [19].

3 Remark on the improved ETMs

The procedure of solving the (2+1)-dimensional GKdV via an improved ETM is similar
to that via ETM except that in ansätz (5), a−i = 0 and φ(w) satisfies [21]

dφ

dw
= (Aφ− α)(Bφ− β) (24)

with its solutions

φ =
β exp[(αB −Aβ)w]− α exp[C1(Aβ − αB)]

B exp[(αB −Aβ)w]−A exp[C1(Aβ − αB)]
, (25)

where C1 is an integration constant, further, A, B, α and β are four arbitrary constants.
Inserting ansätz (5) with m = 1, a−i = 0 and (24) into Eq. (4), selecting the variable

separation form w = p(x) + q(y− ct) and eliminating all the coefficients of polynomials
of φi, we get the following special solutions:

a0 = −
∫

4α2B2p4x − p2xx + cp2x + 2pxpxxx
2bp2x

dx,

a1 = −4ABpx
b

, Aβ + αB = 0.

(26)

Therefore, we can derive variable separation solutions of the (2 + 1)-dimensional
GKdV, namely

u8 =
−4α2B2p4x + p2xx − cp2x − 2pxpxxx

2bp2x

+
4αBpxx(BJ +AK)

b(BJ −AK)
+

16α2AB3p2xJK

b(BJ −AK)2
, (27)

v8 =
16α2AB3pxqyJK

b(BJ −AK)2
, (28)

where J = exp[2αB(p+ q)] and K = exp[−2αBC1].
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Be careful with variable separation solutions via ETM 493

Remark 2. It seems that the mapping Ricatti equation (24) is a new equation. However,
when we re-define φ ≡ φ− (Aβ + αB)/(2AB) and l0 = −(A2β2 + α2B2)/(A2B2) in
Eq. (6), Eq. (24) can be transformed to the known Ricatti equation (6). When choosing
C1 = 0, α = β = −

√
−l0, −A = B = −1 in solutions (27) and (28), we can obtain

solutions (10) and (11). If taking C1 = 0, A = B = 1, α = −β =
√
−l0 in solutions

(27) and (28), one can derive solutions (12) and (13). When one selects C1 = 0, α =
β = −i

√
l0, −A = B = −1 in solutions (27) and (28), solutions (14) and (15) can be

recovered. Moreover, if we set C1 = 0, A = B = 1, α = −β = i
√
l0 in solutions (27)

and (28), solutions (16) and (17) can be obtained. Therefore, solutions (27) and (28) are
essentially equivalent to solutions (18) and (19) .

Remark 3. The main idea of different ETMs is based on some Ricatti equations to obtain
variable separation solutions of NLEEs. Therefore, based on different Ricatti equations,
many improved ETMs were developed. In [16], Ma et al. obtained variable separation
solutions of (2 + 1)-dimensional dispersive long-water wave system based on the Riccati
equation

dφ

dw
= l0φ+ φ2 (29)

with a constant l0. In [26], Zhu obtained variable separation solutions of (2 + 1)-dimen-
sional Boiti–Leon–Pempinelle equation based on the Riccati equation

dφ

dw
= l0 + l1φ+ l2φ

2, (30)

with three constants l0, l1 and l2. Actually, one may readily find that Eqs. (29) and (30) are
essentially equivalent to Eq. (6). In Eq. (29), we take φ+ l0/2 = φ, −l20/4 = l0, Eq. (29)
is transformed into Eq. (6). Similarly, setting φ + l1/2l2 = φ, (4l0l2 − l21)/(4l22) = l0,
l2w = w in Eq. (30) yields Eq. (6). Therefore, different improved ETMs based on
different Ricatti equations [16, 26] are essentially equivalent to ETM based on Ricatti
equation (6).

4 Remark on some periodic wave structures

Based on the uniform variable separation solution (19), abundant localized coherent struc-
tures such as the periodic, dromion, peakon, compacton and foldon solutions are discov-
ered [6, 7, 9, 11, 16, 19, 20, 21, 22, 25, 26, 27]. However, to the best of our knowledge,
the discussion and analysis for the rationality for the construction of abundant localized
coherent structures based on variable separation solutions were hardly carried out. In this
section, we take periodic waves for example to illustrate that we must pay our attention to
the solution expressions of all components to avoid the appearance of some un-physical
related and divergent structures.

The dynamical behaviors of periodic waves were extensively discussed [1], and here
we re-study these periodic waves in terms of sn- and cn-functions based on variable
separation solutions (18) and (19). There are several cases to be considered.
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Fig. 1. (a), (c) A typical spatial periodic wave structure for v expressed by Eq. (32) and the corresponding
dromion structure for v expressed by Eq. (34) at time t = 1, respectively. (b), (d) The divergent structure for
u expressed by Eq. (31) and line soliton structure for u expressed by Eq. (33). The parameters are chosen as
C = D = 2, k = c = b = 1, m1 = 0.3 and m2 = 0.8.

Case 1. p = C + sn(kx,m1) ≡ C + sn(ξ), q = D + sn(y − ct,m2) ≡ D + sn(η).
It follows from Eqs. (18) and (19) that

u =
k2 sn2(ξ) dn2(ξ)

2 cn2(ξ)
+

[
k2m2

1 +
k2m4

1 sn
2(ξ)

2 dn2(ξ)

]
cn2(ξ)

+ k2
[
dn2(ξ)− 3m2

1 sn
2(ξ)

]
− c

2
− 4k2 sn(ξ)[dn2(ξ) +m2

1 cn
2(ξ)]

C +D + sn(ξ) + sn(η)
− 4k2 cn2(ξ) dn2(ξ)

[C +D + sn(ξ) + sn(η)]2
, (31)

v = − 4k cn(ξ) dn(ξ) cn(η) dn(η)

b[C +D + sn(ξ) + sn(η)]2
, (32)

where k,C andD are arbitrary constants, andm1 andm2 denote the moduli of the elliptic
function.

A typical spatial periodic wave structure for v expressed by Eq. (32) is shown in
Fig. 1a with the parameters C = D = 2, k = c = b = 1, m1 = 0.3, m2 = 0.8 at
time t = 1, and they are valid throughout this section, unless otherwise stated. However,
the other field component u is divergent because the first term in Eq. (31) has zeros for
cn-function. The plots of the corresponding field component u is shown in Fig. 1b, from
which the divergent phenomenon can be obviously observed.
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When we take the long wave limit (m1 andm2 → 1), Eqs. (31) and (32) degenerate to

u = 2k2
[
sech2(ξ)− tanh2(ξ)

]
− c

2
− 8k2 tanh(ξ) sech(ξ)

C +D + tanh(ξ) + tanh(η)

− 4k2 sech4(ξ)

[C +D + tanh(ξ) + tanh(η)]2
, (33)

v = − 4k sech2(ξ) sech2(η)

b[C +D + tanh(ξ) + tanh(η)]2
. (34)

Figures 1c and 1d exhibit these localized coherent structures expressed by these ex-
pressions. Obviously, Fig. 1c depicts a dromion structure for v which decays exponen-
tially in all directions. Figure 1d describes a localized line soliton along y-axis for u.
Although the field component u is divergent and un-physical for periodic wave case (c.f.
Fig. 1b), it is localized for the limit case m1 and m2 → 1 (c.f. Fig. 1d).

Case 2. p = C + sn(kx,m1) ≡ C + sn(ξ), q = D + cn(y − ct,m2) ≡ D + cn(η).
In this case, we have

u =
k2 sn2(ξ) dn2(ξ)

2 cn2(ξ)
+

[
k2m2

1 +
k2m4

1 sn
2(ξ)

2 dn2(ξ)

]
cn2(ξ)

+ k2
[
dn2(ξ)− 3m2

1 sn
2(ξ)

]
− c

2
− 4k2 sn(ξ)[dn2(ξ) +m2

1 cn
2(ξ)]

C +D + sn(ξ) + cn(η)
− 4k2 cn2(ξ) dn2(ξ)

[C +D + sn(ξ) + cn(η)]2
, (35)

v = − 4k cn(ξ) dn(ξ) sn(η) dn(η)

b[C +D + sn(ξ) + cn(η)]2
. (36)

The long wave limit (m1 and m2 → 1) gives

u = 2k2
[
sech2(ξ)− tanh2(ξ)

]
− c

2
− 8k2 tanh(ξ) sech(ξ)

C +D + tanh(ξ) + sech(η)

− 4k2 sech4(ξ)

[C +D + tanh(ξ) + sech(η)]2
, (37)

v = − 4k sech2(ξ) tanh(η) sech(η)

b[C +D + tanh(ξ) + sech(η)]2
. (38)

The typical spatial periodic wave structure for v expressed by Eq. (36) is shown in
Fig. 2a, and the corresponding field component u expressed by Eq. (35) is shown in
Fig. 2b, from which one can also observe the divergent phenomenon because the first
term in Eq. (35) has zeros for cn-function. Figures 2c and 2d exhibit the correspond-
ing localized coherent structures expressed by Eqs. (37) and (38). Figure 2c depicts a
dromion-pair structure for v with one up and another down bounded peaks. Figure 2d also
describes a localized line soliton along y-axis for u. Similar to Case 1, it is localized for
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Fig. 2. (a), (c) A typical spatial periodic wave structure for v expressed by Eq. (36) and the corresponding
dromion-pair structure for v expressed by Eq. (38) at time t = 1, respectively. (b), (d) The divergent structure
for u expressed by Eq. (35) and line soliton structure for u expressed by Eq. (37). The parameters are chosen
as C = D = 2, k = c = b = 1, m1 = 0.3 and m2 = 0.8.

the limit case m1 and m2 → 1 (c.f. Fig. 2d) although the field component u is divergent
and un-physical for periodic wave case (c.f. Fig. 2b).

Case 3. p = C + cn(kx,m1) ≡ C + cn(ξ), q = D + cn(y − ct,m2) ≡ D + cn(η).
From Eqs. (18) and (19), one has

u =

[
k2 dn2(ξ)

2 sn2(ξ)
+
k2m4

1 sn
2(ξ)

2 dn2(ξ)
+ 3k2m2

1

]
cn2(ξ) + k2

[
dn2(ξ)−m2

1 sn
2(ξ)

]
− c

2
− 4k2 cn(ξ)[dn2(ξ)−m2

1 sn
2(ξ)]

C +D + cn(ξ) + cn(η)
− 4k2 sn2(ξ) dn2(ξ)

[C +D + cn(ξ) + cn(η)]2
, (39)

v = − 4k sn(ξ) dn(ξ) sn(η) dn(η)

b[C +D + cn(ξ) + cn(η)]2
. (40)

The long wave limit (m1 and m2 → 1) yields

u = k2
[
8 sech2(ξ)− tanh2(ξ) + sech2(ξ) csch2(ξ)

]
− c

2

− 4k2 sech(ξ)[sech2(ξ)− tanh2(ξ)]

C +D + sech(ξ) + sech(η)
− 4k2 tanh2(ξ) sech2(ξ)

[C +D + sech(ξ) + sech(η)]2
, (41)

v = −4k tanh(ξ) sech(ξ) tanh(η) sech(η)

b[C +D + sech(ξ) + sech(η)]2
. (42)
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Fig. 3. (a), (c) A typical spatial periodic wave structure for v expressed by Eq. (40) and the corresponding
dromion-antidromion pair structure for v expressed by Eq. (42) at time t = 1, respectively. (b), (d) The
divergent structures for u expressed by Eqs. (39) and (41). The parameters are chosen as C = D = 2,
k = c = b = 1, m1 = 0.3 and m2 = 0.8.

Figures 3a and 3b present the typical spatial periodic wave structure for v expressed
by Eq. (40) and the divergent phenomenon for u expressed by Eq. (39) due to the zeros
for sn-function in the first term of Eq. (39). Figure 3c plots a dromion-antidromion pair
structure for v expressed by Eq. (42) with two up and two down bounded peaks. Figure 3d
exhibits the divergent phenomenon for u expressed by Eq. (41) due to the divergent for
csch-function in the third term in Eq. (41). Different from Cases 1 and 2, it is also diver-
gent for the limit case m1 and m2 → 1 (see Fig. 3d).

Remark 4. It is obvious that the field u in Figs. 1b, 2b, 3b and 3d are un-physical
related structures due to their divergence. Therefore, the corresponding localized periodic
structures for the field v in Figs. 1a, 2a, 3a and 3c are false and can not been realized due
to the futility of the other component u for the same equation. All examples indicate
that although abundant localized coherent structures can be constructed for a special
component, we must pay our attention to the solution expression of the corresponding
other component for the same equation in order to avoid the appearance of some false,
un-physical related and divergent structures.

5 Summary and discussion

In conclusion, our interest has been focused on two issues proposed in the introduction.
Here we review the main points offered in this paper.
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• The relations between different ETMs are presented, and be careful with these
methods.

One can obtain abundant variable separation solutions for NLEEs via the ETM and
different improved ETMs. This result can be illustrated by the solutions of the (2 + 1)-
dimensional GKdV system. However, by detailed investigation, we find that these seemly
independent variable separation solutions actually depend on each other. It is verified
again that many of so-called “new” solutions are equivalent to one another. Various “dif-
ferent” solutions obtained by this method are seriously equivalent to the general solution
derived by the MLVSA.

This conclusion for the equivalence of abundant variable separation solutions is also
true for (1 + 1)-dimensional, (2 + 1)-dimensional and (3 + 1)-dimensional NLEEs,
such as (1 + 1)-dimensional negative KdV hierarchy, (2 + 1)-dimensional dispersive
long wave system, Broer–Kaup-Kupershmidt system, (asymmetric) Nizhnik–Novikov–
Veselov system, breaking soliton model, and (3+1)-dimensional Burgers equation, and so
on. Therefore, we should check carefully solutions obtained, and avoid casually asserting
some so-called “new” solutions.

• The rationality for the construction of abundant localized coherent structures is
uncovered.

In previous literatures, authors constructed abundant localized coherent structures for
a special component, however, they ignore the divergence for the corresponding other
component for the same equation. Although abundant localized coherent structures can
be constructed for a special component, we must pay our attention to the solution expres-
sion of all components to avoid the appearance of some false, un-physical related and
divergent structures: seemly abundant structures for a special component are obtained
while divergence of the corresponding other component for the same equation appears.

Note that it is possible to use the generalized operator of differentiation to produce
a formal structure of the solution, while the main contribution in this present paper is the
discussion of different kinds of variable separation solutions through the generalization of
the ETM. The detailed discussion about more general techniques based on the generalized
operator of differentiation will be addressed in another separated paper.

We hope these remarks discussed here are helpful for the deep study of variable
separation approach and the construction of localized coherent structures in higher-dimen-
sional nonlinear models.
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