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Compound method of time series classification
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Abstract. Many real phenomenona preserves the properties of chaotic dynamics. However,
unambiguous determination of belonging to a group of chaotic systems is difficult and complex
problem. The main purpose of this paper is to present compound method of time series classification
which is basically directed to the detection of chaotic behaviors. The method has been designed for
differentiation of three types of time series: chaotic, periodic and random. Our approach assumes,
that more reliable information about the dynamics of the system will provide the compilation
of several methods, than any individual. This paper focuses on choosing a good set of methods
and analysis of their results. In our investigation, we used the following methods and indicators:
time delay embedding, mutual information, saturation of system invariants, the largest Lyapunov
exponent and Hurst exponent. We checked the validity of the methods applying them to three
kinds of basic systems which generate chaotic, periodic and random time series. As a summary
of this paper, all selected methods and indicators computed for generated times series have been
summarized in the table, which gives the authors a possibility to conclude about type of observed
behavior.

Keywords: deterministic chaos, time series analysis, Takens theorem.

1 Introduction

In 1981, Floris Takens presents his theorem about Embedding Nonlinear Dynamical
systems, which conceive an opportunity to reconstruct attractors of chaotic dynamical
system. Reconstruction is based on a time series given by observations of one state of
dynamical system [37].

Over the next few years many of embedding approaches and theirs applications were
described, for example, by Sauer, Yorke and Casdagli [34]. Stark applied Taken’s theorem
to Forced Systems [36]. Abarbanel described the analysis of observed chaotic data in
physical systems [1].
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There are also many of papers about observing chaos in real systems [4, 5, 6, 12, 18,
19, 21, 22, 26, 28, 32, 38, 41, 42] and about controlling chaos [3, 8, 8, 15, 25, 31, 39].

Such a large number of methods from listed papers proves, that the field of analysis
of chaotic systems is heavily explored. This is due to the difficulty and complexity of the
subject.

The approach described in this article was the result of previous experimental studies.
In Section 2, a set of time series analysis methods were chosen and described. Selection
was preceded by a review of the literature. Section 3 describes a way for generating test
time series for further experiments. Section 4 presents the numerical results of experi-
ments carried out on the generated time series. Conclusions are described in Section 5.

2 Set of methods

In our investigations, methods described below were used.

2.1 Time delay embedding

Many of real phenomenon are the results of nonlinear systems dynamics evolution [1].
Observation of such kind of systems provides many difficulties due to the fact that only
a limited set of information is accessible outside as a measurement of time series. The
basic assumption of this paper is that one time series is formed by samples measured in
the output of the system

s(n) = x(t0 + n∆t), (1)

where s(n) is the value of nth sample of measurement of physical process x in time
t0 + n∆t and t0 is initial time. According to Takens’ embedding theorem, it is possible
to reconstruct the state trajectory from single time series using below algorithm:

y(n) =
[
s(n), s(n+ T ), . . . , s

(
n+ (d− 1)

)
T
]
, (2)

where T is time delay and d is embedding dimension, which estimates a real dimension
of the observed system. The main point of the state space reconstruction method is T and
d estimation. To estimate time delay T , an average mutual information I has been used,
while for embedding dimension the saturation of system invariants method [1].

2.2 Time delay estimation: average mutual information method

There are three types of criterions of time delay Td selection [29]:

• series correlation approaches (autocorrelation, mutual information [17] or high-
order correlations [2]),

• approaches of phase space extension (fillfactor [11], wavering product [10] or av-
erage displacement [14]),

• multiple autocorrelation and nonbias multiple autocorrelation [27].
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For the purposes of this paper, mutual information method was selected. This ap-
proach is based on information theory and transformation of linear autocorrelation to non-
linear systems. More precisely, this method consists of 2-dimensional adaptive histogram.

Let’s assume that there are two nonlinear systems: A andB. Outputs of these systems
are denoted as a and b, while values of these outputs are represented by ai and bk. Mutual
information factor describes how many bits of bk could be predicted, where ai is known:

IAB(ai, bk) = log2

PAB(ai, bk)

PA(ai)PB(bk)
. (3)

Here PA(ai) is probability that a = ai and PB(bk) is probability that b = bk and
PAB(ai, bk) is join probability that a = ai and b = bk. Average mutual information
factor can be described by

IAB(T ) =
∑
ai,bk

PAB(ai, bk)IAB(ai, bk). (4)

In order to use this method to assess correlation between different samples in the same
time series, the average mutual information factor is finally described by the equation

I(T ) =

N∑
n=1

P
(
S(n), S(n+ T )

)
log2

P (S(n), S(n+ T ))

P (S(n))P (S(n+ T ))
. (5)

Fraser and Swinney [17] propose that Tm lag Td, where the first minimum of I(T )
occurs as a useful selection of time. This selection guarantees that the measurements
are somewhat independent, but not statistically independent. In the case of absence of
the average mutual information clear minimum, this criterion needs to be replaced by
choosing Td as the time for which the average mutual information reaches 4/5 of its
initial value:

I(Td)

I(0)
≈ 4

5
. (6)

2.3 Embedding dimension estimation: saturation of system invariants

As it was mentioned, delay coordinates are used to construct d-dimensional vector to
state space reconstruction. Takens theorem guarantees that if chosen embedding dimen-
sion is large enough, properties of the attractor of dynamical system will be the same
when computed on lagged coordinates and when computed in the physical coordinates.
The main goal of state space reconstruction is to provide a Euclidean space Rd large
enough so that the set of points of dimension d can be unfolded without ambiguity. When
all ambiguities are resolved, one says that the space Rd provides an embedding of the
attractor of dynamical system and dimension d is an embedding dimension dE = d.

There are several methods of selecting embedding dimension. One of them is the
method of false neighbors [9]. Very promising seems to be neural network method [30].
In this paper, saturation of system invariants method was used [1].

Nonlinear Anal. Model. Control, 20(4):545–560
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For properly reconstructed attractor, every its property depending on distances be-
tween points in the state space should become independent of the value of the embedding
dimension once the large enough dE has been reached. Appropriate necessary embedding
dimension can be established by computing such property for dE = 1, 2 . . . until variation
with dE cases. Mentioned property can be the correlation integral [20].

The average number of points on the attractor within a radius of r of points x in the
state space, n(r, x), is defined by

n(r, x) =
1

N

N∑
i=1

θ
(
r −

∣∣x(i)− x
∣∣), (7)

where θ(u) is the Heaviside function: θ(u) = 0, u < 0; θ(u) = 1, u > 0. The average
over all points in attractor of n(r, x) is called correlation integral and is described below:

C(r) =
1

M

M∑
j=1

[
n
(
r, x(j)

)]
=

1

M

1

N

M∑
j=1

N∑
i=1

θ
(
r −

∣∣x(i)− x(j)
∣∣). (8)

We can evaluate C(r) as a function of dE and determine when the slope of its logarithm
as function of log r becomes independent of dE .

In this method, the authors perceive the possibility to improve its efficiency through
the use of correlation dimension.

2.4 Correlation dimension saturation

Fractal geometry and fractal dimension conception provide a general framework for the
study of such irregular sets, like strange attractors. Fractals, which are irregular geometric
objects, require a special meaning of dimension. Very roughly, fractal dimension provide
a description of how much space a set fills [7, 16]. Of the wide variety of fractal dimen-
sions in use, the definition of Hausdorff is the most important:

dimH F = inf
{
s: Hs(F ) = 0

}
= sup

{
s: Hs(F ) =∞

}
. (9)

Here Hs(F ) is s-dimensional Hausdorff measure of set F defined as follows:

Hs(F ) = lim
σ→0

Hs
σ(F ), (10)

where Hs
σ(F ) is described by equation

Hs
σ(F ) = inf

{ ∞∑
i=1

|Ui|s: Ui is σ-cover of F

}
. (11)

The attractor of chaotic system has a fixed fractal dimension determined by Hausdorff.
Because of difficulties in its computations, several other fractal dimension estimators were
introduced.
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Correlation dimensionD2 is one of the fractal dimension estimators particularly suited
for relatively easy experimental determination. It is connected with correlation integral

C(r) ≈ rD2 . (12)

Above equation after some transformations can be written as

D2 = lim
r→0

C(r)

ln r
, (13)

D2 = lim
r→0

1
M

1
N

∑M
j=1

∑N
i=1 θ(r − |x(i)− x(j)|)

ln r
. (14)

For large N , Eq. (14) is useful estimator of D2.

ln
(
C(r)

)
≈ ln

(
rD2
)
≈ D2 ln r. (15)

In conclusion, estimation ofD2 value is a slope factor of regression function chart tangent
to the most linear part of ln(C(r)) = f(ln r) dependency.

The authors propose to saturate correlation dimension D2 instead to correlation in-
tegral in saturation of system invariants method. As will be shown in Section 4.2, this
improvement allows for a more clear and intuitive embedding dimension selection. Cor-
relation dimension was chosen because of its intuitive implementation. There are several
other fractal dimension estimators, such as box-counting dimension, information dimen-
sion or Higuchi dimension. Interesting approaches to fractal dimension estimation and its
applications was presented [33, 35].

2.5 The largest Lyapunov exponent

Lyapunov exponents describe velocity of distance increasing between two initially neigh-
boring orbits in the state space. The largest Lyapunov exponent describes the mean diver-
gence between initially neighboring trajectories by the following formula:

d(t) = DeL1t, (16)

where d(t) is distance between orbits in time, D is initial separation between neighboring
points and L1 is the largest Lyapunov exponent. In practice, value of the largest Lyapunov
exponent is commonly used chaos detection factor, because its positive value clearly
indicates chaotic behavior in the system. Wolf in his article [40] proposed to estimate
the largest Lyapunov’s exponent for time series based on below equation:

L1 =
1

t

m∑
j=1

log2

L′(tj+1)

L(tj)
, (17)

where L(tj) is a distance (in Euclidean sence) between pairs of trajectory points in time
t1 and L′(tj+1) is a distance between pairs of trajectory points in time tj+1.

Alternative methods of the largest Lyapunov exponent estimation are Rossenstein’s
algorithm [13] or Kantz’s algorithm [24].

Nonlinear Anal. Model. Control, 20(4):545–560
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2.6 Hurst exponent

Hurst exponent H can be counted by using R/S analysis based on the following algo-
rithm [23]:

1. N -length time series divide into k n-length subsets, where k · n = N .
2. For each subset m = 1, . . . , k:

• count average Em and standard deviation Sm,
• rescale each value in subset xi,m by cutting of the average value counted for

this subset
zi,m = xi,m − Em for i = 1, . . . , n, (18)

• construct cumulated subset of rescaled values

yi,m =

i∑
j=1

zj,m for i = 1, . . . , n, (19)

• calculate range Rm

Rm = max{y1,m, . . . , yn,m} −min{y1,m, . . . , yn,m}, (20)

• rescale range
Rm
Sm

. (21)

3. The average value of rescaled range for n-length subset can be described by(
R

S

)
n

=
1

k

k∑
m=1

Rm
Sm

. (22)

Hurst exponent can be calculated from below equation:(
R

S

)
n

= (cn)H , (23)

where: R/S – rescaled range, n – number of measurements in subset, c – constant value.
Finally, after logarithmization of both sides above equation can be rewritten as follows:

ln

(
R

S

)
= H lnn+H ln c. (24)

Slope factor value of linear regression function tangent to the most linear part of
ln(R/S) = f(lnn) dependency is an estimation of H .

It can be observed that, Hurst exponent values can be divided into three sets:

• H = 0.5 – samples in examined time series is random and not correlated (i.i.d.
series),

• 0 < H < 0.5 – examined time series is antipersistent and ergodic, which means
that the distribution parameters are constant (if the system trajectory in some period
of time increases, then it is highly probable that it will decrease in upcoming period,
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• 0.5 < H < 1 – examined time series is persistant, which means that samples create
some trends (if the system trajectory in some period of time follows a particular
direction, it is highly probable that in the upcoming period the trajectory will keep
the same direction).

3 Test time series

In this article, times series generated by four systems described below are examined.

3.1 Lorenz system

Considered Lorenz system is defined by differential equations

dx(t)

dt
= σ

(
y(t)− x(t)

)
,

dy(t)

dt
= −x(t)z(t) + rx(t)− y(t),

dz(t)

dt
= x(t)y(t)− bz(t).

(25)

For σ = 10, r = 28 and b = 8/3, this system generates chaotic time series. Figure 1
presents Lorenz attractor drawn for 214 points. Figure 2 presents time series generated by
state variable x.

Fig. 1. Lorenz’s system attractor. Fig. 2. Time series generated by variable x of
Lorenz’s system.

3.2 Henon system

Henon system is described by differential equations

dx(t)

dt
= 1.4 + 0.3y(t)− x(t)2,

dy(t)

dt
= x(t). (26)

Figure 3 presents Henon atractor drawn for 214 points. Figure 4 presents time series
generated by state variable x.

Nonlinear Anal. Model. Control, 20(4):545–560
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Fig. 3. Henon’s system attractor. Fig. 4. Time series generated by variable x of
Henon’s system.

3.3 Random and periodic systems

Random time series are generated by uniform distributed system. Periodic time series are
generated by the system described by the following equations:

x(n) = sin(n) + cos(n). (27)

4 Numerical results

4.1 Time delay estimation

Based on I = f(T ) dependency charts presented below, time delay values T for test
systems were estimated.

Optimal time delay value Topt is estimated either as a first minimum of dependency
I = f(T ) or from the equation I(Topt)/I(0) ≈ 4/5. Analyzing Fig. 5, it can be assumed
that Topt ≈ 13, because the first minimum is located in this area. In order to estimate

Fig. 5. I = f(T ) dependency chart for Lorenz’s
system.

Fig. 6. I = f(T ) dependency chart for Henon’s
system.
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Fig. 7. I = f(T ) dependency chart for random
system.

Fig. 8. I = f(T ) dependency chart for periodic
system.

Topt for the Henon system, the second criteria was used. It means that the optimal time
delay value was taken as 80% of initial value of mutual information I(0). In this case,
I(0) ≈ 7.62, I(Topt) = 6.1 and in consequence Topt ≈ 1. Analyzing dependency I =
f(T ) for random system, it can be assumed that all samples for T > 0 are not correlated.
For periodic system, a mutual information value I is high in wide range of T . It confirms
a deterministic nature of this system.

4.2 Embedding dimension estimation

In order to estimate embedding dimension of examined systems, saturation of system
invariants have been used.

Above charts express dependency between correlation integral and radius used to
calculate this invariant. This method was described in Section 2.3 and it assumes control
of correlation integral C2 value for increasing value of radius e.

Analyzing Fig. 9, it can be stated that the biggest change can be observed for di-
mensions lower than dE 6 3. Further increase of embedding dimension value doesn’t
have significant impact on examined invariant C2. In conclusion estimated embedding
dimension value was taken as dE = 3.

In Fig. 10 it can be noticed that the correlation integral C2 is saturated for dE > 2.
For random time series, correlation integral is never saturated which can be observed in
Fig. 11. Analyzing Fig. 12, it can be stated that saturation is present for wide range of
dE > 1.

In the second approach, system’s dynamics can be described by correlation dimension
which is one of the fractal dimension and can be also treated as an invariant in saturation
method.

For instance, analyzing Fig. 13 for Lorenz system, it can be observed that if embed-
ding dimension is greater than three (dE > 3), correlation dimension value C2 seems to
be saturated and doesn’t change to much.

For Henon time series saturation is reached for dE > 2, which can be easily seen in
Fig. 14.

Nonlinear Anal. Model. Control, 20(4):545–560
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Fig. 9. Correlation integral C2 versus radius e for
Lorenz time series.

Fig. 10. Correlation integral C2 versus radius e for
Henon time series.

Fig. 11. Correlation integral C2 versus radius e for
random time series.

Fig. 12. Correlation integral C2 versus radius e for
periodic time series.

Fig. 13. D2 values versus dE for Lorenz time
series.

Fig. 14. D2 values versus dE for Henon time series.

As it was mentioned before, for random time series saturation is never observed,
which can be also assumed from Fig. 15. It means that the distance between pairs of
points in state space never became a constant value. Figure 16 presents that saturation is
reached for dE = 1.
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Fig. 15. D2 values versus dE for random time series. Fig. 16. D2 values versus dE for periodic time series.

4.3 Hurst exponent analysis

Below figures allow to estimate Hurst exponent using linear regression method.

Fig. 17. ln(R/S) versus ln(n) for Lorenz time
series.

Fig. 18. ln(R/S) versus ln(n) for Henon time
series.

Fig. 19. ln(R/S) versus ln(n) for random time
series.

Fig. 20. ln(R/S) versus ln(n) for periodic time
series.

Nonlinear Anal. Model. Control, 20(4):545–560
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Analyzing Fig. 17, it can be stated that examined time series is persistent andH ≈ 0.8.
Based on results of Hurst analysis presented in Fig. 18, it can be stated that Henon time
series is antipersistent and H ≈ 0.42. Results of R/S analysis for random time series
can be found in Fig. 19. Analyzing this figure, it can be concluded that H ≈ 0.5, which
confirms randomness of this time series. Figure 20 confirms a deterministic character of
examined time series (H ≈ 1).

4.4 Lyapunov exponents

Below figures present the largest Lyapunov exponent estimations for the test time series
computed by using Wolf’s algorithm [40]. Based on below figures it can be stated that
for chaotic times series generated by Lorenz and Henon system, the largest Lyapunov
exponent are positive. It means that these systems are highly sensitive to initial condi-
tions. Small change of initial state, generates exponential increasing distance between
trajectories.

Unfortunately, Lyapunov exponents can not be used to differ chaotic and random time
series, because both of them give positive values. The largest Lyapunov values for random
times series are presented on Fig. 23.

Fig. 21. The largest Lyapunov exponent for Lorenz
time series.

Fig. 22. The largest Lyapunov exponent for Henon
time series.

Fig. 23. The largest Lyapunov exponent for
Random time series.

Fig. 24. The largest Lyapunov exponent for Periodic
time series.
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As it can be seen on Fig. 24, the largest Lyapunov exponent for periodic system is
negative, which confirms the existence of non-chaotic attractor.

5 Conclusions

In this article, three types of times series were examined: chaotic, random and periodic.
To differ type of behavior, the following methods were used: mutual information to
estimate time delay Topt, saturation of system’s invariants for estimation of embedding
dimension dE , correlation dimension to estimate fractal dimension D2, Hurst exponent
to examinate memory effect H and the largest Lyapunov exponent to check dependency
on initial conditions.

Values of all of mentioned above parameters for all examined systems are gathered
in Table 1. Analyzing Topt for random system, it can be stated that information in the
system is lost very quickly and it is exactly opposite to periodic system, where this
dependency is continously observable. Analyzing fractal dimension, it can be noticed
that for chaotic time series, saturated values are non-integer, while for periodic are very
close to integer and infinity for random. Hurst analysis allows to differ mainly random
and periodic behaviors. Lyapunov exponents are positive for chaotic time series (Lorenz
and Henon) and random. For periodic time series the largest Lyapunov exponent is nega-
tive.

Based on above summary, we can conclude that below set of indicators are properly
selected to differ behaviors in time series. If there is a need to distinguish chaotic and
periodic behavior in time series, the largest Lyapunov estimation is suggested method. On
the other hand, if the goal is to differ random and periodic times series, Hurst exponent
estimation could be useful. Fractal dimension estimations can provide information about
attractor, which in consequence allows simple method to differ chaotic from periodic
systems. To sum it up, it can be stated that there is none common method which gives
a possibility to fully differ three types of behavior: chaotic, random and periodic. It is
necessary to use wider set of methods, which provide more complex information about
different properties of examined times series.

Additional conclusion which can be drawn from this paper, is that correlation dimen-
sion seems to be very efficient invariant in the saturation of system’s invariant method.
Saturation of correlation dimension instead of correlation integral is more precise and in-
tuitive, which can be observed on Figs. 13–16. This approach allows to define embedding
dimension more clearly.

Table 1. Parameters estimation results for examined time series.

Parameters Lorenz Henon Random Periodic
Topt 13 1 NA NA
dE 3 2 ∞ 1
D2 1.98 1.19 ∞ 1
H 0.80 0.42 0.5 1
L + + + −

Nonlinear Anal. Model. Control, 20(4):545–560
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