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Abstract. In this paper, using a mixed monotone operator method, we study the existence and
uniqueness of positive solutions to a nonlinear arbitrary order fractional differential equation. An
example is provided to illustrate the main result.
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1 Introduction

Fractional differential equations have recently been proved to be valuable tools in the
modeling of many phenomena in various fields of engineering, biology, chemistry, physics,
etc., see [7,9,11,14]. In recent years, there has been a significant development in fractional
differential equations. One can see the monographs of Kilbas et al. [9], Lakshmikantham
et al. [10], Miller and Ross [12], Podlubny [13], and others. On the other hand, the
existence of positive solutions to BVPs of fractional differential equations has been exten-
sively studied by many researchers in recent years; see, for example, [1,2,3,4,5,6,8,15,16]
and the references therein.

In [5], Goodrich studied the following fractional differential equation:

Dα
0+x(t) + f

(
t, x(t)

)
= 0, t ∈ (0, 1), n− 1 < α 6 n,

x(i)(0) = 0, i = 0, 1, 2, . . . , n− 2,[
Dβ

0+x(t)
]
t=1

= 0, 2 6 β 6 n− 2,

(1)

where f : [0, 1]× [0,∞)→ [0,∞) is continuous,Dα
0+ is the standard Riemann–Liouville

fractional derivative of order n− 1 < α 6 n, n > 3 (n ∈ N), and x(i) represents the ith
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(ordinary) derivative of x. Using Krasnosel’skii fixed point theorem in cones, he derived
sufficient conditions for the existence of positive solutions to the problem. Note that the
uniqueness of positive solutions is not studied in [5].

In this paper, we are concerned with the existence and uniqueness criterions for posi-
tive solutions to the following nonlinear arbitrary order fractional differential equation:

Dα
0+x(t) + f

(
t, x(t), x(t)

)
+ g
(
t, x(t)

)
= 0, t ∈ (0, 1), n− 1 < α 6 n,

x(i)(0) = 0, i = 0, 1, 2, . . . , n− 2,[
Dβ

0+x(t)
]
t=1

= 0, 2 6 β 6 n− 2,

(2)

where n > 3 (n ∈ N), f : [0, 1] × [0,∞) × [0,∞) → [0,∞) and g : [0, 1] × [0,∞) →
[0,∞) are given continuous functions. Using a mixed monotone operator method, we
determine sufficient conditions under which problem (2) has a unique positive solution.

2 Preliminaries

For the convenience of the reader, we present here some definitions, lemmas and basic
results that will be used in the proof of our main result.

Definition 1. (See [13].) The Riemann–Liouville fractional derivative of order α > 0 of
a function ϕ : (0,+∞)→ R is given by

Dα
0+ϕ(t) =

1

Γ(n− α)

(
d

dt

)(n) t∫
0

ϕ(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided that the right side
is pointwise defined on (0,+∞).

Lemma 1. (See [5].) Assume that ξ : [0, 1] → R is a continuous function, then the
fractional differential equation

Dα
0+x(t) + ξ(t) = 0, t ∈ (0, 1), n− 1 < α 6 n,

x(i)(0) = 0, i = 0, 1, . . . , n− 2,[
Dβ

0+x(t)
]
t=1

= 0, 2 6 β 6 n− 2,

(3)

has the unique solution

x(t) =

1∫
0

Gα,β(t, s)ξ(s) ds,

where

Gα,β(t, s) =

{
(tα−1(1− s)α−β−1 − (t− s)α−1)/Γ(α), 0 6 s 6 t 6 1,

tα−1(1− s)α−β−1/Γ(α), 0 6 t 6 s 6 1,
(4)

is the Green’s function of (3).
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Lemma 2. The Green function (4) has the following property:

tα−1(1− s)α−β−1
[
1− (1− s)β

]
6 Γ(α)Gα,β(t, s) 6 tα−1(1− s)α−β−1, t, s ∈ [0, 1].

Proof. The right inequality is trivial. We have only to prove the left inequality. If 0 6
s 6 t 6 1, then we have

t− s 6 t− ts = (1− s)t,
which implies that

(t− s)α−1 6 (1− s)α−1tα−1.
Then

Γ(α)Gα,β(t, s) = tα−1(1− s)α−β−1 − (t− s)α−1

> tα−1(1− s)α−β−1 − (1− s)α−1tα−1

= tα−1
[
(1− s)α−β−1 − (1− s)α−1

]
= tα−1(1− s)α−β−1

[
1− (1− s)β

]
.

If 0 6 t 6 s 6 1, then we have

Γ(α)Gα,β(t, s) = tα−1(1− s)α−β−1

> tα−1(1− s)α−β−1
[
1− (1− s)β

]
.

So the left inequality is proved.

In the sequel, we present some basic concepts in ordered Banach spaces for complete-
ness and a fixed point theorem, which we will be used later.

Suppose that (E, ‖ · ‖) is a real Banach space, which is partially ordered by a cone
P ⊂ E, i.e.,

x, y ∈ E, x � y ⇐⇒ y − x ∈ P.
If x � y and x 6= y, then we denote x ≺ y or y � x. By θE we denote the zero element
of E. Recall that a nonempty closed convex set P ⊂ E is a cone if it satisfies:

(P1) x ∈ P, λ > 0 ⇒ λx ∈ P ;
(P2) −x, x ∈ P ⇒ x = θE .

Putting int(P ) = {x ∈ P | x is an interior point of P}, a cone P is said to be solid if
its interior int(P ) is nonempty. Moreover, P is called normal if there exists a constant
N > 0 such that, for all x, y ∈ E, θE � x � y implies ‖x‖ 6 N‖y‖. In this case, the
smallest constant satisfying this inequality is called the normality constant of P . For all
x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0 such that

λy � x � µy.

Clearly, ∼ is an equivalence relation. Given h � θE , we denote by Ph the set

Ph = {x ∈ E | x ∼ h}.

It is easy to see that Ph ⊂ P .
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Definition 2. An operator A : E → E is said to be increasing (resp. decreasing) if for all
x, y ∈ E, x � y implies Ax � Ay (resp. Ax � Ay).

Definition 3. An operator A : P × P → P is said to be a mixed monotone operator if
A(x, y) is increasing in first component and decreasing in second component, i.e.,

(x, y), (u, v) ∈ P × P, x � u, y � v =⇒ A(x, y) � A(u, v).

Definition 4. An operator A : P → P is said to be sub-homogeneous if it satisfies

A(tx) � tAx ∀t ∈ (0, 1), x ∈ P.

Lemma 3. (See [17].) Let γ ∈ (0, 1). LetA : P ×P → P be a mixed monotone operator
that satisfies

A
(
tx, t−1y

)
� tγA(x, y), t ∈ (0, 1), x, y ∈ P.

Let B : P → P be an increasing sub-homogeneous operator. Assume that:

(i) There is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;
(ii) There exists a constant δ0 > 0 such that A(x, y) � δ0Bx for all x, y ∈ P .

Then:

(I) A : Ph × Ph → Ph, B : Ph → Ph;
(II) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 � u0 ≺ v0, u0 � A(u0, v0) +Bu0 � A(v0, u0) +Bv0 � v0;

(III) There exists a unique x∗ ∈ Ph such that x∗ = A(x∗, x∗) +Bx∗;
(IV) For any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1) +Bxn−1, yn = A(yn−1, xn−1) +Byn−1,

n = 1, 2, . . . , we have

lim
n→∞

‖xn − x∗‖ = lim
n→∞

‖yn − x∗‖ = 0.

3 Main result

Let E = C([0, 1]) be the Banach space of real continuous functions defined in [0, 1]
endowed with the norm

‖y‖ = max
{∣∣y(t)

∣∣: t ∈ [0, 1]
}

and P ⊂ E be the positive cone defined by

P =
{
y ∈ C

(
[0, 1]

)
: y(t) > 0, t ∈ [0, 1]

}
.

Our main result in this paper is the following.
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Theorem 1. Suppose that:

(i) f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) and g : [0, 1] × [0,+∞) → [0,+∞)
are continuous with

m
({
t ∈ [0, 1]: g(t, 0) 6= 0

})
> 0,

where for some measurable set Ξ , m(Ξ) denotes the Lebesgue measure of Ξ;
(ii) f(t, x, y) is increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1] and y ∈ [0,+∞),

decreasing in y ∈ [0,+∞) for fixed t ∈ [0, 1] and x ∈ [0,+∞), and g(t, x) is
increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1];

(iii) g(t, λx) > λg(t, x) for all λ ∈ (0, 1), t ∈ [0, 1], x ∈ [0,+∞);
(iv) There exists a constant γ ∈ (0, 1) such that

f
(
t, λx, λ−1y

)
> λγf(t, x, y), λ ∈ (0, 1), t ∈ [0, 1], x, y ∈ [0,+∞);

(v) There exists a constant δ0 > 0 such that

f(t, x, y) > δ0g(t, x), t ∈ [0, 1], x, y ∈ [0,+∞).

Then:

(I) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 � u0 ≺ v0 and

u0(t) 6

1∫
0

Gα,β(t, s)f
(
s, u0(s), v0(s)

)
ds+

1∫
0

Gα,β(t, s)g
(
s, u0(s)

)
ds,

v0(t) >

1∫
0

Gα,β(t, s)f
(
s, v0(s), u0(s)

)
ds+

1∫
0

Gα,β(t, s)g
(
s, v0(s)

)
ds,

where h(t) = tα−1, t ∈ [0, 1];
(II) (2) has a unique positive solution x∗ ∈ Ph;

(III) For any x0, y0 ∈ Ph, constructing successively the sequences

xn(t)=

1∫
0

Gα,β(t, s)f
(
s, xn−1(s), yn−1(s)

)
ds+

1∫
0

Gα,β(t, s)g
(
s, xn−1(s)

)
ds,

yn(t)=

1∫
0

Gα,β(t, s)f
(
s, yn−1(s), xn−1(s)

)
ds+

1∫
0

Gα,β(t, s)g
(
s, yn−1(s)

)
ds,

we have

lim
n→∞

‖xn − x∗‖ = lim
n→∞

‖yn − x∗‖ = 0.
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Proof. From Lemma 1, (2) has an integral formulation given by

x(t) =

1∫
0

Gα,β(t, s)f
(
s, x(s), x(s)

)
ds+

1∫
0

Gα,β(t, s)g
(
s, x(s)

)
ds.

Consider the operators A : P × P → E and B : P → E defined by

A(u, v)(t) =

1∫
0

Gα,β(t, s)f
(
s, u(s), v(s)

)
ds, t ∈ [0, 1],

Bu(t) =

1∫
0

Gα,β(t, s)g
(
s, u(s)

)
ds, t ∈ [0, 1].

Clearly, x is a solution to (2) if and only ifA(x, x)+Bx = x. Further, it follows from (ii)
that A is mixed monotone and B is increasing. On the other hand, for any λ ∈ (0, 1),
u, v ∈ P , from (iv) we have

A
(
λu, λ−1v

)
(t) =

1∫
0

Gα,β(t, s)f
(
s, λu(s), λ−1v(s)

)
ds

> λγ
1∫

0

Gα,β(t, s)f
(
s, u(s), v(s)

)
ds = λγA(u, v)(t).

Thus we have

A
(
λu, λ−1v

)
� λγA(u, v), λ ∈ (0, 1), u, v ∈ P.

From (iii), for all λ ∈ (0, 1), u ∈ P , we have

B(λu)(t) =

1∫
0

Gα,β(t, s)g
(
s, λu(s)

)
ds > λ

1∫
0

Gα,β(t, s)g
(
s, u(s)

)
ds

= λBu(t).

Thus we have,

B(λu) � λBu, λ ∈ (0, 1), u ∈ P,

which implies that B is a sub-homogeneous operator. Let h ∈ P be defined by

h(t) = tα−1, t ∈ [0, 1].
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Using Lemma 2 and (ii), we have

A(h, h)(t) =

1∫
0

Gα,β(t, s)f
(
s, h(s), h(s)

)
ds

6
h(t)

Γ(α)

1∫
0

(1− s)α−β−1f(s, 1, 0) ds, t ∈ [0, 1].

Again, using Lemma 2 and (ii), we have

A(h, h)(t) =

1∫
0

Gα,β(t, s)f
(
s, h(s), h(s)

)
ds

>
h(t)

Γ(α)

1∫
0

(1− s)α−β−1
[
1− (1− s)β

]
f(s, 0, 1) ds, t ∈ [0, 1].

Denote

µ1 =
1

Γ(α)

1∫
0

(1− s)α−β−1
[
1− (1− s)β

]
f(s, 0, 1) ds

and

µ2 =
1

Γ(α)

1∫
0

(1− s)α−β−1f(s, 1, 0) ds.

Then we have
µ1h � A(h, h) � µ2h.

On the other hand, from (ii) and (v), we have

f(s, 1, 0) > f(s, 0, 1) > δ0g(s, 0) > 0.

Since m({t ∈ [0, 1]: g(t, 0) 6= 0}) > 0, we have

µ2 =
1

Γ(α)

1∫
0

(1− s)α−β−1f(s, 1, 0) ds >
δ0

Γ(α)

1∫
0

(1− s)α−β−1g(s, 0) ds > 0

and

µ1 =
1

Γ(α)

1∫
0

(1− s)α−β−1
[
1− (1− s)β

]
f(s, 0, 1) ds

>
δ0

Γ(α)

1∫
0

(1− s)α−β−1
[
1− (1− s)β

]
g(s, 0) ds > 0.

Nonlinear Anal. Model. Control, 20(3):367–376
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Thus we proved that A(h, h) ∈ Ph. Similarly,

h(t)

Γ(α)

1∫
0

(1− s)α−β−1
[
1− (1− s)β

]
g(s, 0) ds

6 Bh(t) 6
h(t)

Γ(α)

1∫
0

(1− s)α−β−1g(s, 1) ds, t ∈ [0, 1].

Denote

λ1 =
1

Γ(α)

1∫
0

(1− s)α−β−1
[
1− (1− s)β

]
g(s, 0) ds

and

λ2 =
1

Γ(α)

1∫
0

(1− s)α−β−1g(s, 1) ds.

Then we have

λ1h � Bh � λ2h.

From (ii) and the condition: m({t ∈ [0, 1]: g(t, 0) 6= 0}) > 0, we have λ1 > 0 and
λ2 > 0. Thus we proved that Bh ∈ Ph. Let u, v ∈ P . From (v), we have

A(u, v)(t) =

1∫
0

Gα,β(t, s)f
(
s, u(s), v(s)

)
ds

> δ0

1∫
0

Gα,β(t, s)g
(
s, u(s)

)
ds = δ0Bu(t), t ∈ [0, 1].

Thus we have
A(u, v) � δ0Bu, u ∈ P.

Finally, applying Lemma 3, we obtain the desired results.

We end the paper with the following example.

Example. Consider the boundary value problem

D
9/2
0+ x(t) + 2

(
t2 +

√
x(t)

)
+

1√
x(t) + 1

= 0, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = x′′′(0) = 0,[
D

5/2
0+ x(t)

]
t=1

= 0.

(5)
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Consider the functions f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) and g : [0, 1] ×
[0,+∞)→ [0,+∞) defined by

f(t, u, v) = t2 +
√
u+

1√
v + 1

, g(t, u) =
√
u+ t2, t ∈ [0, 1], u, v > 0.

Then (5) is equivalent to

D
9/2
0+ x(t) + f

(
t, x(t), x(t)

)
+ g
(
t, x(t)

)
= 0, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = x′′′(0) = 0,[
D

5/2
0+ x(t)

]
t=1

= 0.

(6)

Let us check that all the required conditions of Theorem 1 are satisfied. Clearly, the
functions f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) and g : [0, 1]× [0,+∞)→ [0,+∞)
are continuous with

m
({
t ∈ [0, 1]: g(t, 0) 6= 0

})
= 1.

We observe easily that f(t, x, y) is increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1] and
y ∈ [0,+∞), decreasing in y ∈ [0,+∞) for fixed t ∈ [0, 1] and x ∈ [0,+∞), and g(t, x)
is increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1]. For all λ ∈ (0, 1), t ∈ [0, 1] and u > 0,
we have

g(t, λu) =
√
λu+ t2 =

√
λ
√
u+ t2 > λ

(√
u+ t2

)
= λg(t, u).

For all λ ∈ (0, 1), t ∈ [0, 1], u, v > 0, we have

f(t, λu, λ−1v) = t2 +
√
λu+

1√
λ−1v + 1

= t2 +
√
λu+

√
λ√

v + λ

>
√
λ

(
t2 +

√
u+

1√
v + 1

)
= λ1/2f(t, u, v).

For all t ∈ [0, 1], u, v > 0, we have

f(t, u, v) = t2 +
√
u+

1√
v + 1

> t2 +
√
u = 1 · g(t, u).

Thus we proved that all the hypotheses of Theorem 1 are satisfied. Then we deduce that
(5) has one and only one positive solution x∗ ∈ Ph, where h(t) = t7/2, t ∈ [0, 1].
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